QUANTITATIVE STABILITY OF DISCRETE SYSTEMS
James A. Heinen

1. INTRODUCTION

The standard stability definitions for both continuous-time ([2], [4]) and discrete-
time ([4], [8]) dynamical systems are qualitative in nature. Recently, several forms
of stability of a more quantitative nature have been developed for continuous-time
systems. These include finite time stability ([3], [5], [9], [15] to [17]), practical
stability ([10], [11]), and set stability ([7], [12], [13]). In addition, for the discrete-
time case, A. N. Michel and S. H. Wu [14j have introduced the concept of finite time
stability and J. A. Heinen and Wu [6] the concept of set stability.

In this paper, we consider a very general form of quantitative stability (set
stability) for discrete systems. In nonprecise terms, a discrete system is set stable
if all solutions starting in a specific set remain for a specified time thereafter in a
second specific (possibly time-varying) set. This form of stability thus has obvious
connections with the estimation of transient response.

As is usually the case in stability theory, we shall approach the problem of set
stability of discrete systems within the framework of the “Liapunov technique.”
Previously, R. E. Kalman and J. E. Bertram [8, Section 8], R. K. Cavin, C. L.
Phillips, and D. L. Chenoweth [1], Michel and Wu [14], and Heinen and Wu [6] have
applied this technique to obtain sufficient conditions for certain special cases of
quantitative stability of discrete systems. In this paper, we develop necessary and
sufficient conditions for quantitative stability in terms of the existence of suitable
“discrete Liapunov functions.” We also obtain necessary and sufficient conditions
for instability of discrete systems.

2. SET STABILITY DEFINITIONS

We shall use the term discrete system to describe a first-order, n-dimensional
vector difference equation

(D) ox = i(x, j),

where the operator 6, as in W. Hahn [4, p. 146], satisfies the condition

0x(j) = x(j + 1) and where the integer j represents the independent (time) variable.
In this equation, x belongs to R™ (n-dimensional Euclidean space) and f is a map
f: R® X J — R™, where J = [j;, js] (- <j; <js<+=) and where (as in the remain-
der of the paper) the following interval notation for sets of integers is employed:

[jO’j1]= {jo,j0+1, '"’jl} (‘°°<]'05j1 < +c0) and

[jo,oo]:: {jO,j0+1’ ."} (-°°<30<'!'°°)-
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A function x: J — R" is called a solution of the discrete system (D) on J if, for
each j € [j;, i¢- 1], x(j) satisfies the condition

x(G +1) = 1(x(), §).

The definitions of stability that follow are concerned with set-valued functions of
j. In these definitions, S is of the form S: J — P(R™), where P(R™) is the power set
of R™ (that is, the collectlon of all subsets of R"). Corresponding to each function S
is its complement Sfunction S: J — P(R™) defined, for all j € J, by the relation

SG)=~[s()] = {x € R™ x ¢ S(j)}.

Defmztzon 1. A discrete system (D) is set stable with respect to S: J — P(R™),
So € P(R"), and J (abbreviated: SS(S, So, J)) if, whenever x(j) is a solution of (D)
on J, the relation x(j;) € S¢ implies x(j) € S(j), for all j € J.

Definition 2. A discrete system (D) is uniformly set stable with respect to
S: J — P(R™), Sg: J — P(R"), and J (abbreviated: USS(S, S, J)) if, whenever
jo € J and x(j) is a solution of (D) on [jg, j¢], the relation x(jg) € SO(]O) implies
x(j) € 8(j), for all j € [jg, j¢l. Equivalently, (D)is USS(S, Sy, J) if it is
SS(S, Solio), [io, igl) for each jg € J.

Remarks. (1) In the special case where
sG) = {x [x[| <B}, 8o ={x x| <e} (0<a<p),

and J is finite, the property SS(S, Sg, J) is equivalent to the finite time stability
with respect to (@, 8, j;, if- j;, | - |) of Michel and Wu [14].
(2) For each initial set Sp, the discrete system (D) is SS(S, Sg, J) if and only if
S is such that x(j; Sg, j;) € S(j) for all j € J, where
x(iy ;5 Sg, ig) = {x(i;): x(j) is a solution of (D) on [jg, jf] with x(jg) € Sp}
Gy <i; <Y

Thus, for a prescribed S;, the best quantitative stability result attainable is that
(D) is SS(x(-; Sg, i1), So, J), and this is, of course, always true. Similarly, for a
prescribed Sg(j), (D)is USS(S, Sg, J) if and only if the inclusion

J
U x(3; Solio), jo) < SG)

jo=ii
holds for all j € J.
(3) ¥ (D) is SS(Sy, Sok, J) for all k in some arbitrary index set K, then (D)

is also SS(UkeK Sic UkEKSka J) and SS(nkeKSk, ﬂkeK Sok, J), where
{ U Sk](j) = U s and [ N Sk}(j) = N [s.)l.
ke K ke K ke K ke K

A similar statement can be made regarding uniform set stability.
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3. STABILITY THEOREMS

The following theorems provide necessary and sufficient conditions for set
stability in terms of the existence of discrete Liapunov functions, that is, functions
of the form V: R®xJ — R!. Corresponding to each discrete Liapunov function V is
its total difference evaluated along solutions of the discrete system (D) given by the
equation

AV(D)(X, i) = V(£(x, j), j +1) - V(x, j).
For each solution x(j) of (D), the relationship
Vx( +1), j+1) - V(x(), i) = AV p)(x(), j)

holds for all j € [j;, j¢ - 1].

THEOREM 1. Suppose S: J — P(R") and Sy C S(j;). Then the discrvete system
(D) is 8S(S, Sy, J) if and only if there exists a function V: R* X J — R! such that

(a) AV(py(x, j) <0, for all x € S(j) and all j € [j;, jg - 1],

(b) 0 < V(x, j), for all x € 8(j) and all j € [i; + 1, ig],

(c) V(x, j;) <0, for all x € Sy, and

(d) strict inequality holds in at least one of the three conditions (a), (b), (c).

Proof. Sufficiency. Assume that a function V exists satisfying the conditions
above. Let x(j) be some solution of (D) with x(j;) € Sg. Then, certainly,
x(j;) € S(ji),;, Suppose that there exists a j; € [j; + 1, j¢] such that x(j;) ¢ S(j;) (that
is, x(j;) € S(j;)) and such that x(j) € S(j) for all j € [j;, j; - 1]. Then, by hypotheses
(b), (a), and (c), respectively, we obtain the inequalities

0 < V(x(3y), ip) < Vx(@;), i) < 0.

By hypothesis (d), this becomes 0 < 0, which is a contradiction. Hence no such jj
exists, and x(j) € S(j) for all j € J. Since x(j) is an arbitrary solution of (D) start-
ing in So, (D) is SS(S, So, J).

Necessity. Assume now that (D) is SS(S, Sg, J). Define

0 if x € x(j; So, i;),
V(x, j) =
1 otherwise.

Suppose, first, that x € S(j) and j € [j;, j¢ - 1]. Clearly, AV(D)(x, j) £0, except in
the case where 1(x, j) ¢ x(j +1; Sg, j;) and x € x(j; So, ji). But this case cannot oc-
cur, by the definition of x(j; So, ji). Hence AV(p)(x, j) < 0, and condition (a) is
satisfied. Now suppose x € 5(j) and j € [j; +1, j¢g]. By Remark (2), since (D) is .
SS(S, Sg, J), we have that x(j; Sg, j;) € S(j) for all j € J. Hence V(x, j)=1> 0, and
conditions (b) and (d) are satisfied. Finally, suppose x € Sg. Then, since
So = x(; ; Sg, i), we have that V(x, j;) = 0, and condition (c) is satisfied. This com-
pletes the proof. ‘

An obvious consequence of Theorem 1, which often yields stronger quantitative

stability results than Theorem 1, is the following corollary. This corollary can
often be of use in connection with estimation of transient behavior.



214 JAMES A. HEINEN

COROLLARY 1. If a function V exists satisfying the conditions of Theorem 1,
then (D) is not only SS(S, So, J) but also SS(Sy, Sy, J), where

S.(i) = {x € s(j): V(x, j) < 0}  and Svy = {x € S(j;): V(x, j;) < 0} USy.

THEOREM 2. Suppose the functions S, Sg: J — P(R™) ave such that Sp(j) € S(j)
Jor all j € J. Then the discrete system (D) is USS(S, Sg, J) if and only if there
exists a function V: RA xJ — R! such that

(a) AV(p)(x, i) <0, for all x € 8(j) and all j € [j;, i - 1],

(b) 0 < V(x, j), for all x € 8() and all j € [j; + 1, j¢l,

(e) V(x,§) <0, for all x € Sy(j) and all j € [j;, j¢ - 1], and

(d) strict inequality holds in at least one of the three conditions (a), (b), (c).

Proof. Sufficiency. If a function V exists satisfying the conditions above, then
the conditions of Theorem 1 are clearly met on every interval [jo, j¢] © J. Hence
(D) is SS(S, Sp(io), [io, jf]) for each jo € J. But this is to say (D) is USS(S, Sg, J).

Necessity. This part of the proof is similar to the corresponding proof of Theo-
rem 1, with the exception that now we choose V to be
j
0 ifxe U x(3; Sg)s ig)»
V(x, j) = jo=i
1 otherwise.

COROLLARY 2. If a function V exists satisfying the conditions of Theorem 2,
then (D) is not only USS(S, Sy, J) dut also USS(S,, Sypr I ), where

S.() = {x € 8G): V(x, §) <0} USG() ana S, () = {x € S(): Vix, §) <0} U So(j).

Note that in the theorems above no assumptions have been made regarding the
continuity of V, the continuity of f, the uniqueness of solutions of (D), the existence
of equilibria of (D), or the classical stability of (D). Furthermore, J can be either
finite or infinite, and it is entirely possible for the sets S and Sy to be unbounded.

4, INSTABILITY THEOREMS

The theorems of this section provide necessary and sufficient conditions under
which a fixed discrete system is not set stable. The proofs of these instability
theorems are omitted, since they follow readily from Theorem 1 and the definitions
of stability.

THEOREM 3. Suppose S:J — P(R™) and Sg C S(j;). Then the discrete system
(D) is not SS(S, Sg, J) if and only if theve exzst a function Q. J — P(R"™), an integer
iy € [i;+1, jgl, and a function V: R® X J — Rl such that Q(;) N Sg # @ (the null set),

Q1) n S(]l) = @, and such that
(a) AV(py(x, §) L0, for all x € Q(j) and all j € [j;, jy - 1],
(b) 0 < V(x, j), for all x € Q) and all § € [i; + 1, i1,
(e) V(xq, i;) L0, for at least one x¢ € Q(i;) N Sg, and
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(d) strict inequality holds in at least one of the three conditions (a), (b), (c).

THEOREM 4. Suppose the functions S, Sg: J — P(R™) are such that
So(§) € S(j) for all j € J. Then the discrete system (D) is not USS(S, Sy, J) if and
only if there exist a function Q: J — P(R®), integers jo and j; in I (jg <j1), and a
function V: R?x J — R such that Q(ig) N Solio) * D, Q1) N SG1) = P, and such that

(a) AV(p)(x, j) <0, for all x € Q) and all j € [jo, j1 - 1],

(b) 0 < V(x, j), for all x € Q) and all j € [jo +1, j;],

(c) V(xg, ig) <0, for at least one x¢ € Qjg) N Solig), anrd

(d) strict inequality holds in at least one of the three conditions (a), (b), (c).
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