UNIVERSALLY COMMUTATABLE OPERATORS ARE SCALARS

Paul R. Chernoff

1. INTRODUCTION

Let A and B be finite-dimensional linear operators that generate one-parame-
ter groups P; = et® and Q¢ = etB. Then the groups generated by A + B and
AB - BA can be expressed by means of the well-known Lie product formulas

(1) lim (Pt/th/n)n = exp t(A + B),
n — oo
(2) lim (P_ /75 Q. vi7n Pvirm an)“ = exp t(AB - BA).
n—oo

An infinite-dimensional version of (1) was proved by H. F. Trotter [9]. It states that
(1) is valid if Py and Q; are (Cg) contraction semigroups on a Banach space such
that the closure [A + B]~ of the sum of their generators itself generates a (Cp)
semigroup Rt. The right side of (1) is to be interpreted as Ry, and the limit is in
the strong operator topology. In [1], the present author proved a rather general
theorem that includes Trotter’s. J. A. Goldstein [5] and E. Nelson [8, Theorem 8.7]
have used this result to prove infinite-dimensional versions of the commutator
formula (2).

The limits in (1) and (2) may exist even when the hypotheses of [5], [8], and [9]
are not satisfied. By our general theory (see [2], [3]) the limits must be semigroups,
if they exist at all. If they are (Cpy) semigroups, we denote their generators by
A +1, B and [A, Bl1,. The subscript L refers to a generalized Lie operation. These
generalized operations can be quite pathological. A detailed study of generalized ad-
dition of self-adjoint operators is contained in [3]; a number of examples concerning
both addition and commutation can be found in [6]. In particular, we showed in [3]
that only bounded self-adjoint operators A "can be added--by the Lie process or by
any other reasonable process—to every self-adjoint operator B. In fact, if A is not
bounded, then one can construct a B such that the symmetric operator A + B, de-
fined on @ (A) N P(B), has no self-adjoint extensions.

Goldstein [6] has conjectured that an analogous situation holds for commutators.
Let o be an infinite-dimensional Hilbert space. Call a self-adjoint operator A
universally commutatable in the classical sense if for all self-adjoint B the opera-
tor AB - BA, defined on @(AB) N @(BA), is essentially skew-adjoint; call A univer-
sally commutatable in the Lie sense if [A, B];, exists for all self-adjoint B. The
only operators that are obviously universally commutatable (in either case) are the
scalar multiples of the identity. As we shall show, there are no other operators
universally commutatable in the classical sense or the Lie sense, at least if the
definition of the latter is strengthened in a technical way.
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To be precise, in Section 2 we shall establish the following result: if A is a
nonscalar self-adjoint operator on an infinite-dimensional space, then there exists a
self-adjoint B such that AB - BA is not closable, in other words, such that the
closure of AB - BA is not even an operator, much less a skew-adjoint operator.
This immediately takes care of the classical case. In Section 3, we give an improved
product formula for commutators; it enables us to apply the result of Section 2 to the
case of operators that are universally commutatable in the Lie sense (see Section 4).

2. A CHARACTERIZATION OF SCALARS

Let A be a self-adjoint operator on a Hilbert space &#. We shall say that A
has property S provided that for every self-adjoint operator B on <, the operator
AB - BA, defined on 9(AB) N @ (BA), is closable. Scalar multiples of the identity
have property S; we shall prove the converse.

2.1. THEOREM. Let A be a self-adjoint operator on an infinite-dimensional
Hilbert space. If A has property S, then A is a scalar multiple of the identity.

The proof will be accomplished through a sequence of lemmas.

2.2. LEMMA. If A has property S, then so has every divect summand of A.
Likewise, so has A - Xl jfor each scalar \.

Proof. By a direct summand A' we mean the restriction of A to one of its in-
variant subspaces . Given B' on &, we can extend it to B on 4 Dby defining
B=0on . Then AB - BA is a closable extension of A'B' - B'A', so that the
latter is closable. Thus A' has property S.

As for A - A, it has property S because [A - AI, B] = [A, B]. (Here equality
includes equality of domains.) MW

2.3. LEMMA. If A has property S, then A is bounded.

Proof. If A is not bounded, let e be a unit vector not in @ (A). Let P denote
orthogonal projection onto the span of e. Then C =[A, P] is defined on
{e}* N @(A), and on this domain Cx = -PAx = -(Ax, e)e. Because e ¢ @(A), there
is a sequence in @(A) with x, — 0 but (Ax_, e} — 1. Since @(A) is dense, we can
find z € P(A) with (z, e) =1. Let y,=x,- (x,, €)z. Then y, is orthogonal to e,
Yn € @(A): Yn— 0, and

-Cyn = (Ay,, e)e = (Ax,, e)e - (x,, e)(Az, e)e - e # 0.
Thus C is not closable; that is, A does not have property S. H

We now make a construction that will repeatedly be useful. Let & be a sepa-
rable Hilbert space, and let T be a fixed unbounded seli-adjoint operator on .
Pick a unit vector v (vg ¢ 2(T)). Since @(T) is dense in {VO}J‘ , we can extend
v to an orthonormal basis {VO, Vi, Vo, .-}, where v, € @(T) if n > 0. Define
K =|Tv | (h=1,2, ).

Suppose eg, e, €2, *** is an orthonormal sequence in another Hilbert space
. Define a self-adjoint operator B by setting B = 0 on the complement of the
span of the elements e,, and B = U-1T U on the span of the elements e, , where
Ue, =v,. Thus eg ¢ ¥(B), e, € @(B) if n> 0, Bx =0 if x is orthogonal to every
e,, and ||Be,|| =K, if n > 0. We shall call B the sfandard opevator associated
with the sequence {en}‘g .
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2.4. LEMMA. If A has property S, then A has no infinite-dimensional, non-
zevo, compact divect summand.

Proof. By Lemma 2.2, we can assume that A itself is compact. Choose eigen-
vectors ey, e;, €3, - for A with corresponding eigenvalues Ag, A}, A, --- such

o0
that Ao # 0 and En:l |An| Kn < . Here the constants K, are defined as in the
preceding construction.

Let B be the standard operator associated with the sequence {en}ff . We shall
show that [A, B] is not closable. First note that Aeg = Xy eg is not in @(B). On the
other hand, A({ey }*) is contained in @ (B). Indeed, a typical vector orthogonal to
€p is

°0
x= 2 £ e ty,

n=1

where y is orthogonal to each of the vectors e, . Then

0
Ax = 27 {nAnen T Ay,

n=1

and formally,

cO
BAx ~ 27 .2, Be, .

n=1

(Note that BAy = 0.) Now the formal series actually converges in norm, by the
choice of the scalars A, . Therefore Ax is in @(B), because B is a closed opera-
tor. Conclusion: Z(BA) ={eg}', and BA is a bounded operator, by the closed-
graph theorem.

Therefore [A, B] = AB - BA, with domain @ = @(B) N {ey}*. Because BA is
bounded, it suffices to show that AB is not closable on &. To see this, choose
Y, € 9, as in the proof of Lemma 2.3, so that y, — 0 but (By,, eg) —» 1. Let
u = aeg +x (with (x, ey) =0) be an arbitrary vector in . Then

(AByy, u) = (Byn, Au) = 2o @(Byn, eo) + (Byn, Ax)

Ao @(By,, eg) + (yo, BAX) = xpa +0 = (\geg, u).
That is, ABy, — Ageg in the weak topology. This shows that AB is not closable. ®

We can now see that if A has property S and has a basis of eigenvectors, then
A is a scalar. Indeed, if A has infinitely many distinct eigenvalues, they have an
accumulation point A. The operator A - A then has an infinite-dimensional, non-
zero, compact summand, contrary to Lemma 2.4. Hence A has only finitely many
eigenvalues. One of these, say A, has infinite multiplicity. If A # AL then A - A
has an infinite-dimensional, nonzero, compact summand, and we obtain the same
contradiction.

The remainder of the argument is devoted to showing that an operator with
property S does indeed have a basis of eigenvectors.
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2.5. LEMMA. Suppose A is a nonzevo, bounded, self-adjoint opevator with
purely continuous spectvum. Let {an}?)c’ be any sequence of positive numbers,
Then theve exist a veal number N and two ovthonovmal sequences {en}?)o and
{1 n}zo such that

(1) (e, £) = 0 for all m and n,
(2) (A-2Ne, =X, f, forn=0, 1,2, -+, where 0 < |1 | <a,.

Proof. The spectrum of A is an infinite closed subset of IR without isolated
points, hence it is uncountable. Let A be any point of the spectrum other than an
endpoint of one of its countably many complementary intervals. By replacing A by
A - ), we may assume that X = 0. Then, for each € > 0, both (0, €) and (-¢, 0)
contain points of the spectrum of A.

Hence we can choose infinitely many disjoint, measurable subsets of R, say
E;;, E; (n=0, 1, 2, ---), such that the corresponding spectral projections are non-
zero, and such that

+ -
E C (o, an), E C (~a_, 0).

n’
Define E, = E;. UE,, and let P, be the spectral projection of Ep,.

Since A is both positive and negative on the range of P,, we can choose a unit
vector e, in this range such that (Ae,, e,) = 0. Define f, = Aen/” Aen” . Then

{fn}‘5° is an orthonormal sequence, (e,,, f,) = 0 for each m, and Ae, = A, f,,
where A, = ||Ae, ]| < |P,AP,| < @n, by construction. ™

2.6. LEMMA.. If A has property S, then A has a basis of eigenvectors.

Proof. Write A as A' @ A", where A' has a basis of eigenvectors and A" has
purely continuous spectrum. We assert that A" = 0. Otherwise, by passing to a
summand, we may assume that A = A". We shall deduce a contradiction.

If A=A" let {e,}5 and {f,}3 be orthonormal sequences, as in the proof of
Lemma 2.5. We may assume that the number A is 0, so that Ae, = A, f,, with

e}
0 < |x,| < @,. Here we choose @, so that 2in=1 |An| Kn < ®. Now let B be the
standard operator associated with the sequence {e,}3 . We shall show that [A, B]
is not closable.

Let .« denote the closed span of the elements e, . Note that if x € .#, then
Ax € i+, so that BAx = 0. Hence, on .« N @ (B) we have the relation
[A, B]x = ABx. Moreover, on -# we can write A = VC, where Ce, =Apep, and V
is any isometry such that Ve, = f, for all n. By arguing as in the final paragraph
of the proof of Lemma 2.4, we see that CB is not closable on the domain .« N @(B).
But, on this domain, AB = VCB. Thus AB is not closable, and A fails to have
property S. H

It follows immediately from Theorem 2.1 that every self-adjoint operator on
an infinite-dimensional Hilbert space that is universally commutatable in the clas-
sical sense must be a scalar, since such operators obviously have property S. Ac-
tually, a much shorter proof of this result could be given. If A is one-to-one with
dense range, then by a result of von Neumann (see [4, Theorem 3.6]), there exists a
B with @(B) N #(A) = (0), so that [A, B] is defined only at 0 and is therefore very
far indeed from being essentially skew-adjoint. - Using this result, together with the
analogue of Lemma 2.2, one can easily show that a classically universally
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commutatable A has only finitely many points in its spectrum. By an argument like

that in the proof of Lemma 2.3 (but reversing the roles of A and P), one can deduce

that A is a scalar. We shall need our more involved argument with its more power-
ful conclusion, in order to deal with the case of universally commutatable operators

in the Lie sense.

3. A PRODUCT FORMULA FOR COMMUTATORS

3.1. THEOREM. Let et® and etB be (Cy) one-parameter groups of isometries
on a Banach space. Assume that A is bounded, and that the closure C of AB - BA
is the genevator of a (Cy) semigroup. Then for each t > 0 and each vector x, we
have the velation

(1) lim (e—Vt/nAe—\/t/nBe\/t/nAe\/t/nB)nX: tC .

n—oxo

The convergence is uniform on compact t-intervvals.

Proof. Define F(t) = e~ Ve e VEB e*/-t-A eﬁB. We shall apply our general
product theorem [2]. Note that each F(t) is a contraction. We shall show that the
strong derivative F'(0) is an extension of AB - BA.

We can write

tA
(2) F(t?) = e t8e "t

where A, = e "B Ae® is a bounded operator; in fact, ||A|| = |A]. Expanding (2) in

power series, we see that
2y - 2,2 2 3
(3) F(t°) —I+t(At—A)+§(A - 2AA( + Af) +O(t”) .
Note that A; converges to A in the strong operator topology as t — 0. There-

fore the coefficient of t2 in (3) tends strongly to O.
Now suppose that u € @(B) N 2(BA). Then

It

e-tB(AetB - ¢tB A)u

(A; - A)u

e 'B(Au + tABu - Au - tBAu + o(t)) = tetB[A, B]lu+o(t).
Substituting this in (3), we obtain the relation

(4) (F(t?) - Du = t?etB[A, Blu+o(t?).

It follows that lim —IE[F(tZ) -IJu = [A, B]lu. =
t—0 t

Theorem 3.1 is in some respects an improvement of Nelson’s result [8, Theo-
rem 8.7], which (for operators on Hilbert spaces) requires that [A, B} be essen-
tially skew-adjoint on @(AB) N @ (BA) N @(A2) N F(B2). When A is bounded, this
reduces to @2 (B2) N (BA), which is smaller than our domain 2 (B) N @(BA). It is
easy to find examples in which our condition is satisfied but Nelson’s fails to hold.
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The following technical result will be needed in Section 4.

3.2. PROPOSITION. As in Theovem 3.1, let et® and etB be (Cy) one-parvame-
ter groups of isomelries on a Banach space, with A bounded. Suppose that for each
vector X the limit

Rex = lim (¢ Vt/nAgVt/nB Vt/nA Vt/nByn,

n -— oo

exists, uniformly for t in compact intevvals. Then Ry =etC is a (Cy) one-pavame-
ter semigroup, and C is an extension of [A, B].

Proof. That R, is a (Cg) semigroup follows from general theory [3, Section 2].
It can also be seen directly, under the assumption of uniform convergence. This as-
sumption also implies, by [3, Theorem 3.7], that C is an extension of the strong
derivative F'(0). Here F(t) is defined as in the proof of Theorem 3.1, and the argu-
ment above shows that F'(0) is itself an extension of [A, B]. ®

4. UNIVERSALLY COMMUTATABLE OPERATORS

We have already seen that operators universally commutatable in the classical
sense must be scalars. Our methods are not quite sufficient to obtain this result for
operators universally commutatable in the Lie sense as previously defined. How-
ever, we can get a slightly weaker result if we strengthen the definition by adding a
uniformity condition.

Definition. A self-adjoint operator A is universally commutatable in the stvong
Lie sense provided that for each self-adjoint B the products

(1) (e-ix/UHAe-i\/t7nBei\/t/nAei\/t/nB)n

converge in the strong operator topology to a semigroup etC , uniformly on compact
t-intervals.

4.1. THEOREM. If A is universally commutatable in the strong Lie sense on
an infinite-dimensional space, then A is a scalayr multiple of the identity.

Proof. First, we claim that A is bounded. If not, let B be a projection of rank
1, as in Lemma 2.3, such that [A, B] is not closable. Proposition 3.2 implies that if
(1) converges as in the definition, then the generator C extends [A, B]. Since C is
closed, this is a contradiction.

Knowing that A is bounded, we see immediately that it has property S. Indeed,
if B is any self-adjoint operator, the same reasoning shows that [A, B] has a closed
extension C.

Hence A is a scalar, by Theorem 2.1. &

The imposition of uniformity in Theorem 4.1, while important from a technical
point of view, seems relatively innocuous. Its only purpose is to guarantee that
[A, B];, be an extension of AB - BA. Surely, any reasonable definition ought to
meet this requirement. We note that uniformity follows automatically from mere
convergence [3, Theorem 3.1] if AB - BA happens to be densely defined.
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