A BANACH SPACE OF LOCALLY UNIVALENT FUNCTIONS
J. A. Cima and J. A. Pfaltzgraff

1. INTRODUCTION
In this paper, we study a certain real Banach space £ of functions
(1.1) f(z) = z+azzz+---

that are holomorphic and locally univalent (f'(z) # 0) in the open unit disk

D= {z: |z| <1}. We let S denote the set of functions f(z) that are holomorphic
and univalent in D with an expansion of the form (1.1). The algebraic operations in
& (defined in Section 2 below) are not the usual pointwise operations, and the alge-
braic structure of & is of particular interest in relation to S, because local uni-
valence in D is preserved by the addition in #. We also study a certain closed sub-
space of &, denoted by £, . Our spaces £ and ¥, are natural generalizations of a
space introduced by H. Hornich [11].

The main results in this paper pertain to the metric properties of the sets SN &
and SN Z;. The set SN £ is not compact, and it is of first category in £Z. We
also show that there are no isolated univalent functions in &; . These results con-
trast sharply with theorems of H. Hornich [11] and G. Piranian [16]. Hornich [10]
and Piranian [16] have studied topological properties of the set of univalent functions
in the space H(¢) of functions f(z) holomorphic in D, equipped with pointwise opera-
tions and a metric p(f, g) = #(f - g) induced by the functional

o) = sup | £ 0)/n1] /",

n

We also show that %) is separable and has infinite dimension. We show that
J, the set of univalent convex functions of the form (1.1), is a closed convex subset
of #;. A complete characterization of the extreme points of & is given. We de-
termine the dual space of continuous linear functionals on £;. We list examples and
results that indicate the relationship of & (as a set of functions) to the Hardy spaces
HP and to the set of functions holomorphic on D and continuous on the closure of D.

2. THE LINEAR SPACES £ AND ¥,

Let A denote the class of functions that are holomorphic in the unit disk, have
nonvanishing derivative, and satisfy the normalization conditions f(0) = 0 and
£'(0) = 1. When we refer to a class of functions, we shall mean the intersection of
that class with A. For each f in A, define the increasing function
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L 2 _
g(r; ) = 5 ‘S‘ |log | £'(relt)| | at.
T 0

We define £ to be the set of all f in A for which sup {#(r; f): 0 < r < 1} is finite.
We consider £ as a real normed linear space with the operations

f+ele) = | r@e@a @ ge o),
0

[af](z) = Sz(f'(é’))a A& (fe £, o real)
0

(square brackets will indicate the algebraic operations in &) and with the norm

(2.1) ”f” = sup J(r;f) (e£).
rl

There are many equivalent conditions that describe £, and we list three of
these [17, pp. 37-40];
(2.2a) |log |f'(z)]| has a harmonic majorant,

(2.2b) log If '(z)l can be expressed as the difference of two positive harmonic
functions,

(2.2c) there exists a function m(t) of bounded variation on 0 <t < 27 such that

2
(2.3) log |f'(z)l = S " % {(eit+z)/(elt - z)} dm(t) (z € D),
0
2T 2m
where dm(t) = 0 and S |am(t)] = |||
0 0

We shall use the notation

C(z, t) = (eit +2z)/(elt - z)
and
P(z, t) = % {C(z, t)}

for the Cauchy and Poisson kernels. We shall refer to dm of (2.3) as the measure
for 1.

K o = {f € A: sup |arg f'(z)| <, z € D}, then & is a linear subspace of £.
With the norm

”f"gg = sup { |arg f'(z,) - arg 1'(z,)|: z;, z, € D},

S is a Banach space [11]. This space was introduced by Hornich in his paper [11].
A function f(z) € A belongs to < if and only if S log f'(z) is in the space h of
bounded harmonic functions in D. By the theorem of M. Riesz on conjugate functions
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[18, p. 346], we see if f € o# and F(z) = log £'(z), then % F(z) belongs to each class
hy, for 0 <p <. Hence F is in each Hardy space HP (0 < p <), Itis natural to
consider the extensions of ¢ that consist of the sets

2% = {feA:log|t'(z)| e hy} (a>0)

whose structure as linear spaces is the same as that of &#. We have restricted our
attention to the space £ = #! , because this is the largest of the extensions £ that
is clearly related to the Hardy spaces HP. For if f € &, then log ' € HP

(0 < p < 1) [13], but there exist functions f € 9 (0 < q < 1) such that log ' ¢ HP
for all p > 0 [8].

We have the following characterization of functions in &#. If f € &# and
7K/2 > sup Iarg f'(z)l (z € D),

then the function Q(z) = exp {K-!log f'(z)} is holomorphic, has positive real part in
D, and satisfies the condition Q(0) = 1. The function

w(z) = (Q(z) - 1)/(Q(z) +1)

is a bounded holomorphic function satisfying the hypotheses of Schwarz’s lemma.
Thus f belongs to & if and only if there exist a positive number K and a holomor-
phic function w(z) (|w(z)| <1, w(0) =0) such that

(2.4) f(z) = &Z(%)Kdt.

We shall define a certain subspace of & that contains 4. First, we recall that
for each f € &, log f' is in HP (p < 1), the boundary function log f'(eit) exists a.e.
and belongs to LP (p < 1) [21, p. 272], and |log f'(et)| € L1[0, 27] (by (2.2¢) and
[17, p. 34]). In fact, the measure dm of (2.3) can be written in the form

dm = log |f'(e®®)]| $& + ds,

where ds is a singular (real) measure. Since log |f'(elt)| is the radial limit a.e. of
log |f '(relt)l , an application of Fatou’s lemma yields the inequality

1

(2.5) o

27 )
SO |log |£'(eft) || at < [|f]| (e 2).

We obtain the Jordan decomposition of dm by taking the Jordan decomposition
ds = dst - ds- and writing

dm = (logJr [£1(eit)] %+ds+) - (log* |£'(eit)|-! + ds-) .

Thus equality holds in (2.5) if and only if dm is absolutely continuous with respect to
Lebesgue measure. We define £ to be the set of functions f in & for which
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1 2" i
ll = 5- 50 |10g | £'(eit)| | at .

By means of the representation (2.3) and an application of Fubini’s theorem, one can
show that £ is a subspace of Z.

3. THE STRUCTURE OF £ AND ¥,

In this section, we discuss the topological properties of & and &) . First we
note that the set of functions

V4

q,(z) = S exp ¢*d¢ m=1,2, )
0

is linearly independent in &), since the equation
k % k
x= 2 [a,q,](x) = S expl 20 ant® ¢ dt
n=1 0 n=1

does not hold for all x € (0, 1), except if @] = a3 = *** = @) = 0. Therefore £, is
infinite-dimensional.

THEOREM 3.1. £, is a Banach space.

Proof. We have already observed that £, is a linear subspace of &£. If {fn}
is a Cauchy sequence in £, then {log|fp(eit)| } is a Cauchy sequence in

L1[0, 27]. This sequence converges in the L!-norm to an L!-function that we de-
note by log |f'(eit)|. We define £(z) by the equation

2 .
log £'(z) = 21—1r S C(z, t)log |£'(elt)] at.
0

Then the sequence {fn} converges to f in the £-norm, and by Fubini’s theorem, f
is in -9'91 .
THEOREM 3.2. £, is sepavable.

Proof. If f belongs to &, then the Cesaro means o ,(t) of the Fourier series
for log |f'(eit)| converge in L![0, 27] to log |f'(eit)| [9, p. 16]. If we define the
functions

27 dt
Z(z) = C(z, t)on(t)z— (z € D),
0 T

then the sequence of functions

zZ

f(z) = S exp{= (€)}dt (=12, )

0
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converges in the QI -norm to f. The f, belong to &, since the Z, are poly-
nomials (n =1, 2, -*-). Each o, can be uniformly apprommated on [0 27] by a
trigonometric polynomial with complex rational coefficients. This completes the
proof of the theorem.

To see that the larger space & is not separable, let £, and i, be defined by
log fi(z) = Cz, t;)  (1=1,2),

where t; is real (j =1, 2). If t; #t; (mod 2m), then

27
i - 220l = § 7 latmi - ma 0] =

and the conclusion follows.
THEOREM 3.3. & is complete.
Proof. Let {fk} be a Cauchy sequence in #. Then the representation

27
log f}(z) = 5= | Clz, )dmyt) (2 € D)
0

shows that {log f;(z)} is a normal family in D. There is a subsequence of
{log fj(z)} that converges locally uniformly in D to a holomorphic function G(z),
with G(0) = 1. If we define the function

Z

g(z) = S exp G({)d¢,
4]

then this subsequence converges normally to log g'(z). Furthermore, g(z) is an
element of &, since the sequence {"fk” } is bounded. The inequality

2m
511?5 |1og | f1(reit)| - log |fi(relt)|| dt < e,
0

which holds for all r < 1 and for k, n > N, shows that the full sequence {f,} con-
verges to g in the £ -topology. This completes the proof of Theorem 3.3.

In his study of the space H(¢), Hornich demonstrated that the space has an un-
countable number of components and is not locally connected at any point [10]. The
present authors [2, Theorem 5.1] have shown that the space H(¢) can not be normed.
Of course, the linear spaces & and &, have no such pathological properties.

4. SOME FUNCTION CLASSES RELATED TO ¥

We let « denote the set of functions f € A that belong to the disk algebra of
functions holomorphic on D and continuous on D. We denote by £ * the subset of
functions in « that are absolutely continuous on |z| = 1. In this section, we
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indicate how the classes of functions £, &), and & overlap with «, «* the Hardy
spaces HP | and certain classes of univalent functions. Some of our observations are
known results, but we include them for the sake of completeness.

THEOREM 4.1. #* C &.

Proof. If f(z) belongs to «*, then f'(z) is in H' [6, p. 360]. The H!-function
f'(z) has a canonical factorization

£'(z) = S(z) F(z),
where S(z) is singular and F(z) is an outer function. The inequalities

2

27 2m T
1 ae _ 1 dg
or j;) |10g | S| | 55 = 30 So X P(z, t)dpu(t) 5 S 1
and
2m 2T | p2m
1 deé 1 i do
P j; [og [F|]| 5~ = 5= SO 50 P(z, t)log |'(e™)] at| -

< fog ] ||} <=

show that f is in #. The proof of Theorem 4.1 is complete.

If f € S, then the functions f.(z) = f(rz)/r (0 <r < 1) are univalent and holo-
morphic in the closed disk D, and therefore they belong to the subspace &#. Thus
o contains a set of functions that is dense in S in the topology of uniform converg-
ence on compacta. However, an example constructed by Lohwater, Piranian, and
Rudin [14] shows that neither S nor  is a subset of the space Z. Their example
is a function f(z) € A that is both continuous and univalent in D, but for which the
radial limits lim, — f'(reie) exist almost nowhere.

In view of the example of Lohwater, Piranian, and Rudin, it is natural to inquire
whether f(z) € S implies that log |f'(z)f € hp for some p < 1. A negative answer is
provided by the following example due to P. L Duren (private communication). Con-
sider the functions f.(z) € A (t € [0, 1]) defined by the equation

(4.1) £(z) = exp {ag,(z)},

o0
where gi(z) = En:l ¢n(t)a,z™, ¢ (t) is the nth Rademacher function, a, =1 if
n=2K (k= 1, 2, -*-) and a, = 0 otherwise, and « is a complex number. I is ele-
mentary to verify that

1£2(2)/52)| < |e| T 28|22 < 8la|/a - |2|?),
k=1

and hence, by a result of Duren, Shapiro, and Shields ([5, Theorem 2]), f.(z) is uni-
valent if |a| < (¥5 - 2)/4. For almost every t € [0, 1], the function g,(z) has a
radial limit almost nowhere ([3, Lemma] ), and consequently, for almost every

t € [0, 1], either the real or imaginary part of gi(z) cannot belong to hy for any

p > 0. Thus for |a| < (V5 - 2)/4 and appropriate choices of arg o, almost every
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choice of t gives a function fi(z) in (4.1) that belongs to S with the property that
log |£i(z)| ¢ h,, for all p > 0.

Some of the familiar subclasses of S are contained in £.

THEOREM 4.2. The close-to-convex functions constitute a subset of J, and
the spival-like functions belong to &£.

Proof. A function f(z) =2z +a; 72 4 -ee holomorphic in D is said to be close-to-
convex if there exist a convex function h(z) € A and a holomorphic function
P(z) =1+ p; z + -+ with positive real part in D such that f'(z) = e!®h'(z) P(z) for
some real a [12]. It is well known that convex functions satisfy the inequality

|arg h'(z)| < 2arcsin|z| (z € D)

[1]. Hence Iarg f'(z)l < a +31/2, and f belongs to &. In particular, ¢ contains
the class of starlike functions and the class of convex functions.
A function £(z) = z +a,z% + --- holomorphic in D is said to be spiral-like if

there exist a holomorphic function P(z) (P(0) = 1) with positive real part and a real
number (|B| < m/2) such that

zf'(z)/f(z) = eiB [(cos B) P(z) + isin B] (z € D)

[19]. By the Herglotz theorem [9, p. 67], there exists a nondecreasing function m(t)
with variation 1 on [0, 27] such that

2m
P(z) = SO C(z, t)dm{t) (z € D).

A straightforward calculation yields the formula

27 .
f(z) = zexp | -2y S log(l - ze *)dm(t) { ,
0

where y = e-iPcos . Finally, we see that

27
log |£'(z)| = -2cos®B S log |1 - ze™it| dm(t)
0

(4.2)
27 ,
- sin 28 arg (1 - ze *)dm(t) + log Iisin B + (cos B) P(z)l .
0

The function isin B + (cos B) P(z) has positive real part in D, and this implies
that arg (i sin 8 + (cos B) P(z)) belongs to h,, and log Ii sin B + (cos B) P(z)| belongs
to hy for all 0 <p <. The second term in (4.2) is bounded. For the first term in
(4.2), we use the elementary estimate

(4.3) SZW

2w _
S log |1 - ze™it| dm(t)
0

0

a6 < 4mlog2 (z =relf).
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It implies that sup,. <] J(r; f) <~ and f belongs to &. This completes the proof of
Theorem 4.2.

One sees easily that sup { |arg f'(z)[: Z € D} may not be finite for spiral-like
f(z); but with an argument similar to that above, we can show that arg f'(z) € h; .

We observe that o is not a subset of H® (consider -log(l - z)).
THEOREM 4.3. For each f € o, there exists a p > 0 such that £ € HP.
Proof. Let f belong to . Then, by (2.4), £'(z) is subordinate to the function

o - (422)

for some K > 0. It is easy to verify that G belongs to HP for all p (0 < p < 1/K).
By subordination, f'(z) € HP (0 < p < 1/K). Our result follows from a theorem of
Hardy and Littlewood [7, p. 415], which implies that if f' € HP for some p < 1, then
f € HY for q = p/(1 - p) (see also [4]).

Finally, we note that & contains functions that belong to none of the HP-spaces.
Indeed, the function

K

tz) = | exp{(+8)/1- )}t

0

belongs to &, since log |f '(z)] is merely the Poisson kernel; but its growth along
the segment z = x (0 <x < 1) shows that it cannot belong to any HP-class, because
if « > 0 and x> 0, then

lfx)| (1 - x)* = (1 - x)® Sxexp {@+t)/1-t)}at

0

> (-0 (" exp{1/01- O} at > x(1 - 0% exp {1/1 - x)} .
)

5. METRIC PROPERTIES OF THE SET OF UNIVALENT FUNCTIONS IN &£

We let S*=8N £ and S"{ =S N £, denote the sets of normalized univalent
functions in & and in &, respectively.

THEOREM 5.1. S* is a closed subset of Z.

Proof. Let {f,} Dbe a sequence in S* that converges in the topology of & to a
function f(z). From the proof of Theorem 3.3, we see that some subsequence of
{f(z)} converges uniformly on compacta to f(z). Thus, by Hurwitz’s theorem, f(z)
is univalent.

Let S% (n > 1) denote the class of n-valent functions f(z) in £. That is, let
S’r"l consist of all functions in £ that assume some value n times in D but assume
no value more than n times.

THEOREM 5.2. S} (n> 1) is a closed subset of Z.
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The proof of Theorem 5.2 is the same as the proof of Theorem 5.1, and we omit
it. :
Remark. The function 271 {1 - exp (2z/(z - 1))} belongs to &, but it is not in
SI"; for any n.

In addition to proving that the set of univalent functions in & is a closed subset
of & [11], Hornich notes that the ball

{fe o |t <n}

contains only univalent functions. The latter fact is equivalent to the result that if
f € # has a representation (2.4) with K < 1, then %£'(z) > 0 in D, and hence f(z)
is univalent [20].

THEOREM 5.3. S* is nowhere dense in .

Proof. Let f € S* and let F(z) = log f'(z); then a necessary condition for f(z)
to be univalent is

(5.1) |F'(z)| = |£"(2)/8'(z)| < 6/(1 - |z]|?)

([5, Theorem 2]). We shall use (5.1) to show that every e-ball centered at f contains
nonunivalent functions.

Suppose ¢ > 0, and define the functions g(z) and G(z) by the condition

- logg'(z) = £22 _Eltz gl-z
Glz)=logg'(z) = == 5 = 37, " 3174 "

The function g(z) belongs to &, since % G(z) is expressible as the difference of two
positive harmonic functions: % G(z) = U;(z) - Uz(z). Furthermore,
lgll = U1(0) +U,(0) =€ and

1 2
(5.2) (1 - |z])|e'@) = lf?lzlJlrlszl :

If we let H(z) = F(z) + G(z) and log h'(z) = H(z), then h € & and ||[h - £]]| = ||g] =¢.
The function h(z) is not univalent, since the relations H'(z) = F'(z) + G'(z), (5.1), and
(5.2) imply that H'(z) does not satisfy the necessary order condition (5.1). This
completes the proof of the theorem.

THEOREM 5.4. ST has no isolated points.

Proof. Let f(z) belong to S}, and for each real number t, let fi(z) = e itf(zelt).
Each function fy(z) belongs to S}, and

2m
sup S

r<1 0

e

0

It - £l

]

log If'(reiG)l - log lfl(rei(9+t))|

do
27

log |fl(ei.9)| _ ].Og lft(ei(6+t))|

ae
27’
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since |log |£'(z)| - log |fi(z)|| is subharmonic in D. The function log |f'(e}?)] be-
longs to L1[0, 27], and hence lim;—, ¢ ||[f - fi]|| = 0. Thus every point f € ST is an
accumulation point of S¥.

G. Piranian [16] has constructed an isolated univalent function in the space H(¢).
It would be interesting to determine whether there are any isolated schlicht functions
in the whole space £. It would also be of interest to determine when the metric
topology on a linear space of holomorphic functions admits isolated univalent func-
tions. This question was first raised by G. Piranian (oral communication to one of
the authors).

THEOREM 5.5. S* is not compact.

Proof. Let h(z) be any function in S that does not belong to &, for example, a
function defined by (4.1). Then the set

{hp: hy(z) = h(rnz)/ry, rn = n/@+1), n=1,2, -}

is a sequence in S’f C S* that can have no convergent subsequence (in the £ -metric),
since convergence in & implies local uniform convergence in D.

6. CONVEX UNIVALENT FUNCTIONS

Let o denote the set of convex functions in S. We have already seen that ¢ is
a subset of o#. In this section, we show that & is a convex set in the linear space
£, and we determine the extreme points of o#. We also show that £, is essentially
determined by < (Theorem 6.3).

It is well known that a function f(z) € A belongs to & if and only if
(6.1) 9w {1+z"(z)/f'(z)} >0 (z € D).

Another familiar characterization of - follows from (6.1) and the Herglotz integral
formula. Namely, a function £(z) € A belongs to & if and only if there is a nonde-
creasing function ‘'m(t) on [0, 27] with variation 1 such that

27 _
(6.2) log £'(z) = -2 S log (1 - ze~it)dm(t) (z € D).
0

If we relax the restriction that the measure in (6.2) be positive by permitting
m(t) to be any function of bounded variation, then (6.2) is the structural formula that
characterizes V, the class of functions with bounded boundary rotation [15]. In most
applications, one studies the subclasses Vy (@ > 1) of functions f(z) in V with as-
sociated measures dm (in (6.2)) of total variation at most «. It is interesting to
note that V is contained in the linear span of & in the subspace . For if m(t) is
a function of bounded variation, then m(t) can be written in the form
m(t) = oy m(t) - a2 my(t), where the my(t) (k =1, 2) are nondecreasing with total
variation 1 on [0, 27] and ay >0 (k =1, 2). If we define fi(z) (k = 1, 2) to be the
convex functions corresponding to my(t) (k =1, 2) in (6.2), then f) € o (k =1, 2),
and f = [[a; ;] - [as£5]].

We also mention that (4.3) and (6.2) show that < is contained in the ball of
radius log 16. Similar results hold for each of the classes V.
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THEOREM 6.1. & is a closed convex subset of A .

Proof. To prove that o4 is closed, we use the characterization (6.1) and the fact
that sequential convergence in the & - metrlc implies local uniform convergence in
D. The convexity of o follows easily from (6.1) (or (6.2)) and the definitions of the
algebraic operations in &. We leave the details to the reader.

It is well known that the coefficient problem, the distortion theorems, and simi-
lar classical extremal problems for convex functions are solved by functions (6.2)
for which m(t) is an appropriate step function. Our next theorem shows that the
step functions m(t) also play a role as extremals in & as a subset of the linear
space £.

THEOREM 6.2. A convex function £(z) is an extveme point of the convex set K
in 2 if and only if the support of the associated measure dm in (6.2) consists of
one point,

Proof. Let m(t)=0 if 0 <t <ty, and let m(t) =1 if t; <t < 2x. If the corre-
sponding function f(z) in (6.2) is not an extreme point of &, then there exist func-
tions f; and f, in & such that f=[(1/2)[f; +f,]]. Thus, if dm; (k = 1, 2) is the
measure associated with fi. (k =1, 2), then

. 27
-2log (1 - ze—lto) = - S log (1 - ze it)d(m; + m,).
0

From the power series expansions, we obtain the relations

m1+m2)

2m
cos ntg = S cosntd( 2

0

n=0, +1, ---)
and

) ~ 2m m; +m; _
sin nty = sinnt d\ ——— =0, 1, ---) .
0

Therefore 27! d(m; + m,) is the point mass at t =ty . It follows that f,=1,, since
both dm; and dm; must be the one-point mass at t =t;.

To prove the converse, we assume that f(z) in (6.2) is an extreme point of 4.
If dm is not a single point mass, then there are at least two points in the support of
dm, say t; (1=1,2; 0<t; <tz < 27). Let tg (t; <tg <t2) be a point of continuity
for the monotone funct1on m(t). We may assume that m(t) = m(t-) throughout the
interval [0, 27] and that m(0) = 0. We let o = m(t o), and we define the functions

“Imt) (0<t<to),
ml(t) =
1 (to <t < 2m)

and

m,(t) =
1-a)lm@) (o <t<L2m).
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Since dm has support at t; and tz, we see that 0 <o <1. If f5(z) (j =1, 2) is the
convex function corresponding to -mj(t) (j =1, 2) in (6.2), then

f = [[ef]+[(1- a)f,]]
is a convex combination of the fj (j =1, 2). This contradiction shows that dm can-
not have support at more than one point.

THEOREM 6.3. The set 1[af]: f € #, o real} is dense in £ .

Proof. Let g(z) belong to £, and let £ > 0. Then, by Theorem 3.2, there
exists a polynomial Z(z) such that ||[g - ¢]| <&, where o denotes the function

Z
oz) = | exn(Z)at.
0
We let M = ma,xl ” | <1 IZ '(z)| , and we define the function

) = Mol = e Bt
0

Then | [g - [M£]]]| = ||[g - o]|< e, and £ belongs to & since
®{1+z"(z)/t'(z)} = *{1+z="(@z)/M} > 0.

This completes the proof of the theorem.

COROLLARY 6.1. Every continuous lineay functional on £, is detevmined by
its values on A .

zZ
Proof. If £(¢) is a polynomial and if £(z) = S exp (Z(¢)) d¢, then [af] € &« for
0

all sufficiently small a > 0. By Theorems 3.2 and 6.3, the equation aT(f) = T([af])
determines T on a dense subset of £, .

7. THE DUAL OF £

Corollary 6.1 gives some information about the space of continuous linear func-
tionals on &;. We shall give a more complete description of the dual of £, in
Theorem 7.1.

Let M be the subspace of L! [O, 27} corresponding to the measures of functions
fin £;. Then M is the set of L!-functions g that satisfy the condition

20 .
S g(elt)dt = 0. Clearly, each g in M determines an f in Z;.
0

THEOREM 7.1. The dual of £ can be identified with L [0, 2r]/ ML, where

2r )
Mt = {h e L: S het)gle't)dt = 0, g € M}.
0
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Proof. The dual of L! is L®. Let T be a continuous linear functional on M.

By the Hahn-Banach theorem, there exists a linear functional T}, on Ll thatisa
norm-preserving extension of T. Furthermore, if g € M, then

2 . .
7@ = 7 heeEn 5 = Ty,

where h belongs to L®. Therefore M* = L/M~* , where M* denotes the dual of M.
Since the correspondence between £; and M is an isometry, each continuous linear
functional 7 on &, is defined by means of a function h € L, and its action on £,
is given by the equation

1 2T . .
7() = 5 So h(e't)log |f'(e1t)| d (e 2;).
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