EXTRINSIC SPHERES IN
IRREDUCIBLE HERMITIAN SYMMETRIC SPACES

Chorng-Shi Houh

1. INTRODUCTION

Let M be an irreducible Hermitian symmetric space. Then M is simply con-
nected and its canonical Hermitian structure is Kahlerian. Let 2m be the real di-
mension of M. An n-dimensional submanifold N of M is called an extrinsic sphere
if it is umbilical and has parallel, nonzero mean curvature vector. In Remark 2 of
[2], Chen indicated that if the rank of M is £, then M admits extrinsic spheres of
dimensions < ¢ - 1 with flat normal connections; namely, extrinsic spheres of

maximal flat totally geodesic submanifolds of M. In this paper we investigate ex-
trinsic spheres with flat normal connections in irreducible Hermitian symmetric
spaces and shall prove the following.

THEOREM. If N is an n-dimensional (n > 2) complete, simply connected ex-

trinsic .spkevfe with flat noafmal connection in an ivveducible Hermitian symmelvic
space M then n < rank M and N is isometric to a standard n- Spheve.

2. PRELIMINARIES

M is always assumed to be an irreducible Hermitian symmetric space of real
dimension 2m (m>1). Let J and g be the complex structure and Kéhler metric of
M let N be an n- d1men51onal submanifold of M and let V and V be the covariant
differentiations on M and N, respectively. The second fundamental form h of N in

M is defined by h(X, Y) = Vx Y - Vx Y, where X, Y are vector fields tangent to N.
Then h is symmetric, with values in the normal bundle. For a vector field £ nor-

mal to N we write %Xg = :‘AgX + Dx &, where —AEX and Dx & denote the tangential
and normal components of Vx &, If Dy & =0, £ is said to be pavallel. 1If

h(X, Y) = g(X, Y)H, where H = (trace h)/n is the mean curvature vector of N in M,
N is said to be umbilical. Let f{, R, and R* be the curvature tensors associated
with %, Vv, and D, respectively. Let

(Vx h)(Y, 2) = Dx((Y, Z)) - h(vx Y, Z) - h(Y, Vx Z)
for X, Y, Z tangent to N. Then the equations of Codazzi and Ricci are
(RX, Y)2)* = (Vxh) (Y, 2) - (Vyh) (X, 2);

R, Y; & 1) = RY(X, Y, & 1) - g([Ag, AplX, V),
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where X, Y, Z are tangent to N, £ and 7 are normal to N, and R(X, Y)Z)* denotes

the normal component of R(X Y)Z N is said to have flat normal connection in M
if R'(X, Y) =0. If N is simply connected and has flat normal connection, then there
exist 2m - n mutually orthogonal parallel unit normal vector fields

£15 62, s Smen

along N. Furthermore, if N has parallel mean curvature vector H, we may assume
that H = o, , where « isa nonzero constant. Hence if N is an extrinsic sphere

with flat normal connection in M, then h(X, Y) = ag(X, Y)&;, Vxh =0, R*(X, Y) =
The Codazzi and Ricci equations on N become

(1) R, V)Z)* =0
(2) ﬁ(X, Y; 'gr ?7) = -g( [AE’ An ]X’ Y)-

For a Hermitian symmetric space M thereis a triple (G, H, 0) consisting of a
connected Lie group G, a closed subgroup H of G, and an involutive automorphism

0 of G suchthat M = G/H. Let ® and $ be the Lie algebras of G and H, and let
0 be the automorphism of ® which is induced by ¢ of G. § is the eigenspace of ¢
for the eigenvalue 1. Let M be the eigenspace of ¢ for the eigenvalue -1. Then
we have the canonical decomposition & = H + M of (¢, H, 0) so that [g, s5]c s,

[, m]cm, [m, m] < . We may identify the tangent space Ty (M) of M at the
origin 0 of M with 9. The curvature tensor R of M is then given by

~

(3) REX, VZ = -[[X, ¥}, Z], X, Y,%ZeT,M).

For the Kihler structure J on M, we have R(JX, JY) = R(X, Y). Hence we may use
the relation [JX, JY] = [X, Y] for X, Y € Ty(M).

3. PROOF OF THE THEOREM

Let M be an irreducible Hermitian symmetric space of real dimension 2m
(m > 1). It is clear that M is either of compact or of noncompact type. Let N be a

complete, simply connected extrinsic sphere with flat normal connection in M. The
dimension of N is n and we assume that n > 2.

Let H(X) be the holomorphic sectional curvature of M determined by the vector
X. Then the holomorphic pinching of H can be found in [2]. We shall utilize the re-
sults in [2] in the following form.

LEMMA 1. If M is of compact type, then H > 0. If M is of noncompact type,
then H < 0.

We shall prove several other lemmas.

LEMMA 2. Let N be a complete simply connected extrinsic spheve with flat
normal conmection in M. Then either N is isometvic to a standavd spheve and
R(X, Y) = 0 for all X, Y tangent to N, or J&, is tangent to N, wheve &, is the
divection of the mean cuvvature vector of N.

Pyroof. If the dimension of N is even, Chen proved in [1] that N is isometric to
a standard sphere of radius 1/o and that R(X, Y) = 0 for all X, Y tangent to N.
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Here « is the length of the mean curvature vector of N. Let the dimension of N be
odd, say 2k + 1. We may choose parallel orthonormal normal vectors

15825 5 Eam-2Kk-1 so that Agl = al and Agr =‘0 for r > 2. We then have

(4) 5X§r=—A§rx+DX§r=o, r > 2.

Define the functions ¢_ on N by ¢, =g(J, , £,), r > 2. As in the proof given in [1]
for the even-dimensional case, ¢, satisfy the differential equations for all vectors
X tangent to N:

(5) Uxd, = -a2¢.X, r > 2.

If there exists a nonconstant function ¢, defined on N satisfying (5), then by a re-
sult of Obata [5], N is isometric to the standard sphere of radius 1/a¢. We can also
prove R(X, Y) = 0 for all X, Y tangent to N, as done in [1] for the case where N
has even dimension.

Now suppose that all ¢, are constants. By (4) we have for all X tangent to N,
0= X(I)r = g(JNVXg] ’ gr) = 'g(JAglxy gr) = Olg(X, J'Er)) I‘Z 2.

Hence {&,, **, &5, 2k-15 Jé25 ***» J62m-2k-1} is a subspace of the normal space
v to N. dim {&r, JE12<r<2m- 2k - 1} is even and greater than or equal to
2m - 2k - 2, since it is invariant by J. dim v =2m - 2k - 1 implies that

dim{é,.,J¢.:2<r<2m-2k -1} = 2m - 2k - 2.

This implies that J§1 is tangent to N.

LEMMA 3. If N is isometric to a sphere with R(X, Y) = 0 for all X, Y tangent
to N, then dim N < rank M.

Proof. Since M is symmetric, every point x in M can be regarded as the
origin 0. Let ToN denote the tangent space of N at 0. R(X, Y) = 0 implies that
ToN is contained in a maximal abelian subspace of T01\71 which is identified with .
This gives dim N < rank M.

Now assume that N is not isometric to a sphere. Then J&; € Ty(N). We shall
prove two more lemmas and then arrive at a contradiction. In the proof of Lemma 2
we have shown for this case that the dimension of N is odd, say 2k + 1, and that
VO(N) = {51, £2, s Em-k, JE2, =, ng—k}- We may choose e, **-, ex € To(N),
so that To(N) = {e;, -, ey, Jey, =+, Jey, J&; }, k > 1, since we have assumed
dim N > 2.

Let
M, = To(N) N ITGN) = {ey, =, ex, Jey, ==, Jex};
9}32 = VO@‘IVO = {‘51, 521 ) ‘Em_ks J‘E]_’ ) ng_k}-

It is clear that M = M, ® Mo (direct sum) and that both M, and M, are J-
invariant.

LEMMA 4. [m,, ®m,]=0.
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Proof. Let X € M, ; then JX € M; . By (1) we have { R(X, IJX)J&;, & ) = 0.
This and the Bianchi identity imply that

(R, J&)¢,, 3x ) +{ RX, £,)IX, 3¢, ) = 0.

In a Hermitian space M for X, Y, Z € T(M) we have R(X, Y)Z = - [[X, Y], Z]. Thus
we have

(1%, 38,), [&1, 3X1 ) + ([X, &), [3%, J&1]) = 0.
Using [JX, JY] = [X, Y], we obtain for all X € M,
(6) X, &1=0, [X,J¢]=0.

By use of (2) and the fact that Ay = A =0 for r > 2, we have
gr Jgr -

(R(X, JX)£.,JE, ) = 0.
Using the Bianchi identity and the fact that R(X, JX)J¢, = JR(X, JX)&,., we find
0 = (R, IX)¢,, 3, » = {R(X, £,)X, &) + (R(X, JE)X, J&. ) .
We thus have {[X, &, [X, &) + ([X, J&.], [X, J&:]) = 0, and hence
(7) X,¢.1=0, [X,J6.]1=0, r>2.
By (6) and (7) we have proven that [%;, m,] = 0.

LEMMA 5. [[2;, o], m;Jcmy, [[m,, m,], mp] €, .

Proof. Let X;, Y, Z; € M. By (1), f{(Xl , Y1)Z; € To(N). There is
W, € To(N) sothat Z; =JW;. R(X;, Y1)Z; =JR(X;, Y))W; € JTo(N). Hence we
have that R(X;, Y;)Z; € M. This proves that [[2;, m1], m1]C M.

Let X,, Y,, Z, € M, and [[X;, Y|, Z2,] =W; + W, , where W; € M,
W, € M, . By Lemma 4 and the Jacobi identity, if X; € I,

[[XZ; YZ], Xl] = - [[YZ: Xl]’ XZ] - [[Xl ’ XZ]’ YZ] = 0.
Since M; is J-invariant,

(Wy, Iwy] = [[[Xz, Y21, Z,], IwW,]

-[[Z, IWy], [X2, Y211 - [[IW,, (X2, Y,l], Z,] = 0.

It W, # 0, then {R(W;, JW)IW,, W) =-[[[W;, JW,], JW,], W;] = 0. Hence the

holomorphic sectional curvature ﬁ(Wl) = 0. This contradicts Lemma 1. Thus we
have W, = 0 and hence [[M,, M ], M2] C M, .

Lemma 5 shows that each of M; and M, forms a Lie triple system. Then
there are complete totally geodesic submanifolds M; and M; through the origin 0
such that Ty(M;) = M, To(M,) = M, . For this situation, using the same argument

~

as in [3], we can conclude that M = M, X M. This contradicts the assumption that
M is irreducible. Hence the theorem is proved.



IRREDUCIBLE HERMITIAN SYMMETRIC SPACES 107
REFERENCES

1. B-Y. Chen, Extrinsic spheves in Kihley manifolds. Michigan Math. J. 23 (1976),
327-330.

, Extvinsic spheves in Kahler manifolds, II. Michigan Math. J. 24 (1977),

, Holonomy gvoups of normal bundles, to appear.

4. S. Kobayashi and K. Nomizu, Foundations of Differential Geomelry, Vol. II.

Interscience Tracts in Pure and Applied Mathematics, No. 15, Vol. II. Intersci-
ence Publishers, New York, 1969.

5. M. Obata, Ceriain conditions for a Riemannian manifold to be isometvic with a
sphere. J. Math. Soc. Japan 14 (1962), 333-340.

Department of Mathematics
Wayne State University
Detroit, Michigan 48202






