SOME REPRESENTING MEASURES FOR THE BALL ALGEBRA

Walter Rudin

In this paper, M_0 denotes the class of those (Borel) probability measures ρ on the sphere S (the boundary of the open unit ball B in \mathbb{C}^n) that satisfy

$$\int_{S} f d\rho = f(0)$$

for every f in the ball algebra A(B). [Recall that $f \in A(B)$ if and only if f is a continuous complex function on \overline{B} and f is holomorphic in B. The members of M_0 "represent" the homomorphism $f \to f(0)$ of A(B) onto C.]

When n = 1, M_0 has exactly one member, namely normalized Lebesgue measure on the unit circle T. In general, M_0 is convex and weak*-compact, but it turns out to be a very large set when n > 1.

The "obvious" members of M_0 are the *circular* probability measures μ on S. By definition, these satisfy

(2)
$$\int_{S} v(e^{i\theta}\zeta) d\mu(\zeta) = \int_{S} v d\mu$$

for every $v \in C(S)$ and for every real θ . Indeed, if (2) holds and $f \in A(B)$, then $\lambda \to f(\lambda \zeta)$ is in the disc algebra A(U) ($U = B^1$), so that

(3)
$$\int_{S} f d\mu = \int_{S} d\mu \left(\zeta\right) \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta} \zeta) d\theta = f(0),$$

by Fubini's theorem.

To see some others, take n=2, for simplicity. Let τ be any probability measure on $\bar{U}\subset \mathbf{C}$ that satisfies

$$\int_{\bar{U}} g d\tau = g(0)$$

for every $g \in A(U)$. For example, τ might be concentrated on a simple closed curve Γ in U that surrounds the origin, in such a way that τ solves the Dirichlet problem at 0 relative to the domain bounded by Γ . The measure ρ that satisfies

Received November 1, 1978.

This research was partially supported by NSF Grant MCS 78-06860, and by the William F. Vilas Trust Estate.

Michigan Math. J. 27 (1980). .

(5)
$$\int_{S} v d\rho = \int_{U} d\tau(z) \frac{1}{2\pi} \int_{-\pi}^{\pi} v(z, e^{i\theta} \sqrt{1 - |z|^2}) d\theta$$

for every $v \in C(S)$ belongs then to M_0 . To see this, simply note that the inner integral on the right side of (5), with v replaced by $f \in A(B)$, equals f(z,0). The support of this ρ is the set of all $(z,w) \in S$ for which z lies in the support of τ .

The set M_0 plays a role in the study of Lumer's Hardy spaces $(LH)^p(B)$. We recall, for 0 , that a holomorphic function <math>f in B belongs to $(LH)^p(B)$ provided that $|f|^p$ has a pluriharmonic majorant in B, i.e., provided that $|f|^p \le \text{Re } g$ for some holomorphic g in B. (Some of the pathology of these spaces is described in [3].) To see the connection between M_0 and $(LH)^p$, associate to every continuous real function v on S the numbers

(6)
$$\alpha(v) = \sup \left\{ \int_{S} v d\rho : \rho \in M_{0} \right\}$$

and

(7)
$$\beta(v) = \inf\{u(0) : u \in \operatorname{Re} A(B), u \ge v \text{ on } S\}.$$

[In (6), the supremum is actually attained, since M_0 is weak*-compact.] Since every $\rho \in M_0$ satisfies (1) with Re f in place of f, it is clear that $\alpha(v) \leq \beta(v)$. But more is true, namely

(8)
$$\alpha(v) = \beta(v).$$

This is proved on p. 32 of [1] and (as pointed out to me by Stout) implies Lumer's theorem [2; Th.2] which asserts that a holomorphic f in B lies in $(LH)^p(B)$ if and only if

(9)
$$\sup_{r,\rho} \int_{S} |f_r|^p d\rho < \infty.$$

Here 0 < r < 1, ρ ranges over M_0 , and $f_r(\zeta) = f(r\zeta)$, for $\zeta \in S$.

This characterization of $(LH)^p(B)$ suggests the following two questions:

- I. Is the integral in (9) a monotonic function of r, for every $\rho \in M_0$ and every holomorphic f? [For circular ρ , the answer is obviously yes, via the case n=1.]
- II. If the supremum in (9) is finite when ρ ranges just over the *circular* measures in M_0 , does it follow that $f \in (LH)^p(B)$? [Of course, it does follow, trivially, that f lies in the ordinary Hardy space $H^p(B)$.]

When n=2 (hence also when n>2), both questions have negative answers:

THEOREM I. Put f(z,w) = (1-z)w. Then there exists $\rho \in M_0$ such that

 $\int_{S} |f_{r}|^{p} d\rho \text{ is not a monotonic function of } r \text{ in } [0,1], \text{ for any } p \in (0,\infty).$

THEOREM II. There is a holomorphic f in B which extends continuously to \bar{B} , except for one boundary point, such that

$$\sup_{r} \int_{S} |f_{r}|^{2} d\rho \leq 1$$

for every circular $\rho \in M_0$, but

(11)
$$\int_{S} |f_{r}|^{2} d\rho^{*} \to \infty \text{ as } r \to 1,$$

for a certain $\rho^* \in M_0$.

Both theorems will be proved by means of the representing measures described by (5), with one of the following measures τ_x in place of τ .

For $0 \le x < 1$, let $\psi_x(\lambda) = (x + \lambda)/(1 + x\lambda)$, let I_x be the interval $[\psi_x(0), \psi_x(1/2)]$, put $\Omega_x = U \setminus I_x$, and (for 0 < x < 1) let τ_x be the probability measure on $\partial \Omega_x = T \cup I_x$ that satisfies

(12)
$$\int_{\partial\Omega_x}hd\tau_x=h(0)$$

for every $h \in C(\bar{\Omega}_x)$ which is harmonic in Ω_x .

LEMMA 1. There is a constant $\gamma > 0$ such that

(13)
$$\tau_x(I_x) \ge \gamma(1-x) \qquad (0 < x < 1).$$

Proof. fix $u \in C(\bar{\Omega}_0)$, harmonic in Ω_0 , such that u = 0 on T, u = 1 on I_0 . There is a $\gamma > 0$ such that $u(-x) \ge \gamma(1-x)$ for 0 < x < 1. The composition $u \circ \psi_x^{-1}$ is continuous on $\bar{\Omega}_x$, harmonic in Ω_x , 0 on T, 1 on I_x . Hence, by (12),

$$\tau_x(I_x) = u(\psi_x^{-1}(0)) = u(-x) \ge \gamma(1-x).$$

Proof of Theorem I. For $(z, w) \in S$, 0 < r < 1,

(14)
$$f_r(z,w) = (1-rz)rw,$$

so that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f_r(z, e^{i\theta} \sqrt{1-|z|^2})|^p d\theta = |r-r^2 z|^p (1-|z|^2)^{p/2}.$$

If ρ is now defined by (5), with τ_x (as in Lemma 1) in place of τ and x=3/4, it follows that

(15)
$$\int_{S} |f_{r}|^{p} d\rho = \int_{I_{x}} (r - r^{2}t)^{p} (1 - t^{2})^{p/2} d\tau_{x}(t).$$

This integral is 0 when r=0. It is positive for all $r\in(0,1)$. It decreases as r increases from 2/3 to 1, since the integrand on the right of (15) is then a decreasing function of r, for every $t\in I_r$.

LEMMA 2. For m = 1, 2, 3, ..., define

(16)
$$g_m(z,w) = (1-z)^{-m-1}w^{2m+1}.$$

Then

$$|g_m(z,w)| < (2/\delta)^{1/2} (2-\delta)^m$$

if $(z,w) \in \overline{B}$, $0 < \delta < 1$, $|1 - z| \ge \delta$, and

(18)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |g_m(re^{i\theta}\zeta)|^2 d\theta \le {2m \choose m}$$

if $\zeta = (z, w) \in S$, 0 < r < 1.

Proof. Since $|w|^2 \le 1 - |z|^2$ in \bar{B} , $|g_m(z, w)|$ is at most

(19)
$$|1-z|^{-m-1}(1-r^2)^{m+1/2},$$

where r=|z|. Let E_{δ} be the set of all $z\in \bar{U}$ with $|1-z|\geq \delta$. Fix r, and let z range over the part of this circle that lies in E_{δ} . When $0\leq r\leq 1-\delta$, then (19) attains its maximum at z=r; when $1-\delta < r\leq 1$, the maximum occurs when $|1-z|=\delta$. Hence (19) attains its maximum in E_{δ} at the point $z=1-\delta$. At that point, (19) equals

$$\delta^{-1/2} (2 - \delta)^{m+1/2}.$$

Hence (17) holds.

To prove (18), insert the binomial expansion

(21)
$$(1-z)^{-m-1} = \sum_{k=0}^{\infty} {k+m \choose k} z^k$$

into (16). By Parseval's theorem, the integral in (18) is then

(22)
$$J(r,\zeta) = |w|^{4m+2} \sum_{k=0}^{\infty} {k+m \choose k}^2 |z|^{2k} r^{2k+4m+2}.$$

It is easily verified that

(23)
$${\binom{k+m}{k}}^2 \le {\binom{2m}{m}} {\binom{k+2m}{k}}.$$

Since $|w|^2 = 1 - |z|^2$ on S, another application of the binomial theorem gives therefore

$$J(r,\zeta) < \binom{2m}{m} |w|^{4m+2} \sum_{k=0}^{\infty} \binom{k+2m}{k} |z|^{2k}$$
$$= \binom{2m}{m} |w|^{4m+2} (1-|z|^2)^{-2m-1} = \binom{2m}{m}.$$

Proof of Theorem II. Let $C_m (m = 1, 2, 3, ...)$ be non-negative numbers that satisfy

(24)
$$\sum_{m=1}^{\infty} C_m = 1 \quad \text{but} \quad \sum_{m=1}^{\infty} C_m^2 m^{1/2} = \infty.$$

For example, put $C_m = (p(p+1))^{-1}$ if $m = p^{10}(p=1,2,3,...)$, put $C_m = 0$ otherwise. Define

(25)
$$f(z,w) = \sum_{m=1}^{\infty} C_m \binom{2m}{m}^{-1/2} (1-z)^{-m-1} w^{2m+1}.$$

By Stirling's formula,

(26)
$${2m \choose m} \sim 4^m / \sqrt{\pi m}.$$

The estimate (17) implies therefore that the series (25) converges at every point of \overline{B} , and that the convergence is uniform outside any neighborhood of the point (1,0).

Since f is a convex combination of the functions $\binom{2m}{m}^{-1/2}g_m$, it follows from (18) that

(27)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta}\zeta)|^2 d\theta \le 1$$

for all $\zeta \in S$, $r \in (0,1)$. If now $\rho \in M_0$ is circular, we can apply Fubini's theorem as in (3), and conclude from (27) that (10) holds.

We turn to the proof of (11). The definition of f shows, for 0 < t < 1, that

(28)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t, e^{i\theta} \sqrt{1-t^2})|^2 d\theta = (1-t)^{-1} \psi(t)$$

where

(29)
$$\psi(t) = \sum_{m=1}^{\infty} C_m^2 \binom{2m}{m}^{-1} (1+t)^{2m+1}.$$

By (24) and (26), it follows that

$$\psi(t) \to \infty \text{ as } t \to 1.$$

Now pick $x \in (0,1)$, and define $\rho_x \in M_0$ as in (5), with τ_x in place of τ . (See Lemma 1.) By (28),

(31)
$$\int_{S} |f|^{2} d\rho_{x} = \int_{I_{x}} (1-t)^{-1} \psi(t) d\tau_{x}(t)$$

and hence Lemma 1 implies that

(32)
$$\int_{S} |f|^{2} d\rho_{x} \geq \gamma \psi(x),$$

since $\psi(t) \ge \psi(x)$ on I_x .

By (30), we can choose $x_i \to 1$ so that $\psi(x_i) > 4^i$. Define

(33)
$$\rho^* = \sum_{i=1}^{\infty} 2^{-i} \rho_{x_i}.$$

Since M_0 is convex and weak*-compact, $\rho^* \in M_0$. Also, for each i, (32) gives

(34)
$$\int_{S} |f|^{2} d\rho^{*} \leq 2^{-i} \cdot \gamma \psi(x_{i}) > \gamma \cdot 2^{i}.$$

Thus $\int_{S} |f|^2 d\rho^* = \infty$, and (11) follows from Fatou's lemma.

REFERENCES

- 1. T. W. Gamelin, Uniform Algebras. Prentice-Hall, New Jersey, 1969.
- 2. G. Lumer, Espaces de Hardy en plusieurs variables complexes. C. R. Acad. Sci. Paris, Sér. A-B 273 (1971), A151-A154.
- 3. W. Rudin, Lumer's Hardy spaces, Michigan Math. J. 24 (1977), 1-5.

Department of Mathematics University of Wisconsin Madison, Wisconsin 53706