A CLASS OF NONSPLITTABLE LINKS # Howard Lambert ### 1. INTRODUCTION In [2] and [4] it is shown that the link $L_0 = L_{01} \cup L_{02} \subset S^3 = Bd I^4$ (illustrated in Figure 1) does not bound disjoint smooth disks in the 4-cell I^4 . To prove this, it is shown that the Arf invariant ϕ is not linear on $L_{01} \cup L_{02}$; that is, $$\phi(L_{01} \cup L_{02}) \neq \phi(L_{01}) + \phi(L_{02}) \mod 2$$. In this paper we study the question of whether or not ϕ is linear on a given link. We are then able to determine, in Corollary 1 of Theorem 1, a class of nonsplittable links (links which do not bound disjoint planar surfaces in I^4) by showing that ϕ is not linear on each member of the class (the link $L_{01} \cup L_{02}$ is the prototype of our class). The author would like to thank the referee for suggesting extensive improvements of the original manuscript. Figure 1. ## 2. THE *-OPERATION AND BRIDGE EQUIVALENCE In this paper we assume all spaces and maps are piecewise linear. We call $X = \bigcup_{i=1}^n X_i$ a link if each $X_i = \bigcup_{j=1}^{n(i)} x_{ij}$, where each x_{ij} is an oriented simple closed curve in S^3 , $x_{ij} \cap x_{ij'} = \emptyset$, $j \neq j'$, and $X_i \cap X_j = \emptyset$, $i \neq j$. We call the Michigan Math. J. 24 (1977). Received October 21, 1975. Revisions received November 15, 1976 and April 11, 1977. This paper was written at the Universidad de Oriente, Cumaná, Venezuela, while the author held a Latin American Teaching Fellowship. link X proper if each x_{ij} has linking number 0 Mod 2 [1, p. 81] with both of the sublinks $\bigcup_{j'\neq j} x_{ij'}$ and $\bigcup_{i=1}^n X_i$ - x_{ij} . The link X is said to be *splittable* if there exist disjoint (PL) planar surfaces D_1 , ..., D_n in I^4 such that each $D_i \cap Bd I^4 = Bd D_i = X_i$. We use the Arf invariant ϕ of a knot K as defined in [6, pp. 543-544] and extend the definition of ϕ to a proper link X by defining $\phi(X) = \phi(K)$ if X is related to K [6, pp. 546-547]. We now describe the *-operation and bridge equivalence. Let $X = \bigcup_{i=1}^n X_i$ be a proper link and Δ a disk in S^3 such that $\Delta \cap X = Bd$ $\Delta \cap X_i = A_{i1} \cup A_{i2}$, where A_{i1} , A_{i2} are disjoint arcs in X_i and an orientation on Δ induces an orientation on A_{i1} and A_{i2} which agrees with the orientation on A_{i1} and A_{i2} induced by the orientation on X. We now let $X_i(1) = (X_i - \Delta) \cup (Bd \Delta - Int(A_{i1} \cup A_{i2}))$, its orientation induced by the orientation on X_i , and $$X(1) = X_1 \cup \cdots \cup X_{i-1} \cup X_i(1) \cup X_{i+1} \cup \cdots \cup X_n,$$ where X(1) was obtained from X by the *-operation if X(1) is again a proper link. Definition 1. X is bridge equivalent to X', denoted $X \geq X'$, if there exists a finite sequence of proper links $X = X(0), X(1), \dots, X(t) = X'$ such that each X(i) was obtained from X(i-1) by the *-operation. ### 3. A CLASS OF NONSPLITTABLE LINKS In this section we prove Theorem 1 and show that this theorem gives us a new and rather general class of nonsplittable links (Corollary 1 to Theorem 1). LEMMA 1. If $X = \bigcup_{i=1}^{n} X_i$ is proper and $X \geq X' = \bigcup_{i=1}^{n} X_i'$, then $\phi(X) = \phi(X') \mod 2$ and each $\phi(X_i) = \phi(X_i') \mod 2$. *Proof.* Since X = X(0) is related to X(1) and X(1) (or X(0) if the bridge runs between the same component of X_i) is related to some knot K, it follows from [6] that $\phi(X(0)) = \phi(X(1))$ Mod 2. By repeating this argument t times, it follows that $\phi(X) = \phi(X')$ Mod 2 and, similarly, each $\phi(X_i) = \phi(X_i')$ Mod 2. LEMMA 2. If $X = \bigcup_{i=1}^{n} (X_i)$ is a proper link and splittable, then $$\phi(X) = \sum_{i=1}^{n} \phi(X_i) \mod 2.$$ *Proof.* Suppose D_1 , \cdots , D_n are disjoint planar surfaces in I^4 such that each Bd D_i = X_i . Let d_i be an arc in Int D_i which contains all the nonlocally flat points of D_i . Let a_0 be a contractible 1-complex in Int I^4 such that each $$a_0 \cap D_i = a_0 \cap d_i$$ is exactly one endpoint of a_0 . Let $b_0 = a_0 \cup \left(\bigcup_{i=1}^n d_i\right)$ and let $S^3 \times I$ be I^4 minus a small open regular neighborhood of b_0 where $X \subset S^3 \times 0$ and $$\left(\bigcup_{i=1}^{n} (D_{i})\right) \cap (S^{3} \times 1)$$ is a link such that each knot $D_i \cap (S^3 \times 1)$ can be separated from $D_j \cap (S^3 \times 1)$ by a 2-sphere in $S^3 \times 1$, $i \neq j$. It follows from [4] and [6] that $$\phi\left(\bigcup_{i=1}^{n} (X_i)\right) = \phi\left(\bigcup_{i=1}^{n} (D_i \cap (S^3 \times 1))\right) = \sum_{i=1}^{n} \phi(D_i \cap (S^3 \times 1)) = \sum_{i=1}^{n} \phi(X_i) \mod 2.$$ Let $S = S_1 \cup S_2$ be the proper link illustrated in Figure 2. Here $S_1 = \bigcup_{j=1}^{s(1)} s_{1j}$ is s(1) meridian curves of the solid torus U and $S_2 = \bigcup_{j=1}^{s(2)} s_{2j}$ is a chain of curves going around U once. The chain S_2 may twist about itself (some twisting is illustrated in the link s_{22}). Figure 2. LEMMA 3. If $s(1) = 0 \mod 2$, then $\phi(S_1 \cup S_2) = \phi(S_2) \mod 2$. If $s(1) = 1 \mod 2$, then $\phi(S_1 \cup S_2) = \phi(S_2) + 1 \mod 2$. *Proof.* By adding s(2) - 1 short bridges between adjacent links of S_2 (*-operation), it follows that $S_b \sim S'$, where $S_1' = S_1$ and S_2' is one curve (self-linked in U). Hence by Lemma 1, $\phi(S_1 \cup S_2) = \phi(S_1' \cup S_2')$ Mod 2 and $\phi(S_2) = \phi(S_2')$ Mod 2. It follows from an observation by Kauffman [4] that if we add a bridge from s_{1j} to s_2' , then $\phi(s_2')$ changes value by one Mod 2 (*i.e.*, if we put $s_1 = s_{1j} \cup s_2'$ in Section 2, then the result of the *-operation on $s_1 = s_1$ is to put another twist in s_2' . Hence $\phi(s_1 \cup s_2) = \phi(s_1' \cup s_2') = \phi(s_2') + s(1) = \phi(s_2) + s(1)$ Mod 2. Let T_1 be a link of one component t_{11} . For $i=1, \cdots$, m, let U_i be an embedding in S^3 - t_{11} of the solid torus U (defined in the paragraph before Lemma 3), $U_i \cap U_j = \emptyset$, $i \neq j$. Let $S_2(i)$ be the corresponding chain of curves in U_i . Let $T = T_1 \cup T_2$, where $T_2 = \bigcup_{i=1}^m S_2(i) = \bigcup_{j=1}^{t(2)} t_{2j}$. Denote the core circle of each U_i by $C(U_i)$. LEMMA 4. If the linking number of t_{11} with $\bigcup_{i=1}^{m} C(U_i)$, denoted by $\ell\left(t_{11},\bigcup_{i=1}^{m} C(U_i)\right)$, is 0 Mod 2, then $\phi(T_1\cup T_2)=\phi(T_1)+\phi(T_2)$ Mod 2. If $\ell\left(t_{11},\bigcup_{i=1}^{m} C(U_i)\right)=1$ Mod 2, then $\phi(T_1\cup T_2)=\phi(T_1)+\phi(T_2)+1$ Mod 2. *Proof.* Assume t_{11} bounds an orientable surface ${\bf F}$ in ${\bf S}^3$ and assume ${\bf F}$ intersects each U_i in a collection of meridional disks. We now take a disjoint collection of bridges (disks) in F, where each bridge is obtained by taking a regular neighborhood in F of an arc which starts in Bd F, runs out to a point near one of the meridional disks of F \cap ($\bigcup_{i=1}^{m}$ U_{i}), goes once around this meridional disk, and then returns by a path close to the one going out. Assume we have one bridge for each meridional disk. Let $T' = T'_1 \cup T'_2$ be the link obtained by applying the *-operation on each bridge. Then T_1' consists of one curve t_{11}' (the altered t_{11}), and T_2' consists of T2 and a number of meridians of each Ui (each such meridian curve was formed from the inner part of a bridge). Let $T_2'(i)$ be the sublink of T_2' corresponding to the chain $S_2(i)$ and the meridians of U_i , so that $T'_2 = \bigcup_{i=1}^m T'_2(i)$. By Lemma 1, $\phi(T) = \phi(T')$ Mod 2. Now t'_{11} bounds an orientable surface F' (what remains of F) and F' \cap $\left(\bigcup_{i=1}^{m} U_i\right) = \emptyset$. Regard F' as a disk with bands (see [5], for example). Note that we may pass a band of F' through some U_i at the expense of adding two more meridian curves to U_i (that is, we apply the *-operation twice to move a band through U_i). By a similar reasoning, we may untie U_i or untangle U_i from U_{j} at the expense of adding an even number of meridians. It follows that $\mathbf{T}_{1}' \ \cup \ \mathbf{T}_{2}'' \ \text{ is bridge equivalent to } \ \mathbf{T}_{1}'' \ \cup \ \mathbf{T}_{2}'', \ \text{where } \ \mathbf{t}_{11}' \ _{b}'' \ \mathbf{t}_{11}'' \ = \ \mathbf{T}_{1}'', \ \text{each } \ \mathbf{T}_{2}'(i) \ _{b}'' \ \mathbf{T}_{2}''(i),$ $T_2'' = \bigcup_{i=1}^m T_2''(i)$, and the sublinks t_{11}'' , $T_2''(1)$, ..., $T_2''(m)$ can be separated from each other by disjoint 2-spheres in S³. Hence, by the above observations, $$\phi(\mathbf{T}_1 \cup \mathbf{T}_2) = \phi(\mathbf{t}_{11}^{"}) + \sum_{i=1}^{m} \phi(\mathbf{T}_2^{"}(i)) \mod 2.$$ Let n(i) be the number of meridians in Bd Ui. By Lemma 3, $$\sum_{i=1}^{m} \phi(T_{2}''(i)) = \phi(T_{2}) + \sum_{i=1}^{m} n(i) \mod 2.$$ Thus $\phi(\mathbf{T}_1 \cup \mathbf{T}_2) = \phi(\mathbf{T}_1) + \phi(\mathbf{T}_2) + \sum_{i=1}^{m} n(i) \mod 2$. Hence if $$\ell\left(t_{11}, \bigcup_{i=1}^{m} C(U_{i})\right) = 0 \mod 2,$$ then $\phi(T_1 \cup T_2) = \phi(T_1) + \phi(T_2)$ Mod 2; and if $\ell(t_{11}, \bigcup_{i=1}^{m} C(U_i)) = 1$ Mod 2, then $\phi(T_1 \cup T_2) = \phi(T_1) + \phi(T_2) + 1$ Mod 2. Let $Y=Y_1\cup Y_2$ be a proper link such that $Y_1=y_{11}$ and each component of $Y_2=\bigcup_{j=1}^{n(2)}y_{2j}$ is null-homotopic in S^3-y_{11} . Let each C_j be a singular disk in S^3-y_{11} bounded by y_{2j} . By [3], we may suppose that each C_j is the image of a nonsingular disk C_j' and that all of the singular set of $\bigcup_{j=1}^{n(2)} C_j$ was obtained by sewing an arc starting in Bd C_j' and ending in Int C_j' to an arc starting in Bd C_k' and ending in Int C_k' in such a manner that an endpoint in the boundary is sewed to an endpoint in the interior (assume also that each such arc is disjoint from the rest). We form a graph $G(Y_2)$ as follows. For each C_{2j} , let v_{2j} be a point in Int C_{2j} minus the singular set of $\bigcup_{j=1}^{n(2)} C_{2j}$. Let w_i be the midpoint of the i^{th} arc of singularities. Now form the graph $G(Y_2)$ by connecting each v_{2j} to each w_i in C_{2j} with an open arc in C_{2j} minus the singular set of $\bigcup_{j=1}^{n(2)} C_{2j}$ in such a manner that the interiors of any two such arcs are disjoint. Since Y_2 is a proper link, it follows that the degree of each vertex v_{2j} of $G(Y_2)$ is even. Now the linking number of y_{11} with $G(Y_2)$, $\ell(y_{11}, G(Y_2))$, is well defined Mod 2; it is the number of times that $G(Y_2)$ intersects a singular disk bounded by y_{11} , assuming that $G(Y_2)$ intersects and pierces the singular disk at each point of their intersection and that no vertex of $G(Y_2)$ is contained in the singular disk. THEOREM 1. Let $Y = Y_1 \cup Y_2$ be a proper link such that $Y_1 = y_{11}$ and each component of $Y_2 = \bigcup_{j=1}^{n(2)} y_{2j}$ is null-homotopic in $S^3 - y_{11}$. If $$\ell(y_{11}, G(Y_2)) = 0 \mod 2$$, then $\phi(Y_1 \cup Y_2) = \phi(Y_1) + \phi(Y_2) \mod 2$. If $\ell(y_{11}, G(Y_2)) = 1 \mod 2$, then $\phi(Y_1 \cup Y_2) = \phi(Y_1) + \phi(Y_2) + 1 \mod 2$. *Proof.* Let C_1 , ..., $C_{n(2)}$ be the singular disks in S^3 - y_{11} defined above. Let ζ' be a spanning arc in C_j' (i.e., $\partial \zeta' = \zeta' \cap (\partial C) \subset \partial C$) such that one component of C_j' - ζ' contains two arcs of singularities and the other component contains the rest of the arcs of singularities, and let ζ be the corresponding arc in C_j . We now do the *-operation using a small regular neighborhood of ζ in C_j as the bridge to obtain a new link Y(1) from Y. Repeating this process a finite number of times, we conclude that Y_0' Y_0' Y_0' , where Y_0' = $Y_1(m) \cup Y_2(m)$, $Y_1(m) = Y_1 = y_{11}$, and $Y_2(m) \in Y_2$; and $Y_1(m) \cup Y_2(m)$ is a link which satisfies the hypothesis of Lemma 4. By Lemma 1 and Lemma 4, we have $$\phi(Y_1 \cup Y_2) = \phi(Y_1(m) \cup Y_2(m)) = \phi(Y_1(m)) + \phi(Y_2(m)) = \phi(Y_1) + \phi(Y_2) \mod 2$$ Figure 3. if $\ell(y_{11}, G(Y_2)) = 0 \mod 2$ and, similarly, $\phi(Y_1 \cup Y_2) = \phi(Y_1) + \phi(Y_2) + 1 \mod 2$ if $\ell(y_{11}, G(Y_2)) = 1 \mod 2$. COROLLARY 1. If the link $Y = Y_1 \cup Y_2$ satisfies the hypothesis of Theorem 1 and $\ell(y_{11}, G(Y_2)) = 1 \mod 2$, then Y is not splittable. *Proof.* If we suppose Y is splittable, then we obtain a contradiction from Lemma 2 and Theorem 1. *Question.* Is either of the links $Q_1 \cup Q_2$ or $E_1 \cup E_2$ illustrated in Figure 3 splittable? Note that $\ell(q_{11}, G(Q_2)) = \ell(e_{11}, G(E_2)) = 0$ Mod 2. #### REFERENCES - 1. P. S. Aleksandrov, *Combinatorial Topology*. Vol. 3, Graylock Press, Rochester, N. Y., 1956. - 2. F. González-Acuña, Dehn's construction on knots. Bol. Soc. Mat. Mexicana 15 (1970), 58-79. - 3. W. Haken, On homotopy 3-spheres. Illinois J. Math. 10 (1966), 159-178. - 4. L. Kauffman, *An invariant of link concordance*. Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), pp. 153-157. Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974. - 5. ——, Link manifolds. Michigan Math. J. 21 (1974), 33-44. - 6. R. Robertello, *An invariant of knot cobordism*. Comm. Pure Appl. Math. 18 (1965), 543-555. Department of Mathematics University of Iowa Iowa City, Iowa 52242