SOME REPRESENTING MEASURES FOR THE BALL ALGEBRA
Walter Rudin

In this paper, M, denotes the class of those (Borel) probability measures p
on the sphere S (the boundary of the open unit ball B in C") that satisfy

(1) g fdp = f(0)
S

for every f in the ball algebra A(B). [Recall that f € A(B) if and only if f
is a continuous complex function on B and f is holomorphic in B. The members
of M, “represent” the homomorphism f— f(0) of A(B) onto C.]

When n = 1, M, has exactly one member, namely normalized Lebesgue measure
on the unit circle 7. In general, M, is convex and weak*-compact, but it turns
out to be a very large set when n > 1.

The “obvious” members of M, are the circular probability measures p. on S.
By definition, these satisfy

(2) S v(eieg)du(§)=g vdp
S

S

for every v € C(S) and for every real 0. Indeed, if (2) holds and f € A(B),
then A\ — f(\{) is in the disc algebra A(U) (U = B'), so that

27

1 " .
(3) S fdn = S dp (0 — S fle®)de = £(0),
S S L

by Fubini’s theorem.

To see some others, take n = 2, for simplicity. Let 7 be any probability measure
on U C C that satisfies

4) S gdv = g(0)
o

for every g € A(U). For example, 7 might be concentrated on a simple closed
curve I' in U that surrounds the origin, in such a way that 7t solves the Dirichlet
problem at O relative to the domain bounded by I'. The measure p that satisfies
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2

1 " .
(5) S vdp = S dr(z) — S vi(z,e® V1—|z|*)de
S U —ar
for every v € C(S) belongs then to M,. To see this, simply note that the inner
integral on the right side of (5), with v replaced by f € A(B), equals f(z,0).
The support of this p is the set of all (2,w) € S for which z lies in the support
of 7.

The set M, plays a role in the study of Lumer’s Hardy spaces (LH)”(B). We
recall, for 0 < p < o, that a holomorphic function f in B belongs to (LH)”(B)
provided that |f|” has a pluriharmonic majorant in B, i.e., provided that
| fI? = Reg for some holomorphic g in B. (Some of the pathology of these spaces
is described in [3].) To see the connection between M, and (LH)”, associate to
every continuous real function v on S the numbers

(6) a(v)=sup{§ Udp:pEMo}
S
and
(7 B)=inf{u(0):u € ReA(B), u= vonS}.

[In (6), the supremum is actually attained, since M, is weak*-compact.] Since
every p € M, satisfies (1) with Ref in place of f, it is clear that a(v) = B(v).
But more is true, namely

(8) a(v) =B ().

This is proved on p. 32 of [1] and (as pointed out to me by Stout) implies Lumer’s
theorem [2; Th.2] which asserts that a holomorphic f in B lies in (LH)?(B) if
and only if

9) sup S | £ 12 dp < .
rp s

Here 0 < r < 1, p ranges over M, and f,()) = f(r{), for { € S.
This characterization of (LH)” (B) suggests the following two questions:

I. Is the integral in (9) a monotonic function of r, for every p € M, and
every holomorphic f? [For circular p, the answer is obviously yes, via the case
n=1]

II. Ifthe supremum in (9) is finite when p ranges just over the circular measures
in M,, does it follow that f € (LH)”(B)? [Of course, it does follow, trivially,
that f lies in the ordinary Hardy space H” (B).]

When n = 2 (hence also when n > 2), both questions have negative answers:

THEOREM 1. Put f(z,w) = (1 — z)w. Then there exists p € M, such that
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S | £.|”dp is not a monotonic function of r in [0,1], for any p € (0,).
S

THEOREM II. There is a holomorphic f in B which extends continuously to
B, except for one boundary point, such that

(10) sup S | Pdp=<1
r s
for every circular p € M,, but
(11) S | £ |?dp*— © as r— 1,
S

for a certain p* € M,.
(1]

Both theorems will be proved by means of the representing measures described
by (5), with one of the following measures 7, in place of 1.

For0 =x <1, let §,(A\) = (x + A\) /(1 + xA), let I be the interval [¥,(0),¥,(1/2)],
put Q. = U\I, and (for 0 < x < 1) let v, be the probability measure on
9Q, = T U I, that satisfies

(12) S hd~, = h(0)
an,
for every 2 € C(Q),) which is harmonic in Q_.

LEMMA 1. There is a constant v > 0 such that
(13) .(I)=v(1 —x) 0<x<1).

Proof. fix u € C(Q,), harmonic in Q,, such that « = O on 7, z = 1 on
I,. There is a y > 0 such that u(—x) = y(1 — x) for 0 < x < 1. The composition
uo ¢ is continuous on ), harmonic in Q_, 0 on T, 1 on I.. Hence, by (12),

7.(L) = u(@; (0) = u(—x) = y(1 — 2).

Proof of Theorem 1. For (z,w) €S, 0<r<1,

(14) fzw) =1 - rz)rw,

so that

1 (7 )
2 S | £,(z,e" V1 —[2]*)]PdB = |[r — r®z|" (1 — |2|*)*/~
w -

If p is now defined by (5), with 7, (as in Lemma 1) in place of T and x = 3/4,
it follows that
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(15) X | £ |7dp = g (r—r20? 1 — t*)*?dx(t).
s I,

This integral is 0 when r = 0. It is positive for all r € (0,1). It decreases as
r increases from 2/3 to 1, since the integrand on the right of (15) is then a
decreasing function of r, for every ¢t € I,.

LEMMA 2. Form =1, 2, 3, ..., define

(16) g (w) = (1 —2) ™ w?*,
Then
a7 lg. zw)] < (2/8)Y*@2 - 8™

if (zw) €EB,0<3<1,|1—2z| =35, and

1 (7 . 2m
5[ o= ()
m

ke 3

ifl{=(w €S,0<r<1.

Proof. Since |w|®> =1 — |z|®in B, |g,, (2, w)]| is at most
(19) |1 _ Zl —-m-1 (1 _ r2)m+1/2,

where r = |z|. Let E; be the set of all z € U with |1 — z| = §. Fix r, and
let z range over the part of this circle that lies in E;,. When 0 < r = 1 — 3§,
then (19) attains its maximum at z = r; when 1 — 8 < r = 1, the maximum
occurs when |1 — z| = 3. Hence (19) attains its maximum in E; at the point
z = 1 — 3. At that point, (19) equals

(20) 8—1/2 (2 _ 8)m+1/2.

Hence (17) holds.

To prove (18), insert the binomial expansion

= [k
(21) (1—z)‘"‘“=2( ;’(m)z’e

k=0

into (16). By Parseval’s theorem, the integral in (18) is then

| > (k+m\?
(22) J(r’ C) . Iw|4m+2 2 ( . ) Izl2k r2k+4m+2.
k=0

It is easily verified that
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(k+m)2 (2m)(k+2m)
(23) = )
k m k

Since |w|®> = 1 — |z|® on S, another application of the binomial theorem gives
therefore
2m = [k +2m
J(r,C) < ( ) w 4m+2 ( ) 2 2k
. lw] ; 5 |z

2m am+2 2y —2m—1 2m
= (Mt e = (1),
m m

Proof of Theorem II. Let C, (m = 1,2,3,...) be non-negative numbers that
satisfy '

(24) iCm=1 but i C2m'? =,

m=1 m=1

For example, put C, = (p(p + 1)) 'if m = p*(p = ,2,3,..), put C,, = 0
otherwise. Define

% 2m -1/2
25 , —_ Cm 1 _ -m—1 2m+1.
(25) flz,w) 2 (m ) (1-2) w

m=1
By Stirling’s formula,

2
(26) ( m)~4m/v'n'm.

m

The_ estimate (17) implies therefore that the series (25) converges at every point
of B, and that the convergence is uniform outside any neighborhood of the point
(1,0).

2m\ ~V/*
Since f is a convex combination of the functions ( ) &, it follows from
m
(18) that
1 " i6 2
(27) — | f@re®C)|"do=1
2w ) _.

forall { € S, r € (0,1). If now p € M, is circular, we can apply Fubini’s theorem
as in (3), and conclude from (27) that (10) holds.

We turn to the proof of (11). The definition of f shows, for 0 < ¢t < 1, that

1 (™ .
(28) ——S | F(t,e®V1—-¢t%)?do =1 —¢t)"'¢ @)

v
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where

w 2 -1
(29) b(e) =D Ch, ( :) 1+ ¢)>"*,

m=1
By (24) and (26), it follows that
(30) Y() > wast— 1.

Now pick x € (0,1), and define p, € M, as in (5), with 7, in place of 7. (See
Lemma 1.) By (28),

(31) S | fl*dp, = S (1 -8 @) dT (@)
s I,

and hence Lemma 1 implies that

(32) S | f1%dp, = v (%),
S

since ¢ (¢) = Y(x) on I,.
By (30), we can choose x; — 1 so that {s(x;) > 4°. Define

(33) pr=> 27,
i=1
Since M, is convex and weak*-compact, p* € M,. Also, for each i, (32) gives

(34) S | F12dp* = 27" - y¥(x;) >v -+ 2
S

Thus X | fI?dp* = =, and (11) follows from Fatou’s lemma.
S
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