SOME QUOTIENT SURFACES ARE SMOOTH
George Kempf

Let G\V be the quotient variety where G is a reductive group acting linearly
on a vector variety V. Then G\\V is an affine variety, whose regular functions
may be identified with the regular functions on V, which are invariant under
the action of G.

It has become increasingly clear how very special the singularities of G\V
actually are [1,4,5 and 6]. In this note, we will show that, if G is a connected
semi-simple group and G\V is two dimensional, then G\V must be non-singular.
This result was conjectured by V. L. Popov, and it was brought to my attention
by V. Kac.

A key step in my proof is the application of Mumford’s smoothness criterion
in terms of the local fundamental group. This idea was suggested by Mumford
himself. The first step in the proof will be to check directly that the algebraic
fundamental group of a large open subvariety of the quotient G\\V is trivial.

1. ETALE COVERINGS OF QUOTIENT VARIETIES

Let G be a reductive group over an algebraically closed field & of characteristic
zero. We will denote the connected component of the identity of G by G,. We
will be working in the category of k-schemes of finite type.

Let X be an affine scheme with a given (morphic) action of the group G. Let
G\ X denote the quotient variety. Then we have the quotient morphism
w: X — G\ X. Let f: S— G\ X be a morphism. Form the Cartesian square,

Xs - X
Tg ) I m
S —f) G \X.

Then, G acts naturally on Xg through its action on X so that S may be regarded
as the quotient G\ X4 [10].

Next we will study the connected components of X .
LEMMA 1.1. Assume that S is connected. Then,
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a) Each connected component of X 5 is invariant under G,.
b) These components are permuted transitively by w,G = G/G,.
¢) Each component maps surjectively onto S.

Proof. As G, is connected, its orbits in X g are connected. Hence, G, perserves
connected components. Thus, a) is true. For any connected component Y of Xg,
the set G - Y is a finite union of connected components of X and G - Y is then
an open and closed G-invariant subset of X . Clearly, X is a finite disjoint union
G-YHO..UG-Y, of such subsets. By invariant theory, S is the finite disjoint
union G\G - Y,II ...IIG\G - Y, of closed subsets G\G - Y, = image of Y, in
S. As S is connected and not empty, we must have S = imageof Yand X4=G- Y
for one particular component Y of Xg. Thus, we have proven c); and b) follows
because X3 =G - Y = 7, (G) - Y using a).

Remark. The same result is true in characteristic p. Its proof requires slight
technical changes.

We may now apply this lemma to study etale coverings. Recall that a scheme
Z is simply connected if it is connected and any finite etale morphism g: W— Z
from a connected variety W is an isomorphism. If V is an open subscheme of
a simply connected smooth variety Z such that the complement Z — V has codi-
mension at least two in Z, then V is simply connected by the theorem of purity
of Zariski-Nagata [3,X — 3.4.i].

We may now proceed to the proof of

LEMMA 1.2. Let w: X — G\ X be the quotient morphism where G is connected
and X is a smooth simply connected affine variety. Let U be an open subvariety
of G\ X such that X — 7w U has codimension at least two in X. Then, U is simply
connected.

Proof. Let r:S— U be a finite etale covering of U, where S is connected.
Then, the pullback morphism r’: Xg— w ‘U is again a finite etale morphism,
where X ¢ is formed using the composition f: S — U — G/X as before. By the above
remark, our codimension assumption and the simple connectivity of X imply that
« ' U is simply connected.

As G = G,, the Lemma 1.1 implies that X g is connected. Therefore,
r':Xg—-n U
must be an isomorphism. Hence, r:S = G\ Xg— U = G\ ' U is also an isomor-
phism. Thus, U is simply connected.

We will use the last lemma by means of
PROPOSITION 1.3. Let X be a smooth simply connected affine variety. Assume
that

a) T'(X, @) is a unique factorization domain with only units being constants,
and

b) a connected semi-simple group G acts on X.
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Let U be an open subuvariety of the quotient G\ X such that is complement
G\ X — U has codimension at least two in G\X. Then U is simply connected.

Proof. As G has no nontrivial characters, our assumption on I' (X, &) implies
that, if Z is a closed G-invariant subset of X, which has codimension d =1 or
0, then its image w(Z) in G\ X has codimension d (See [5] for instance). Therefore,
if W is a closed subset of G\ X of codimension greater than or equal to 2, then
7w ' Wis a closed subset of X of codimension greater than or equal to 2.

In our case, this means that the codimension of X — # 'U in X must be at
least two. Thus, Lemma 1.2 shows that U is simply connected.

Remark. This proposition applies to the case X = A" as A" is simply connected
(in characteristic zero) and verifies the assumption a).

2. CONICAL AND QUOTIENT VARIETIES

LetA=k® A, ® A, ... beafinitely generated graded k-algebra. Then the affine
scheme X = Spec A will be called conical. The zeroes of the ideal A, ® A, ® ...
consists of a single point called the vertex of X.

Geometrically, a conical scheme X is an affine scheme with a morphic G, -action

such that limit ¢ - x exists in X for all x in X and these limits are equal (to
t—0

the vertex).

In coordinates (x,,...,x,), a conical scheme X may be written as the zeroes
of a system {f;(x,,...,x;)} of weighted-homogeneous polynomials. Here the weight
D; of the variable x;, is a positive integer and we are requiring that each polynomial
f; satisfies a functional equation f; (¢"'x,,...,t7x,) = t¥ fi(xy,...,x,,) for some posi-
tive integer p depending on f;. The vertex of X is the origin 0.

Assume that our ground field % is the complex numbers C. Consider the function
g(x) = max|x;|"” on X. Then f satisfies the equation gt x,, ..., th~x,)) =
|t| g(xy, ...;x,). Let U; be the subset of X where g(x) <i for some 0 < i < oo,
Thus the U;s form an increasing family of open neighborhoods of the vertex 0
in the associated complex analytic variety X, . Better yet, when i < j, the inclusion
U;- {0} C U, — {0} is easily seen to be a homotopic equivalence by using the
functional equations.

The consequence, that we need, is

LEMMA 2.1. The local fundamental group of a conical C-variety X, at its
vertex v is isomorphic to the fundamental group of X, — v.

Proof. By definition, the local fundamental group of X, at v=0 is
limit w, (U — {0}) where U runs through the system of open neighborhood U of

0. This system {U} is partial ordered by inclusion and, as s approaches zero,
{U.} is a cofinal subsystem of it. By the homotopy equivalence of the U.’s, the
local fundamental group = w,(U, — {0}) for any s. The lemma is the particular
case of this statement when s = o,

Next we will see how much of the local fundamental group may be computed
algebraically.
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LEMMA 2.2. The pro-finite completion of local fundamental group of a conical
C-variety X, at its vertex v is isomorphic to the (algebraic) fundamental group
of X —v.

Proof. As Grothendieck has remarked for any C-algebraic variety Y, the
(algebraic) fundamental group of Y is isomorphic to the pro-finite completion of
the fundamental group of Y,,. This follows from a result of Grauert-Remmert.
Thus, our Lemma 2.1 implies the present one.

To achieve our objective, we will need to apply the following modification of
Mumford’s smoothness criterion.

THEOREM 2.3. Let S be a conical surface over C with vertex s. If S — s is
simply-connected and S has rational singularities, then S is smooth.

Proof. By definition, the local homology group of S, at s is

H = limit H,(U — 5,2)

where U runs through the neighborhoods of s as before. If S — s is simply-connected,
then by Lemma 2.2 the local fundamental group of S,, at s has no nontrivial
finite quotient. As H is a finite generated abelian quotient of the local fundamental
group, H is trivial. By a variant of Korollar 1.6 of [2], the local ring of S,
at s is factorial. By Satz 3.3 of [2], either S,, is smooth at s or it is locally
isomorphic to the conical analytic subvariety X? + Y* + Z° = 0 of C°. As this famous
icosahedral singularity of Klein has a finite (non-abelian) fundamental group,
we now know that the local fundamental group of S,, at s is finite and hence,
trivial. Therefore, by Mumford’s smoothness criterion [9], S,, is smooth at s. As
s is the only possible singularity on the normal conical variety S, we have shown
that S is in fact smooth.

Remark. One would like to have a more algebraic proof of Theorem 2.3 along
the lines of [8].

Now it only remains to combine the results of the two sections to prove

THEOREM 2.4. Given a linear representation of a connected semi-simple group
G on a vector variety V, if the quotient G\V Is a surface, then G\V is smooth
or, equivalently, TV, @,)€ is a free graded k-algebra with two generators.

Proof. The scalar multiplication on V commutes with the action G. Thus G\V
inherits an action of G,, such that it is conical. By the Lefschetz principle, we
may assume that the ground field 2 is C. By Proposition 1.3, we know that
G\\V — {vertex} is simply-connected. By the Theorem in [5 or 1], we know that
G\V has rational singularities. Thus, as the assumptions of Theorem 2.3 are
verified, the result follows.
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