LUMER’S HARDY SPACES
Walter Rudin

In the present paper, the term pluriharmonic will always refer to real-valued
functions. A pluriharmonic function is thus one whose domain is an open subset §
of C" and which is locally the real part of a holomorphic function.

We define (LH)P(Q) to be the class of all holomorphic functions f: & — C such
that |f|P < u for some pluriharmonic u. (Here 0 < p < «.) This is Lumer’s defi-
nition of HP-spaces [1]. When n = 1, pluriharmonic is the same as harmonic, so
that this definition coincides with the old one ({2], [3]) which involves harmonic
majorants of |f|P. But when n> 1, then (LH)P(f) is a proper subclass of what is
usually called HP(Q). (See, for example, [6].)

The use of pluriharmonic majorants leads to some appealing properties of
(LH)P(Q). For example, holomorphic invariance is a triviality: if & is a holomor-
phic map of £, into £, and if f € (LH)P(R2,), then obviously f o & € (LH)P(2).

To see another example, let @ be simply connected. If f € (LH)P(Q) for some
p € (0, ), then log |f| < 9ig for some holomorphic g in Q. Setting h = f - exp(-g),
it follows that |h| <1. Thus every f € (LH)P(Q) has the same zeros as some
h € H®(R). This is in strong contrast to what is known [4] about zero sets of the
usual HP-functions in the unit ball or the unit polydisc of C™".

However, from the standpoint of functional analysis, the (LH)P-spaces have un-
expectedly pathological properties. The purpose of the present paper is to describe
some of these for the case §2 = B, the open unit ball of C™; from now on, n > 1.

When 1 < p <, (LH)P(B) can be normed by defining
(1) I£]l, = inf u(0)}/P,
the infimum being taken over all pluriharmonic majorants u of If’P in B. As

pointed out in [1)], this norm turns (LH)P(B) into a Banach space.

For 0 <r <1, we use the notation f. to denote the function defined for z € B
by f.(z) = {(rz).

We let % denote the (compact topological) group of all unitary transformations
of C". Clearly, every U € % maps B onto B.

As usual ¢” is the Banach space of all bounded complex sequences, and c; is
the subspace of £* consisting of those sequences that converge to O.

Here is our main result:
THEOREM. Fix p, 1 <p <, and fix € > 0.

(i) There exists a linear map of ¢ into (LH)P(B) which assigns to each
Y € £° a function 1, that satisfies ||v| o < |1, ], < iyl <1 +e)|v]lo-
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(ii) If v is not in c, then U — f, 0 U is a discontinuous map of % into
(LH)P(B).

(iii) If y is not in cq, then (f?,)r does not convevge to t,, in the norm topology
of (LHP(B), as r — 1.

(Originally, in answer to a question raised by Stout, I constructed an
f € (LH)?(B) such that f,. did not converge to f. Joel Shapiro pointed out to me that
very small modifications of my construction would yield the theorem as stated.
Similar gap series constructions occur in [4] and [5].)

Recall that every holomorphic f: B — € has an expansion of the form
o0
(2) f(z) = 2 f,(z)
k=0

in which each f; is a homogeneous polynomial of degree k.
We let S denote the sphere that is the boundary of B.
LEMMA. If 1<p <« agnd f € (LH)P(B), then

(3) It > 11,

for every § € S and for every m.

Proof. Fix € € S, fix m, and let u be a pluriharmonic majorant of lffp in B.
By (1), we have to show that

(4) It (© 7 < u0).

Since u is pluriharmonic in B, the function A — u(A¢) is harmonic in the unit disc,
so that

7
(5) u(0) = 2%7 S u(relf €)de
-7

for every r € (0, 1). In the unit disc, the coefficients of a power series are domi-
nated by its HP-norm. Apply this to the series

(6) fg) = 22 A (A <1)
k=0
to obtain
1, L (7 et gfras |
(7 f ()] < sup %-— f(re’ §)pd9} .
0<r<l1 2m =T

Since |f|P < u, (7) and (5) give (4). This completes the proof of the lemma.

Proof of the theorem. Choose points §, € S, k=1, 2, 3, ---, so that no circle

(8) Iy = {elf Ce: -1 <0 <7}
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contains a limit point of the union of the other I';. Then there are disjoint open sets
Vi in €" such that T'y C Vy .

Choose unitary transformations Uy € % so that Uy converges to the identity

element of % as k — =, and so that |<Uk§k, §k>| < 1. (Here <z, w> = 27 7;W;
is the usual inner product in C".)

We can then find an increasing sequence of natural numbers n; such that

(9) |<z, §k>|nk<8/2k if ze B-Vy
and
(10) {0t &) ] < < 1/2.

The linear map mentioned in (i) is the one that assigns to every y = {¢,} € £7
the function

(11) ifz) = 2 ¢, {z ) © (zeB).
k=1

Since no two of the sets V, intersect, the inequality (9) fails (for any given
z € B) for at most one term in the series (11). Thus

1£,2)| < Jvllw+e 2 lexl2 ™ <+ o)y,
k=1

co that [ty < 0+l That [5yllp < ity 15 trivia, and 7] < Jey I
follows from an application of the lemma to (11). This proves (i).

Next,

(f) - £ 0 Uy (2) = E ¢y [{z, Ck> <Uiz, Ck>nk]

k=1

When z = {;, the absolute value of the ith term of this series is

;] 1 -{u;g;, §i>nil Z'él‘ le; |,

by (10). Another application of the lemma shows therefore that

lim sup ||f.y -fy0 Ui"p Z% lim sup |c,] .

i——)DO i—)OO

Hence, f,, o U; does not converge to f., in (LH)P(B) if {c;} fails toconverge to 0.
This proves (11)

n.
The proof of {iii) is quite similar: choose r; so that (r;) ' =1/2. Then
r;— 1 as i— =, and
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fo)/(Z) - f')/(rlz) = k?l Cx [1 - (ri)nk]<z, ck>nk .

With z =, it follows from the lemma that

Ity - Gl > L el

for i=1, 2, 3, +»-. Thus

lim sup £y - (£) [, > %lim sup [c;| ,

r—1 i1 —» 00
which proves (iii).

We now list some consequences of the theorem. Recall that two Banach spaces
are said to be isomovphic if there is a linear homeomorphism of one onto the other.

COROLLARY. (a) (LH)P(B) contains a closed subspace that is isomorphic to
0% and lies in H”(B)
and lies in .

(b) (LH)P(B) is not separable.
(c) The ball algebra A(B) is not dense in (LH)P(B).
(d) (LH)2(B) is not isomorphic to a Hilbert space.

Proof. (a) follows immediately from (i), and obviously implies (b). Since A(B)
is separable in the sup-norm topology, it is a fortiori separable in the norm top-
ology of (LH)P(B); thus (b) implies (c¢). Finally, (d) follows from (a) since every
closed subspace of a Hilbert space is a Hilbert space, but ¢ (not being reflexive)
is not isomorphic to any Hilbert space.

Here are some open questions.

In view of (¢), is H®(B) dense in (LH)P(B)? (This was asked by Stout.)
It 1 <p<q<w» is (LH)¥B) dense in (LH)P(B)?

If f is holomorphic in B and if there is a C < « such that

on

17 ;
S lf(rei? ¢)|Pde < C
7

for all € € S and for all r € (0, 1), does it follow that f € (LH)P(B)? Even the case
p = 2 is open. (This question is suggested by Theorem 2 of [1].)
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