ON A QUESTION OF OLSEN
CONCERNING COMPACT PERTURBATIONS OF OPERATORS

C. K. Chui, D. A. Legg, P. W. Smith, and J. D. Ward

1. INTRODUCTION

Let #B(s) denote the algebra of all bounded linear operators on a complex
separable infinite-dimensional Hilbert space &, and € () the algebra of all com-
pact linear operators on ¢ . The essential norm of T in B( ) is defined to be
”THe = inf { “T + K” K € #(o)}. The main purpose of this paper is to answer a
question posed by C. L. Olsen in her talk at the meeting of the American Mathema-
tical Society at Washington, D. C. in January 1975. We show that for each
T € B(H) there exists a K € €(H) such that

IT+x+K|| = |T+2r]|, for every complex number x .

A few words seem appropriate to motivate the consideration of this problem.
Recently much interest has been centered about the following unsolved problems.

(a) Given T € B(H), does theve exist a K € €( ) such that for any complex
polynomial p, ||p(T +K)| = [|p(T)||. ? An affirmative answer to (a) would imply
the following results of Olsen and West.

1. (Olsen [8]) Let v(T) be a coset in the Calkin algebva. For a Hilbert space
operator T, if p(v(T)) = 0 for some polynomial p, then theve is a K € € (A ) with
p(T +K) = 0.

2. (West [13]) If lim_ || v(T)||1/™ = 0, then theve is a K € €(H) such that
lim_ |(T +K)?| /™ =o.

An affirmative solution to (2) would also answer a question raised by Arveson
[2]: If v(T) is quasialgebraic, must theve exist a K € €(H) such that

Joatr +K)[1/2) — o7

(An element T of a Banach algebra is quasialgebraic if there is a sequence {pn}
of monic polynomials of degree d(n) such that lim_ ||p (T)|1/d()=0.)

Question (a) seems to be very interesting, and the particular results of Olsen
and West are nontrivial. However, it is far from being settled. For subnormal and
essentially normal operators, positive results have been obtained in [10]. Even if
we allow the compact operator to depend on the given polynomial, this problem is
still open; that is,

(b) Given T € B(o¢) and a polynomial p, does theve exist a K € () with.
ot +K) | = [[o(T)]| ?

Results of Olsen [9] along this line are:
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1. For any T € B(H), theve exists a K € €(H) with |T+K| = ||T]. a
i +i2] E

. For any T € B(#), theve exists a K € € () with ||(T +K)?2| = ||T?],
and ||(T+K3|| I3, -

It is now clear that our result answers (a) for all linear polynomials
p(t) = at + 8.

We would like to thank Professor C. L. Olsen for her many helpful comments
concerning the background of this problem. In addition, we would like to thank Pro-
fessor I. D. Berg for his many helpful comments concerning this paper. He sug-
gested that the paper would be much more readable if a sketch of the proof using
operator theory techniques were added. We have included such a sketch, using his
ideas, at the end of the paper. However, since the approach to the solution of the
problem was suggested by techniques from M-ideal theory, we have retained our
original methods for the actual proof.

2. DEFINITIONS AND NOTATION

Throughout the paper, # will denote the Calkin algebra B(s )/ €(# ) and
v:B(#) — A the quotient map. The spectra of T and v(T) are denoted by o(T)
and o(v(T)) respectively; the latter is called the essential spectvum of T. By

«»(T), we mean the set of isolated eigenvalues of finite multiplicity in ¢(T); by

o (T), the Weyl spectrum of T, we mean ﬂ {o(T+K): Ke@(#)}. For an ele-
ment b of an arbitrary complex Banach algebra G with unit I, the numerical range
of b, w(b), is given by w(b) = {¢(b) € C: ]F | =1=9¢@, ¢ € G*} The essential
numemcal vange of T € B(s#) is defined to be the numer1ca1 range of V(T) €
and will be denoted by W_(T). The numerical radius of W_(T) will be denoted by
r(W,.(T)).

The notion of M-ideal in a Banach space has been formulated and studied in an
important paper of Alfsen and Effros [1]. According to these authors, a closed sub-
space M of a (real) Banach space X is an M-ideal in X if its annihilator Mt is an
L-summand of the dual space X* This in turn means that M+ is the range of an
L-projection defined on X*; there exists a projection Q: X* — M+ with the
property that [[¢] =||Qe| + ”¢ Qqﬁ]l for all ¢ € X*. It is well known that the ideal
& (o) is a complex M-ideal in # (o) [12]. In this case, when applying any theo-
rems from [1], we always consider that we are working in the real restriction of X
with corresponding dual space consisting of real parts of functionals in X*. It is
straightforward to verify that an M-ideal in a complex Banach space X remains an
M-ideal in the real restriction of X.

3. THE MAIN THEOREM

We are now ready to prove our main result. Clearly, the following two ques-
tions are equivalent.

(i) For T € #(ow), does there exist a compact operator K with
T+ + K[| = [T+,

Jor any complex number \?
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(ii) Let #(T + ) be the set of all compact operators of minimum distance from
T + A5 i.e., the compact best approximants of T + . Is n>\€¢ P(T+r)# O?

Since the methods to be utilized are Banach space techniques, it seems appro-
priate to state our theorem in terms of (ii).

THEOREM 1. Let T € B(). Then ﬂMq; P(T+2) # Q.

Proof, We first treat the case in which We(T) has no interior point. Since
W(T) is convex [3], this implies that W.(T) is a (possibly degenerate) line segment
in C. It is easily seen upon translation by a scalar multiple of the identity and a
suitable rotation that we may assume T to be essentially self-adjoint. It is a well
known fact that such a T may be written as S + K, where S is a self-adjoint oper-
ator and K, is a compact operator. Next perturb S with another compact operator
K, by pulling isolated eigenvalues of finite multiplicity back to the nearest point in
the essential spectrum while preserving the eigenvectors. It is readily checked that
K| +K; is a best compact approximant to T + X for all A € C.

Now suppose that W.(T) contains three noncollinear points. Since W.(T) is
convex, this means that W_(T) contains some ball B(a, €) relative to C. To com-
plete the proof of Theorem 1, we need three lemmas which we state and prove below.

LEMMA 1. Let p(T - A) = d(T - &, @(#)). Then [y ce BT -2, p(T - 1))
has nonempty interior.

Proof. We will show that B(T - a, £/2) C ﬂm; B(T - A, p(T - 1)), where
B(a, ) € W (T). Let » € C. It suffices to show that there exists a 6 > 0 independ-
ent of X sothat |a - A| + 6 < p(T - A). Now,

la - 2] +e/2 < sup |l -2] < sup [ - 2] = r(W_(T - )
LEB(a,t) pe W (T)

<|lv(T -N] = &T - r, (#)) = p(T - N

Thus our assertion holds with 6 = /2.
Alfsen and Effros [1, p. 120] discovered the following two equivalent conditions.

THEOREM A. Suppose that J is a closed subspace of a Banach space X. Then
the following statements ave equivalent,

i) J is an M-ideal;

ii) If Dy, **, D, are closed balls with int (D, N "N D) # @ and D; N J # @
for all i, then D1 N - ND, NJ # .

Our aim is to modify the above result for our particular case; namely, we wish
to show: Given the M-ideal € (o), and an opevator T satisfying

a) int ﬂm; B(T + A, p(T + X)) #+ @ and

b) B(T + A, p(T +2)) NE€(#) # @ for all A,
then

ﬂ B(T+MN, p(TH+A) N&(H) 2 @ .
AeC
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The fact that the x-axis is an M-ideal in IR?2 endowed with the £ norm helps
one to visualize the Alfsen-Effros result. In order to motivate what follows, we
sketch their argument of how (i) implies (ii). Let v, :--, v, denote the centers of
the balls D, -+, D, and r,, -+, r,, the corresponding radii. Where occasion de-
mands, we make the usual identification of an element of a Banach space X with a
w*-continuous linear functional in X**. In [1], a vector v € D; N --- N D, N J was
constructed via a w*-continuous Hahn-Banach extension of a certain linear functional
dominated by the w*-lower-semicontinuous concave function g(¢) = infi(v; + r;) ¢,
where, for each i, v;+r; is now an affine functional on the unit ball UX* of X*.
Since g is the infimum of a finite number of w*-continuous affine functionals, it is
automatically w*-lower-semicontinuous. This is the basic Alfsen-Effros idea.

Before returning to the proof of Theorem 1, observe that the same argument as
in [1, p. 120, Theorem 5.8} goes through except for the verification that the functional

gl¢) = inf Re (¢(T +2) + p(T + 1))
AeC

is w*-lower-semicontinuous on U(B(x)*) = {¢ € B(#)*: |l¢| <1}. As a point-
wise infimum of affine w*-continuous functionals, g is automatically a concave w™*-
upper-semicontinuous function. To prove that g is w*-lower-semicontinuous, and
hence continuous, we need the following.

LEMMA 2. Let € > 0 be given. Then theve exists an M < <« such that for each
6, 0 <60 < 2n, theve is some real number Lg so that ]p(T +2A) - Ill - ﬁ9| <€
whenever arg A = 0 and |x| > M.

Proof. From [6], we know that p(T + 1) = sup {ei}ﬁﬁi [(T +2)e.||, where

{ei} is any normalized sequence converging weakly to zero. Hence,

p(T +2) = sup l—iﬁ-i (|x]?> + 2 Re 2 (ei, Tei> + [|Tel[2)1/2

sup lim, [(|x] +Re el argX (e, Te, })2
+ || Te;||% - (Re el 2arg X (e, Te; ))?]1/2.
On the other hand, there exists an M > 0 such that || > M implies that

-e <[(]x] +Re e! 2782 gy, Te; )2 + | Te; |2

~(Re eiarg X (e, Te; )2]H/2 - A -Re el 278X (e, Te; ) < &
for any sequence {e;} with ||e;]| = 1. Thus, by taking
Ly = sup{éi} Tigi Re eif <e-1, Tei>,
where 6 = arg A, we complete the proof of the lemma.
LEMMA 3. Let

g(¢) = inf {Re ¢(T) + Re A¢(D) + p(T +2)},
AeC

gv(@) =  inf  {Re ¢(T) + Re Ap(D) +p(T +2)},
Ir<m
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and
p(x) = Re ¢(T) + Re 2¢(I) + p(T + 7).

Let € > 0 be given. Then theve is an M > 0 such that gy($) - g(¢) < & for all
¢ € U(B(x)*).

Proof. Let M be chosen so large that
|o(T +2) - |A] - 24| <&/2 for all A with |[x]| > M.

Then

i

p(d) = Re ¢(T) + Re A¢(I) + p(T + 1)

Re ¢(T) + |A| (1 + Re el 278 A ¢(1)) + L4 + £(6),

where [£(8)| <e/2. Note that if |2 L =M, |A;| > M, and arg A = arg A,, then
p(x;) > p(x;) - €. Hence, gpde) - gl¢) <e.

We will now prove that g is w*-continuous, and hence complete the proof of
Theorem 1. Let {Mn} be an increasing sequence diverging to infinity. By Lemma
3, B converges uniformly to g on U(Z(')*). Since it is easily seen that gMn

is w*-continuous for each M_, g, as a uniform limit of continuous functions, is it-
self a w*-continuous function. This completes the proof of the theorem.

4. AN OPERATOR THEORY INTERPRETATION

As was noted in the introduction, the purpose of this section is to sketch the
proof of Theorem 1 in operator-theoretic terms. We again wish to thank Professor
I. D. Berg, on whose ideas we rely heavily.

The following lemma allows us to reduce the proof of Theorem 1 to operators
which are tri-block-diagonal. In the remainder of this section, Py, will denote the
orthogonal projection onto V.

LEMMA 5. Suppose int W _(T) # @. Then there exists a compact peviurbation
T of T such that T + X is simultaneously tvi-block-diagonal for all X and

int ﬂh B(T + 2, p(T +2) # @.
Proof. By Lemma 1, there exist @ € € and € > 0 such that B(T + «, €) is
contained in int ﬂ;\ B(T + 2, p(T +2)). Set 6 =¢/2 and let {5;} be a monotone de-

[+ ]
creasing sequence of positive numbers with Ei:l 6; = 8. Split the basis {qbn} into
a sequence of adjacent finite blocks increasing in length so rapidly that the spaces

H;, H,, --- spanned by these successive blocks of ¢, satisfy [Py, TPHi | < 6, and

||PH_1 TPLH < 6, whenever the space L is perpendicular to PHi’ PHi_1 , and

PH‘+1 . These estimates clearly hold for all T + A, since A affects only the diagonal
1

blocks of the operator matrix. Now one notes that T minus the tri-diagonal part of
the operator matrix is a compact operator of norm less than or equal to 6, and is
independent of A. By defining T to be the tri-diagonal part of T, it is easily seen
that
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AT +a, €(or)) = AT + A, €(x))
and
int [ BT +2, o +2) o BE + o, £/2).
A

This completes the proof of the lemma.

The next lemma will be used extensively in the remainder of the proof. In what
follows, E,  will denote the subspace spanned by ¢;, -+, ¢, and S: Erj;l — Erln
will be an operator on & invariant on Er";l and identically equal to zeroon E_ .

LEMMA 6. Let {¢,} be an orthonormal basis of # and || T|| = 1. Suppose that
||TPE 1 || <p <1 for lavge enough m. Then for any € > 0, there exists an n
m

so lavge that if S: E — E; is of norm less than or equal to 1 - p, then
IT+S|| <1+e.

Proof. By Lemma 5, it may be assumed that T is tri-block-diagonal and that
the ¢,’s represent whole blocks. For each € > 0, choose n so large that if ¢ is
any unit vector, then each of the components ¢¢ and ¢y, of ¥ is less than ¢ for

some £, m < £<n- 1. One can do this because if Elle a; =1 and the o;’s are
all nonnegative, then some consecutive pair of the a;’s can not exceed 2/k. Of
course, £ varies with ¢ although m and n remain unchanged. We now have

Y =v¢; +¢, +Y3, where | is a vector contained in blocks whose indices are less
than ¢, ¥, is a vector contained in blocks whose indices are greater than ¢ + 1, and

lys || <2e. Also,

Syp =0, |svz| < A -p)wel, Tvy L Tyz, and [(T+8) Y] = Ty, || < 1.

Since (T +S)y; L (T +8S)y,, it follows that

T +8) (W1 +yp +¥3)|| < 1+4e.

This completes the proof of the lemma.

As noted earlier, if int W (T) # @, then S= T - o € int nh B(T + X, p(T +2))
for some a € C. A construction will now be given showing that T - @ can be al-
tered in such a fashion that the resulting operator S is compact and remains inside

B(T, p(T)). A modification of this argument shows that 8 can be constructed to re-
i :
main in ﬂi:l B(T + 2, p(T +2;)) for any fixed A;, i =1, .-, n. Lemma 7 extends

the argument so that S remains in ﬂMQ B(T + A, p(T + 7)) for any prescribed
compact set Q.

The operator §, which will be seen to be compact and to satisfy
IT -8 = dT, 2(x)),
is constructed by induction. In the first step, note that

|T -s|| =]a| < dT, (#)) - ¢ for some € > 0.
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Pick 6 =¢/2 and note that [|[(T - S) Poa ” = |a| for any subspace E. By Lemma 6,

there exists an n (in this case any n is suitable) such that for some y > 0, the
operator yPI'lL SPrJ; may be added to T - S with the resulting operator having norm at
most lal + 6. Here and throughout, Py denotes the orthogonal projection onto E; .

Now assume that N steps in the induction have been completed. The modified opera-
tor has the form

N
Sy = T-S+2 y,PLspt.
i=1

For sufficiently large k, it is easily seen that

R N
SNIEﬁ = (T - (1 - El 71)S)|E1j )

From the above construction, ||Sy| < d(T, €(#)). Thus, we may select a
On+1 -~ 0 so that

I8l + 0pyy < AT, w ().

For any B > 0, one may choose Ey;; so that

N

N I CR P [T
i= +

N
(Z %)
i=1 ENel

N N
( E )Ial +E YIHTIE | <d(T, €(x)).

N+1

The above inequality, together with Lemma 6, assures that one can continue to add

N
on the terms yPE n SPE  in such a fashion that Ei: 1 7; increases to one, and as

N
N gets large, |T - S+ 27;_; v;PLSPL| increases to d(T, @(#)). Thus, the
c0
operator T - S+ 2,_, v; P} SP} satisfies

[+ ]

T - S+ 2 y, Py sp;
i=1

= d(T, €(or)).

. [ o] o] n 1
Furthermore, since Ei:l v;=1, S- Zizl v; P; SP; is compact. This completes
the construction.

LEMMA 7. Let {By} be a collection of closed balls in B(H) having the form
B(T + X, p(T + 7)) with the properties that

a) int n)\ B)\ #+ Qﬁ, and

b) therve exists a conditionally compact subset H of €(#) such that
By N A # @ for each x. Then (ﬂ,t BA) N () + Q.
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Proof. The proof of this lemma is quite similar to the previous construction.
Since & is conditionally compact, for each € > 0 there is a finite dimensional sub-
space V such that || o l Vi | <e. The following is one step in the induction proof.
Suppose EI: 1 )/1Pl SPl has been constructed, and assume for the sake of clarity
that 2o, | y; = 1/2. Pick E_,, so that “J(' [I < 6. In particular, this means

that ||(T +x)| || < d(T +2, €()) + 6 for "l A, and

n

(T +A-8+ 2 yipfspf)]El

i=1 nt+l

< 1/2(p(T +2) - €) +1/2(p(T + 1) +6) = p(T +2) - 1/2(¢ - 3).

Having picked 6 sufficiently small, one may add on the term v, ., PiL SP'iL for all
T + I simultaneously. This completes the proof.

We are now ready to give another proof of Theorem 1. It remains to define a
conditionally compact set < of compact operators so that the conditions of Lemma
T are satisfied. First observe that for any compact set Q of complex numbers 2
there is no difficulty in constructing ¢, because if “T + Ky + 7\“ - “T + A ”e < g,
then there is a K, suchthat |Ky - Ky | <2¢ and |T+Ky +2| = |T+2],. In-
deed, note that B(K)', 2¢) N B(T + A, p(T + 1)) has nonempty interior. Pick an ele-
ment in the interior and taper it to a compact operator in a manner similar to the
construction outlined previously. The compactness of Q, together with our above
observation, assures us that a finite set F of compact operators may be chosen
which is as close as desired to satisfying the conditions of Lemma 7. Choose a de-
creasing sequence of positive £’s and a corresponding increasing sequence of finite
sets. The closure of the union of these finite sets produces the desired .

To extend the argument to unbounded sets, we may appeal to Lemma 2. This
shows that a Ky which satisfies ||T +Ky' +A'| = | T +1'|, for large enough X'
also satisfies [T +Ky: +af| - | T +a[, <e for all larger X of the same argument.

By a process similar to the above, we may construct a set & of compact operators
so that & N B(T + A, p(T + 1)) # @ for all . Therefore, the conditions of Lemma 7

are satisfied, and one may construct a K which satisfies ||T +x+XK| = |[|T +2|,
for all A. This idea completes the proof of Theorem 1.
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