EXTRINSIC SPHERES IN IRREDUCIBLE HERMITIAN SYMMETRIC SPACES

Chorng-Shi Houh

1. INTRODUCTION

Let M be an irreducible Hermitian symmetric space. Then \widetilde{M} is simply connected and its canonical Hermitian structure is Kählerian. Let 2m be the real dimension of \widetilde{M} . An n-dimensional submanifold N of \widetilde{M} is called an extrinsic sphere if it is umbilical and has parallel, nonzero mean curvature vector. In Remark 2 of [2], Chen indicated that if the rank of \widetilde{M} is ℓ , then \widetilde{M} admits extrinsic spheres of dimensions $\leq \ell-1$ with flat normal connections; namely, extrinsic spheres of maximal flat totally geodesic submanifolds of \widetilde{M} . In this paper we investigate extrinsic spheres with flat normal connections in irreducible Hermitian symmetric spaces and shall prove the following.

THEOREM. If N is an n-dimensional (n \geq 2) complete, simply connected extrinsic sphere with flat normal connection in an irreducible Hermitian symmetric space \widetilde{M} , then $n \leq \operatorname{rank} \widetilde{M}$ and N is isometric to a standard n-sphere.

2. PRELIMINARIES

 \widetilde{M} is always assumed to be an irreducible Hermitian symmetric space of real dimension 2m (m>1). Let J and g be the complex structure and Kähler metric of \widetilde{M} , let N be an n-dimensional submanifold of \widetilde{M} , and let $\widetilde{\nabla}$ and ∇ be the covariant differentiations on \widetilde{M} and N, respectively. The second fundamental form h of N in \widetilde{M} is defined by $h(X,Y)=\widetilde{\nabla}_XY-\nabla_XY$, where X,Y are vector fields tangent to N. Then h is symmetric, with values in the normal bundle. For a vector field ξ normal to N we write $\widetilde{\nabla}_X\xi=-A_\xi X+D_X\xi$, where $-A_\xi X$ and $D_X\xi$ denote the tangential and normal components of $\widetilde{\nabla}_X\xi$. If $D_X\xi=0$, ξ is said to be *parallel*. If h(X,Y)=g(X,Y)H, where H=(trace h)/n is the mean curvature vector of N in \widetilde{M} , N is said to be *umbilical*. Let \widetilde{R} , R, and R^\perp be the curvature tensors associated with $\widetilde{\nabla}$, ∇ , and D, respectively. Let

$$(\overline{\bigtriangledown}_X h)(Y, Z) = D_X(h(Y, Z)) - h(\bigtriangledown_X Y, Z) - h(Y, \bigtriangledown_X Z)$$

for X, Y, Z tangent to N. Then the equations of Codazzi and Ricci are

$$\begin{split} &(\widetilde{R}(X, Y)Z)^{\perp} = (\overline{\nabla}_{X} h) (Y, Z) - (\overline{\nabla}_{Y} h) (X, Z); \\ \widetilde{R}(X, Y; \xi, \eta) = R^{\perp}(X, Y, \xi, \eta) - g([A_{\xi}, A_{\eta}]X, Y), \end{split}$$

Received March 23, 1977. Revision received May 16, 1977.

Michigan Math. J. 24 (1977).

where X, Y, Z are tangent to N, ξ and η are normal to N, and $(\widetilde{R}(X, Y)Z)^{\perp}$ denotes the normal component of $\widetilde{R}(X, Y)Z$. N is said to have *flat normal connection* in \widetilde{M} if $R^{\perp}(X, Y) = 0$. If N is simply connected and has flat normal connection, then there exist 2m - n mutually orthogonal parallel unit normal vector fields

$$\xi_1, \, \xi_2, \, \cdots, \, \xi_{2m-n}$$

along N. Furthermore, if N has parallel mean curvature vector H, we may assume that $H = \alpha \xi_1$, where α is a nonzero constant. Hence if N is an extrinsic sphere with flat normal connection in \widetilde{M} , then $h(X, Y) = \alpha g(X, Y) \xi_1$, $\overline{\nabla}_X h = 0$, $R^\perp(X, Y) = 0$. The Codazzi and Ricci equations on N become

$$(\widetilde{R}(X, Y)Z)^{\perp} = 0;$$

(2)
$$\widetilde{R}(X, Y; \xi, \eta) = -g([A_{\xi}, A_{\eta}]X, Y).$$

For a Hermitian symmetric space \widetilde{M} there is a triple (G, H, σ) consisting of a connected Lie group G, a closed subgroup H of G, and an involutive automorphism σ of G such that $\widetilde{M} = G/H$. Let \mathfrak{G} and \mathfrak{H} be the Lie algebras of G and H, and let σ be the automorphism of \mathfrak{G} which is induced by σ of G. \mathfrak{H} is the eigenspace of σ for the eigenvalue 1. Let \mathfrak{M} be the eigenspace of σ for the eigenvalue -1. Then we have the canonical decomposition $\mathfrak{G} = \mathfrak{H} + \mathfrak{M}$ of $(\mathfrak{G}, \mathfrak{H}, \sigma)$ so that $[\mathfrak{H}, \mathfrak{H}] \subseteq \mathfrak{H}$, $[\mathfrak{H}, \mathfrak{M}] \subseteq \mathfrak{M}$, $[\mathfrak{M}, \mathfrak{M}] \subseteq \mathfrak{H}$. We may identify the tangent space $T_0(\widetilde{M})$ of \widetilde{M} at the origin 0 of \widetilde{M} with \mathfrak{M} . The curvature tensor \widetilde{R} of \widetilde{M} is then given by

(3)
$$\widetilde{R}(\widetilde{X}, \widetilde{Y})\widetilde{Z} = -[[\widetilde{X}, \widetilde{Y}], \widetilde{Z}], \quad \widetilde{X}, \widetilde{Y}, \widetilde{Z} \in T_0(\widetilde{M}).$$

For the Kähler structure J on \widetilde{M} , we have $\widetilde{R}(J\widetilde{X}, J\widetilde{Y}) = \widetilde{R}(\widetilde{X}, \widetilde{Y})$. Hence we may use the relation $[J\widetilde{X}, J\widetilde{Y}] = [\widetilde{X}, \widetilde{Y}]$ for $\widetilde{X}, \widetilde{Y} \in T_0(\widetilde{M})$.

3. PROOF OF THE THEOREM

Let \widetilde{M} be an irreducible Hermitian symmetric space of real dimension 2m (m>1). It is clear that \widetilde{M} is either of compact or of noncompact type. Let N be a complete, simply connected extrinsic sphere with flat normal connection in \widetilde{M} . The dimension of N is n and we assume that $n\geq 2$.

Let $\widetilde{H}(\widetilde{X})$ be the holomorphic sectional curvature of \widetilde{M} determined by the vector \widetilde{X} . Then the holomorphic pinching of \widetilde{H} can be found in [2]. We shall utilize the results in [2] in the following form.

LEMMA 1. If \widetilde{M} is of compact type, then $\widetilde{H}>0$. If \widetilde{M} is of noncompact type, then $\widetilde{H}<0$.

We shall prove several other lemmas.

LEMMA 2. Let N be a complete simply connected extrinsic sphere with flat normal connection in $\widetilde{\mathbf{M}}$. Then either N is isometric to a standard sphere and $\widetilde{\mathbf{R}}(\mathbf{X},\,\mathbf{Y})=0$ for all X, Y tangent to N, or $\mathbf{J}\xi_1$ is tangent to N, where ξ_1 is the direction of the mean curvature vector of N.

Proof. If the dimension of N is even, Chen proved in [1] that N is isometric to a standard sphere of radius $1/\alpha$ and that $\widetilde{R}(X, Y) = 0$ for all X, Y tangent to N.

Here α is the length of the mean curvature vector of N. Let the dimension of N be odd, say 2k+1. We may choose parallel orthonormal normal vectors ξ_1 , ξ_2 , ..., $\xi_{2m-2k-1}$ so that $A_{\xi_1} = \alpha I$ and $A_{\xi_r} = 0$ for $r \geq 2$. We then have

(4)
$$\widetilde{\nabla}_{X} \xi_{r} = -A_{\xi_{r}} X + D_{X} \xi_{r} = 0, \quad r \geq 2.$$

Define the functions ϕ_r on N by $\phi_r = g(J\xi_1, \xi_r)$, $r \ge 2$. As in the proof given in [1] for the even-dimensional case, ϕ_r satisfy the differential equations for all vectors X tangent to N:

$$\nabla_{\mathbf{X}} d\phi_{\mathbf{r}} = -\alpha^2 \phi_{\mathbf{r}} \mathbf{X}, \quad \mathbf{r} \geq 2.$$

If there exists a nonconstant function ϕ_r defined on N satisfying (5), then by a result of Obata [5], N is isometric to the standard sphere of radius $1/\alpha$. We can also prove $\widetilde{R}(X, Y) = 0$ for all X, Y tangent to N, as done in [1] for the case where N has even dimension.

Now suppose that all ϕ_r are constants. By (4) we have for all X tangent to N,

$$0 = X\phi_{r} = g(J\nabla_{X}\xi_{1}, \xi_{r}) = -g(JA_{\xi_{1}}X, \xi_{r}) = \alpha g(X, J\xi_{r}), \quad r \geq 2.$$

Hence $\{\xi_2,\cdots,\xi_{2m-2k-1},J\xi_2,\cdots,J\xi_{2m-2k-1}\}$ is a subspace of the normal space ν to N. dim $\{\xi_r,J\xi_r\colon 2\leq r\leq 2m$ - 2k - $1\}$ is even and greater than or equal to 2m - 2k - 2, since it is invariant by J. dim ν = 2m - 2k - 1 implies that

$$\dim \{ \xi_r, J\xi_r: 2 < r < 2m - 2k - 1 \} = 2m - 2k - 2.$$

This implies that $J\xi_1$ is tangent to N.

LEMMA 3. If N is isometric to a sphere with $\widetilde{R}(X, Y) = 0$ for all X, Y tangent to N, then dim N < rank \widetilde{M} .

Proof. Since \widetilde{M} is symmetric, every point x in \widetilde{M} can be regarded as the origin 0. Let T_0N denote the tangent space of N at 0. $\widetilde{R}(X,Y)=0$ implies that T_0N is contained in a maximal abelian subspace of $T_0\widetilde{M}$ which is identified with \mathfrak{M} . This gives dim N< rank \widetilde{M} .

Now assume that N is not isometric to a sphere. Then $J\xi_1\in T_0(N)$. We shall prove two more lemmas and then arrive at a contradiction. In the proof of Lemma 2 we have shown for this case that the dimension of N is odd, say 2k+1, and that $\nu_0(N)=\left\{\xi_1,\,\xi_2,\,\cdots,\,\xi_{m-k},\,J\xi_2,\,\cdots,\,J\xi_{m-k}\right\}$. We may choose $e_1,\,\cdots,\,e_k\in T_0(N)$, so that $T_0(N)=\left\{e_1,\,\cdots,\,e_k,\,Je_1,\,\cdots,\,Je_k,\,J\xi_1\right\}$, $k\geq 1$, since we have assumed dim $N\geq 2$.

Let

$$\mathfrak{M}_{1} = \mathbf{T}_{0}(\mathbf{N}) \cap \mathbf{J}\mathbf{T}_{0}(\mathbf{N}) = \{\mathbf{e}_{1}, \dots, \mathbf{e}_{k}, \mathbf{J}\mathbf{e}_{1}, \dots, \mathbf{J}\mathbf{e}_{k}\};$$

 $\mathfrak{M}_{2} = \nu_{0} \oplus \mathbf{J}\nu_{0} = \{\xi_{1}, \xi_{2}, \dots, \xi_{m-k}, \mathbf{J}\xi_{1}, \dots, \mathbf{J}\xi_{m-k}\}.$

It is clear that $\mathfrak{M}=\mathfrak{M}_1\oplus\mathfrak{M}_2$ (direct sum) and that both \mathfrak{M}_1 and \mathfrak{M}_2 are Jinvariant.

LEMMA 4.
$$[\mathfrak{M}_{1}, \mathfrak{M}_{2}] = 0.$$

Proof. Let $X \in \mathfrak{M}_1$; then $JX \in \mathfrak{M}_1$. By (1) we have $\langle \widetilde{R}(X, JX)J\xi_1, \xi_1 \rangle = 0$. This and the Bianchi identity imply that

$$\langle \widetilde{R}(X, J\xi_1)\xi_1, JX \rangle + \langle \widetilde{R}(X, \xi_1)JX, J\xi_1 \rangle = 0.$$

In a Hermitian space \widetilde{M} for \widetilde{X} , \widetilde{Y} , $\widetilde{Z} \in T(\widetilde{M})$ we have $\widetilde{R}(\widetilde{X}, \widetilde{Y})\widetilde{Z} = -[[\widetilde{X}, \widetilde{Y}], \widetilde{Z}]$. Thus we have

$$\langle [X, J\xi_1], [\xi_1, JX] \rangle + \langle [X, \xi_1], [JX, J\xi_1] \rangle = 0.$$

Using $[J\widetilde{X}, J\widetilde{Y}] = [\widetilde{X}, \widetilde{Y}]$, we obtain for all $X \in \mathfrak{M}_1$

(6)
$$[X, \xi_1] = 0, [X, J\xi_1] = 0.$$

By use of (2) and the fact that $A_{\xi_r} = A_{J\xi_r} = 0$ for $r \geq 2$, we have

$$\langle \tilde{R}(X, JX)\xi_r, J\xi_r \rangle = 0.$$

Using the Bianchi identity and the fact that $\tilde{R}(X, JX)J\xi_r = J\tilde{R}(X, JX)\xi_r$, we find

$$0 = \left\langle \widetilde{R}(X, JX) \xi_r, J \xi_r \right\rangle = \left\langle \widetilde{R}(X, \xi_r) X, \xi_r \right\rangle + \left\langle \widetilde{R}(X, J \xi_r) X, J \xi_r \right\rangle.$$

We thus have $\langle [X, \xi_r], [X, \xi_r] \rangle + \langle [X, J\xi_r], [X, J\xi_r] \rangle = 0$, and hence

[X,
$$\xi_r$$
] = 0, [X, $J\xi_r$] = 0, $r \ge 2$.

By (6) and (7) we have proven that $[\mathfrak{M}_1, \mathfrak{M}_2] = 0$.

LEMMA 5.
$$[[m_1, m_1], m_1] \subset m_1, [[m_2, m_2], m_2] \subset m_2$$
.

Proof. Let X_1 , Y_1 , $Z_1 \in \mathfrak{M}_1$. By (1), $\widetilde{R}(X_1, Y_1)Z_1 \in T_0(N)$. There is $W_1 \in T_0(N)$ so that $Z_1 = JW_1$. $\widetilde{R}(X_1, Y_1)Z_1 = J\widetilde{R}(X_1, Y_1)W_1 \in JT_0(N)$. Hence we have that $\widetilde{R}(X_1, Y_1)Z_1 \in \mathfrak{M}_1$. This proves that $[[\mathfrak{M}_1, \mathfrak{M}_1], \mathfrak{M}_1] \subset \mathfrak{M}_1$.

Let X_2 , Y_2 , $Z_2 \in \mathfrak{M}_2$ and $[[X_2, Y_2], Z_2] = W_1 + W_2$, where $W_1 \in \mathfrak{M}_1$, $W_2 \in \mathfrak{M}_2$. By Lemma 4 and the Jacobi identity, if $X_1 \in \mathfrak{M}_1$,

$$[[X_2, Y_2], X_1] = -[[Y_2, X_1], X_2] - [[X_1, X_2], Y_2] = 0.$$

Since \mathfrak{M}_1 is J-invariant,

$$[W_1, JW_1] = [[[X_2, Y_2], Z_2], JW_1]$$

= -[[Z₂, JW₁], [X₂, Y₂]] - [[JW₁, [X₂, Y₂]], Z₂] = 0.

If $W_1 \neq 0$, then $\langle \widetilde{R}(W_1, JW_1)JW_1, W_1 \rangle = -[[[W_1, JW_1], JW_1], W_1] = 0$. Hence the holomorphic sectional curvature $\widetilde{H}(W_1) = 0$. This contradicts Lemma 1. Thus we have $W_1 = 0$ and hence $[[\mathfrak{M}_2, \mathfrak{M}_2], \mathfrak{M}_2] \subset \mathfrak{M}_2$.

Lemma 5 shows that each of \mathfrak{M}_1 and \mathfrak{M}_2 forms a Lie triple system. Then there are complete totally geodesic submanifolds M_1 and M_2 through the origin 0 such that $T_0(M_1) = \mathfrak{M}_1$, $T_0(M_2) = \mathfrak{M}_2$. For this situation, using the same argument as in [3], we can conclude that $\widetilde{M} = M_1 \times M_2$. This contradicts the assumption that \widetilde{M} is irreducible. Hence the theorem is proved.

REFERENCES

- 1. B-Y. Chen, Extrinsic spheres in Kähler manifolds. Michigan Math. J. 23 (1976), 327-330.
- 2. ——, Extrinsic spheres in Kähler manifolds, II. Michigan Math. J. 24 (1977),
- 3. ——, Holonomy groups of normal bundles, to appear.
- 4. S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry, Vol. II.* Interscience Tracts in Pure and Applied Mathematics, No. 15, Vol. II. Interscience Publishers, New York, 1969.
- 5. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 (1962), 333-340.

Department of Mathematics Wayne State University Detroit, Michigan 48202