THE INTERSECTION PAIRING
ON A HOMOGENEOUS KAHLER MANIFOLD

Frank Connolly and Tadashi Nagano

Our main result is the computation of the intersection pairing on any compact
homogeneous Kihler manifold, reducing the calculation to Lie algebra and Weyl
group invariants. In particular, we show the signature of such a manifold is greater
than or equal to O.

It is known (see Matsushima [6]) that if M is a compact homogeneous Kihler
manifold, then M is a product of a torus and a simply connected compact homogene-
ous Kihler manifold. This reduces us to the case where M is 1l-connected, in
which case M has the form G/P for some semisimple complex Lie group G and
parabolic subgroup P (see [6]).

The main idea is to take the Bruhat decomposition for G/P and compute the
Poincaré duality there. We show that the Poincaré dual of each “Schubert cell” is a
Schubert cell. (See Corollary 2.6.) From this, the calculation is not hard. We con-
clude:

MAIN THEOREM. Let G be a complex connected semisimple Lie grvoup, P a
pavabolic subgroup, with Weyl groups W and Wp, respectively. Let D € W be the
unique element sending each positive vool to a negative voot. Let N(Wp) be the
novmalizev of Wp in W. Then the index of G/P is |N(Wp)/Wp| - ¢, where ¢ is
the numbey of subgroups of W which are conjugate to Wp and contain D. Move-
over, the malvix of the intevsection paiving H (G/P; Z) X H (G/P; Z) — Z has the
Jorm

Iq 0

(0 Ir) , wheve q = index(G/P).
0

I, 0

I. NOTATION AND CONVENTIONS

We begin by summarizing notation and recalling the Bruhat decomposition. The
Lie algebra background can be obtained from [3]. Let G be a complex semisimple
Lie group, with Lie algebra g, maximal toral subalgebra t, Borel subalgebra b D,

root system & (relative to t), and root space decomposition g =t + Zaeq) gy - Let
®, and &_ denote the positive and negative roots of &. Thus, b = Ea>0 gy (here

go means t). Let B and T be the Lie subgroups of G corresponding to b and t,
and let P be any closed connected subgroup of G containing B (a parabolic sub-
group). Let G/P denote the space of left cosets.
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Let W and W denote the Weyl groups of G and P, respectively. That is,

W = N(T)/T, Wp=P N N(T)/T C W. Recall that W acts on the right on &, and if
we W, and a, B € &, then @V =g if and only if w-lgew =gg.

Let D € W be the unique element such that &2 = ®, . The existence and
uniqueness of D follow from the fact that W acts simply and transitively on the
Weyl chambers, one of which contains &, while its negative contains ®_. For the
same reason, it is clear that D2 = 1.

Let W/Wp be the set of left cosets of Wp in W. Recall that to each ¢ € W
there corresponds a number £(¢), equal to @f no_ |, called the minimal length
of 0. Analogously, for each x € W/Wp we define ((x) = min{(0): cWp = x}.

The Bruhat decomposition [1], as improved by Chevalley [2] and Kostant [5], can
be summarized as follows.

THEOREM 1.1. For each x € W/Wp, set e, = BXP mod P in G/P. Then:

(1) G/P = U {ex: X € W/ Wp} and e, N ey=¢ unless X =y;

(2) Each e, is an analytic submanifold of G/P, isomovphic to cl, where
2 = 2(x);

(3) e, - e, is a union of certain ey such that oly) < o(x).

For (1), see [5, p. 123, Proposition 6.1]; for (2), see [5, p. 126, Proposition 6.3];
and for (3), see [5, p. 127, equations 6.4.2 and 6.4.3].

The closure here can be taken in either the Hausdorff or-Zariski sense (see [5]).
A proof of (1) and (2), all quite neat, appears in [4, p. 171].

Thus G/P is endowed with a “cell decomposition”. We shall also be interested
in a second cell decomposition. For each x € W/Wp, let f, = BDxP mod P ¢ G/P.
Here BP = D-1 BD, which is well defined since T C B. Note that f, is an analytic
manifold isomorphic to e, . The isomorphism is given as follows. Let 6 € N(T)
be such that 6 - T =D. Since G acts on the left on G/P, 6 determines an iso-
morphism of varieties 6: G/P — G/P, and 6 - ep, = 6BDxP = BPxP ={_, as
claimed.

We now see easily:
COROLLARY 1.2. G/P = U {fX: X € W/WP}. This union is disjoint,each i,

is isomorphic to C%, q = UDx), and f, - £, is a union of cells fy such that
¢(Dy) < q.

We shall see that these two cell decompositions of G/P are dual in a very pre-
cise way.
II. THE DUALITY THEOREM
Our conventions are as above. Let @ € & be a root. Define
8@, -a) = 8a T 8-a *ga, g-al-
Set by =gy T [ga, g_.o]. Then b, and g(a, -a) are subalgebras of g, g(a, ~a) is

semisimple, and By is a Borel subgroup if By = exp by . Write G, for exp g, and
G, -a) fOT €XP &(q, -)- The reflection 04 in W =N(T)/T is then the unique
Xy b
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nonzero element in the image of N(T) N G(q, -a) /T N G(q, -a) — N(T)/T, and we
will write sy for the unique element which maps to oy .
LEMMA 2.1. Ggsg C (Gog U S@)Bgy forall a € &.

Proof. The Bruhat decomposition (see Theorem 1.1) for G(a, -q) says that

G(a, -a) = Ba{1Usq}Bg  (here B =P = By)

By Y By sqgBa

. O
B,y U sy B_g By (since By~ = B_g)

By U sqgG.gBg (since B_y =G_y[Ggy, G-gl).
Thus, G(g, -@) = SaG(a, -a) = Sa BU G-a¢Ba . Hence
Gasa C G(q, -a) = (5a¢ YU G-4)Bg

Let A denote the base of ® given by B. Then each element of &, has a unique ex-
pression as a positive integral combination of elements of A.

LEMMA 2.2. Let a € A. Then:

(a) Boy C (G-q U 04)B;

(b) 04 BP c BP(Gy U o).

Proof. We prove (a) only; the proof of (b) is virtually identical. Let

by =+27 {gg: B € @" - {a}}. Since @ is not a sum of elements of &%, the iden-
tity [ga, gglC Bor+f shows that by, is an ideal of b; and b =gy + by, so B =Gy By,
where By = exp by . It is well known that (ba) ® = by, whence 04By =By 04y .
Therefore, by Lemma 2.1,

B(Ta = GaB'aUa = GC!GCYB'CY C (G_a UO’a)BaB& = (G_a U O'a)B,

as claimed.

Notation. Let 1= (a;, az, --+, &) be an ordered r-tuple of elements of A.
Then o1 means a,%a, " Ta_- Also, J <I means that J = (ajl’ ey O ), where
S

0<j <--<jg<rands<r.

PROPOSITION 2.3. For any o1 in W, BoyBC o1B U UJ<I BDGJ B.

Proof. We use induction on r, where I=(a;, a,, -+, o). If r =0, so that
01 = 1, the result is trivial. Thus we assume the theorem is true if the “length” of I
is less than r, and we turn to Bo[ B, where I = (a;, -+, a.). Let

I' = (0‘2, asz, ', ar)-

Thus



36 FRANK CONNOLLY and TADASHI NAGANO

BoiB =Bog, opBC (G_O,l U cal)B011 B (by Lemma 2.2)
C(G_y, U o, )( o BU U BDO'JB) (by induction)
1 J<T
cBPopBuUoBU U {BPo;BU o,y BPo;B} (since G_, < BD)
3 <1 !
- ( U BDGJB) UorB U U BP(G, Uogy )orB (by Lemma 2.2 (b))
I<1 J LI 1 !

U BDoJB)UUIBU U {BPBo;B U BP O’alGJB} (since Ga, C B)

7 <1 J <1
U BDOJB) Uo;BU U BP(BP ¢ B) (by induction on J)
J<I JLI

= O'IB ) U BDUJB,
J<I
as claimed.

COROLLARY 2.4. For any x € W/ Wy, we have

5, < xp U U {2 2y) < o), y e w/wp}.

Proof. Let 0 € x be such that £(0) = ¢(x). By [3, p. 51}, €(¢) < q if and only if
o =01 for I=(a;, ay, «+, o), r <q. Sowrite 0 =01, where I=(a;, -, a,),
r = (o). Thus BxP = Bo;P. Now by the previous proposition,

BGIB(:GIBLJLJ{BDUJBHI<I},

so in particular, BoB C ¢B U U {BP1B: 2(7) < £(0)}. Multiply on the right by P
now, and get: BoP C oP U U {BP 7P: o(1) < 2(x)}.
Since (1) > (TWp) for all 7, we get

BxP C xP U U{BDyP: ye W/Wp and Ly < £x)} .

So e, C xP U U{f y € W/Wp and £(y) < £(x)}. But ey - e, C Lj{eZ 2(z) < 4(x)},
by Theorem 1.1. Slnce zP C f,, the result now follows by induction on £(x).

DUALITY THEOREM 2.5. Fov each x in W, we have

(a) e, Nf, =é,. N f = q single point; the intevsection is tvansverse and the in-
tersection number zs +1

(b) & N, =@ if 1x) < Uz) but x # =.
Proof. Suppose X, z € W/Wp and £(x) < £(z). By Corollary 2.4,



THE INTERSECTION PAIRING 37

&, cxpul {1, 4y <uw}.
Therefore,
&N, < xpni)ulU {1, ne,: oy <2},

sothat & N f,=xPNf,. But xP € BDxP N BxP = e, Nf,, so we get

X 2

e, Nit, =@ if z # x;

(*)

Next we show that e, and f, intersect transversally at xP. Notice that

g =b+bP. Hence, B and BP intersect transversally at the point e € G. It follows
that if s € N(T) is in the coset of x, then B+ s and BDP : s intersect in G trans-
versally at s. Hence, we see that, in G/P, the manifolds BsP and BDsP intersect
transversally, as claimed.

Note that e, and f, are complex submanifolds of G/P, so their intersection
number at xP must be +1 rather than -1. Also, they intersect at a single point
transversally, so we see £(x) = dim e, = dim(G/P) - dim(f,) = dim(G/P) - dim(epy)-
It follows that £(x) = dim(G/P) - #(Dx). Thus, #(z) < £(y) if and only if

2(Dz) > ¢(Dy). By Corollary 1.2, then, we conclude: f, - f, C U {fy: 2y) > 2(z)}.

In view of (*), we see &, N (f, - f,) = @ if £(x) < &(z). Thus (*) can be sharp-
ened to say

@ if 0x) < z), x+ z;
xP if x=2z.

This proves the theorem.

In H,(G/P; Z), let [e,] denote the homology class represented by the even-
dimensional cell e, . Clearly, these classes [ey], x € W/Wp, are a basis for
H,(G/P; Z), and so they determine a dual basis [eX] in HXG/P; Z) (if [e,] € Hy;,
then [eX] € H21),

COROLLARY 2.6. For each x in W/Wp, the Poincarve dual of [e,] is [ePx].

Proof. Let - denote the intersection product in H,(G/P; Z), and let [f,_] denote

the homology class determined by f,. Since e, and fy can be taken as the closure
in the Zariski sense, it is clear from the duality theorem that

1 if z = x;
0 if z# x and £(x) < £(z).
But [f,] =6, [ep,] and 6, =1, since 6 € G and G is connected. Therefore,
1 if y = Dx;

0 if y # Dx and £(y) < (Dx).
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Thus, [e,] - [ey] =0 if y # Dx. Also, dim[ey]=2dimg(G/P) - dim [ex]. But by the
Duality Theorem (a), this last number is dim [ep, ] = £[Dx]. The result follows at
once.

III. THE MAIN THEOREM

Proof of the Main Theorem. The signature of G/P is the Sylvester index of the
intersection form H,(G/P; R) ®) H_(G/P; R) — R.

Write the elements of W/Wp as Xy, 'ty Xgs Y15 "y Vi Yis ***s ¥y, Where
these are distinct, and x; = Dx;, y; = Dy;. Possibly r or q is 0. Relative to this
ordering of the basis for H_(G/P; Z), the matrix of the intersection form is:

Ig 0

0 \I_. 0

by Corollary 2.6. This proves the second part of the main theorem. Also, it is
clear that

Il

0(G/P) =q = |{xe W/Wp:Dx=x}| = |{x € W/Wp: D e xWpx~1}|

[{& e W/N(Wp): D e tWpé-1}] - [N(Wp)/Wp|

|{H C W: H is conjugate to Wp and D € H}| - |N(Wp)/Wp| ,

1l

as claimed.

COROLLARY 3.1. Each compact homogeneous Kdihlery manifold M has signa-
tuve greatev than ov equal to 0.

Proof. As mentioned above, either M = G/P or M = G/P X T, where T is a
torus; in this latter case o(M) is clearly 0, since o(T) = 0.

Example. We use the main theorem to compute the signature of any complex
Grassmannian Gy (n), consisting of all k-planes in €?*k; G,(n) = GL(n +k, C)/P for
suitable P, where W=S8_,, and Wp =S, XS, . (Here S denotes the symmetric
group.) One checks that S; X S, is its own normalizer unless k = n, in which case
N(Wp)/Wp = Z/27Z.. One also checks that D € S,; is the permutation

(1, n+k)(2, n+k - 1) ([%J, [ﬂ;r—l:l)

Thus, the conjugates of Wp containing D are easily seen to be in bicorrespondence
with those k-element sets S in {1, 2, -, n -I-k} such that SP =S. The number of
such sets S is then quite easily calculated to be 0 if k and n - k are both odd, and

n+k
2 otherwise. We conclude that
[k/2]
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0 if n and k are odd;
2( n ) if n=k even;
[k/2] ’

n+k
2 otherwise.

[k/2]

0(Gy(n) =
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