A CONNECTION BETWEEN THE CESARI
AND LERAY-SCHAUDER METHODS

Stephen A. Williams

1. INTRODUCTION

A method that L. Cesari, J. K. Hale, and R. A. Gambill [2], [9], [12], [13], [14],
[15] used to solve perturbation problems was generalized in 1963 and 1964 by Cesari
[3], [5] so as to apply to strictly nonlinear problems. We shall call the method of
[3] and [5] the Cesari method. Cesari, Hale, and H. W. Knobloch [8], [16], [17], [18]
have since applied this method to boundary-value problems for ordinary and partial
differential equations. S. Bancroft, J. K. Hale, and D. Sweet [1] and J. Locker [20]
have extended the Cesari method in ways that we shall not consider here. Cesari
[4], [6], [7] has proved the existence of periodic solutions of certain hyperbolic par-
tial differential equations, solving his determining equation by use of the Tychonoff
theorem in an infinite-dimensional space. In the present paper, however, we use
only finite-dimensional methods (degree theory) to solve our determining equation.

By the term Leray-Schauder method we mean the method introduced in 1934 by
J. Leray and J. Schauder [19].

Theorem 1 describes a theoretical link between the Cesari method and the Leray-
Schauder method. Theorem 2 asserts the existence of a certain invariance property
of ‘an index (see the next section) associated with the Cesari method.

2. AN ABSTRACT DEFINITION OF THE CESARI INDEX

In defining the Cesari index below, we make several assumptions. Some of these
assumptions made in [5]; the others are propositions proved in [5] as the results of
assumptions of a more analytical nature. The reader may refer to Section 4 of the
pr(Esiant paper for a comparison of the notation used in this paper with the notation
in |5].

Let B be a Banach space, and let S be a finite-dimensional subspace of B. Let
P: B — S be a projection, that is, let P be continuous and linear, with P2 = P. Sup-
pose that I' C B, that PT' is compact, and that (P-1x) N T is closed for every x in
PTI'. Let W be a continuous map from I' into B. The Cesari method—after a suit-
able change in notation—gives sufficient conditions for W to have a fixed point in T

Let I be the identity map in B, and let T: I' — B be defined by T = P + (I -P)W.
For each x € PT, the restriction of T to (P-1x) N I is a map from (P-1x)N T
into P-1x. We shall assume that for each x € PTI" this restriction is a contraction
from (P-!1x) N I' into itself, and we shall denote the resulting unique fixed point by
y(x) to indicate the dependence on x (see Remark 1 below). We shall assume that
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y: PT'— B is continuous and that PWy(x) # x, for each x on the boundary of PT.
This assures the existence of the finite-dimensional fixed-point index

i(PWy, int PT), that is, the Brouwer topological degree d(I - PWy, int PT', 0) (see
Remarks 1 and 2 below). Under these assumptions, the Cesari index n(I", W, P) for
the mapping W is said to be defined; it is given by

n(I, W, P) = i(PWy, int PI') = d(I - PWy, int PI’, 0).

If the Cesari index is defined and is not zero, then W has a fixed point in T'; for
if n(T, W, P) = i(PWy, int PT) # 0, then there exists an x in int PI" such that
PWy(x) = x, and therefore (by Remark 1 below) y(x) = Wy(x) with y{x) in T.

Remark 1. Clearly, s is a fixed point of W in T' (that is, s = Ws) if and only if
Ps =PWs and s=(P+({-P)W)s =Ts.

Suppose now that s is a fixed point of W. The relations s € (P-1(Ps)) N T and

s = Ts imply that s = y(Ps). Also, Ps = PWs = PWy(Ps), so that x = Ps satisfies the
equation x = PWy(x). On the other hand, if any x in PT satisfies PWy(x) = x, then,
since

PWy(x) = Py(x) and y(x) = Ty(x),

y(x) is a fixed point of W in I'. For this reason we shall call the equation
x = PWy(x) the determining equation for the fixed points of W in T.

Remark 2. If Q C S is a bounded open set and f: @ — S is continuous, with
f(x) # x for each x on the boundary of €, then i(f, Q) is the fixed-point index of f
with respect to Q. Leray and Schauder [19] call i{, ) the finite-dimensional fofal
index. i(f, Q)=d( - £, , 0), where d(, , ) is the topological (Brouwer) degree. We
shall use i;,g(, ) and dr,s(, , ) to represent the corresponding total index and topo-
logical degvee defined by Leray and Schauder in [19] for infinite-dimensional Banach
spaces.

Remark 3. Theorems 1 and 2 assume that I'" is the closure of a bounded open set
© and that y(x) is in Q for every x in int PI". Both of these assumptions hold when
the Cesari method is applied (see Section 4 and Cesari [5]).

3. TWO THEOREMS

THEOREM 1. Let n(T, W, P) be defined as above, wheve T is the closure of a
bounded open set Q. For x in int PT', assume that y(x) is in Q. Then theve exists
a function W': Q — B, having the same set of fixed points as W, for which both the
Cesavi index n(T', W', P) and the Levay-Schaudey fixed-point index i1,5(W', ) are
defined, and n(T', W', P) = n(T", W, P) = i1 g(W', Q).

Proof. Define W': © — B by setting W'(x) = Wy(Px) for every x in I'. If
x = W'x, then x = Wy(Px); therefore Px = PWy(Px), and thus (by Remark 1)
y(Px) = Wy(Px) = x, hence x = Wx. On the other hand, if x = Wx, then (again by
Remark 1) x = y(Px), so that x = Wy(Px) = W'x. Thus W and W' have the same
set of fixed points in T'.

Note that all points z in (P-1x) N I have projection Pz = Px, that hence they

have the same image under W' = WyDP, and that therefore they have the same image
under P+ (I - P)W'. Thus, for z in (P-1x) N T, we have the relation
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(P+(I-PW")z = (P+(I-PW")y(x) = Pyx)+ (I - P)Wy(x) = Ty(x) = y(x).

Since the map P + (I - P)W' carries each set (P-1x) N I" into the set consisting of
the single point y(x), this map is a contraction on each (P-l1x) N I'. The fixed point
y'(x) of P+ (I - P)W' in (P-1x) N T is y(x). Therefore the functions y and y' are
equal. Since PW'y' = PWyPy = PWy, the index n(I", W', P) = i(PW'y"', int PT) exists
and is equal to n(T", W, P) = i(PWy, int PT).

W' = WyP is the composite of continuous functions and hence is continuous. The
range Wy(PTI') of the function W' is compact. Therefore W' is completely contin-
uous.

Now let us prove that W' has no fixed points on the boundary of Q2. If x is a
fixed point of W' and Px € int PI, then x = Wx; by Remark 1, x = y(Px), and this
point is in ©. If on the other hand x is a fixed point of W' with Px on the boundary
of PT, then x = Wx and (by Remark 1) Px = PWy(Px), so that Px is a fixed point of
PWy on the boundary of PT'; this contradicts the existence of

n(T, W, P) = i(PWy, int PT").

W' is completely continuous and has no fixed points on the boundary of .
Therefore the Leray-Schauder fixed-point index iy ,g(W', Q) =dig{I - W', , 0)
exists. It remains only to show that n(I', W', P) =i; (W', Q).

Let S be the finite-dimensional space that is the range of P. For every t in
[0, 1], define u,: P-1(PQ) — P-1(PQ) by
ufz) = z - t(I - P)y'(Pz).

Since u;(y'(Pz)) = Pz, the homotopy u; “flattens” the range of y' as it moves it into
S. Note that Puy(z) = Pz. For fixed t, u; is one-to-one and u;! is continuous,

since ut"l(z) =z +t(I - P)y'(Pz). TEus each u(Q) is open in B, and gt(ﬁ) = u (Q).
For each t in [0, 1], define W uy Q) —» B by

Wi (z) = z + (W'uil(z) - uii(z)).
Since W(z) - z = W'ut'l(z) - ut'l(z), each point z = W(z) on the boundary of uy(Q)
must have a preimage ui!(z) on the boundary of @ that is a fixed point of W', a con-

tradiction. Hence this homotopy introduces no fixed points of W, on the boundary of
u, ().

If z€ Q and t € [0, 1], then W,(u(z)) = W'(z) - t(I - P)y'(Pz), and thus
W (u (R)) € W'(@) - tI - P)y'(PQ);
the right-hand side is a compact set, since it is the difference of compact sets. Thus
W, is completely continuous for each t. Throughout the homotopy Wi: ut(Q) — B, the
Leray-Schauder index is preserved. Thus
ips(W', @) = ip5(Wo, uo(@)) = ips(Wy, ui(®)).
But since (I - P)y' = (I - P)W'y', we have the relations

Wi(uy(z)) = W'(z) - (I - P)y'(Pz) = W'y'(Pz) - (I - P)W'y'(Pz) = PW'y'(Pz),
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and thus W;(u;()) c S. Also, u;(2) NS = int PT, and W;(x) = PW'y'(x) for all x in
PT'. Using the definition of the Leray-Schauder index, we see that

i g(W', @) = i; (W, u,(@)) = i(PW'y', int PT) = n(T, W', P).

This completes.the proof of Theorem 1.

When giving an application to boundary value problems for ordinary differential
equations, Cesari[5, Section 14 ] uses a sequence {P;} of orthogonal projections (B
in his example is a Hilbert space) whose ranges S; have the property that S; C S;, ;.
He shows that for each particular problem there 1s an integer M such that whenever
i > M, his method applies with the projection P;. It is the content of the next theo-
rem that in this situation the Cesari numbers associated with the P; for i> M are
equal.

THEOREM 2. Let Ty and T, be the closuves of the bounded open sets Q; and
Q3 , respectively, and suppose that W: T'} U I'y) — B has no fixed points outside
I') NT,. Let P; and Py be projections with P) P, = P, P} = Py . Suppose (for
i=1,2) that n(Ty, W, P;) is defined and y;(x) is in Q; whenever x is in int P;I;.
Fmally, assume that [b szl < b - z|| for every z in the vange of P, cmdfmf
every b in B. Then n(T';, W, P,)=n(T,, W, P,).

Proof, Let Th = {xe T'; y;(P;x) isin T, and y»(P,x) is in T';}. Notice
that if x is in T'}, then each point of (Pél(PZ x)) N T', is in T'5. First we shall
prove that n(I';, W, P,) exists and is equal to n(T'",, W, P;). Since T} is closed
and y,(P, I',) is compact, y,(P, I',) N T'5 is compact, so that

P, T, = Py(y,(P,T;) N T))

is compact. For every x in P, T, x isin P,T and (P5'x) N I'y = (P31x) N T,
is closed. Moreover, T, = P, + (I - P»)W is a contraction from (P51x) n T'; into
itself with fixed pomt yo(x).

Assume now, if possible, that x is a fixed point of P, Wy, on the boundary of
P, T',. Then (by Remark 1 above) y2(x) = Wy2(x) and thus y; (x) isin I'y N I'.
Since P, y,(x) is on the boundary of P, I'5, it follows from the interior mapping
theorem applied to P, that y,(x) is on the boundary of I'5. In the proof of Theorem
1, we saw that W has no fixed points on the boundary of I'. Similarly, we see here
that y,(x) isin ; N Q,. But y2(x) € 1 N Q, implies that y,(x) is not on the
boundary of I';, since it is in the interior of each of the sets I'p, (y; P;)-1T';, and
(yz PZ)‘l I'y . This contradiction proves that the assumption at the beginning of this
paragraph is not tenable. Hence i(P, Wy,, int P, I'5) exists. Now, if P, Wy, had a
fixed point x outside of P, I'5, then (by Remark 1 above) y»(x) = y;(P|x) would be a
fixed point of W outside of I';, which is impossible. Thus

n(l""y_, W, Pz) = i(PzWYz, int P; IﬂZ) = i(P2Wy2, int P; 1_'2) = n(rz, A Pz).

For i=1, 2, let S; be the finite-dimensional space that is the range of P;. The
assumption P; P, = P, P; = P; implies that S; c S,. Let x: P; ', —» P,T5 be de-
fined by %(x) = P,y (x). Set I'j = I'}. Then y2(X(x)) = yi1(x) for all x in P;T'3,
since (for i =1, 2) yi(x) is the only point of (P;1x) N I'{ whose displacement
Wy;(x) - y;(x) belongs to S;, and since S; C S,.

For every t in [0, 1], define ug S, N P7Y(P T'3) — 8, by the formula

uy(z) =z - t(I - Py)X(P,z). Each u; is one- to one, and each u¢! is continuous, by
reasoning similar to that in Theorem 1.
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For every t in [0, 1], let Ty: ui (P, T'5) — S be defined by
T(z) = z + (P, Wy, ut'l(z) - ut‘l(z)).

The homotopy carries the range of X into S;, and it introduces no fixed points of T;
on the boundary of ui (P, I';). Let 6, =int P, I';. Then

i(P, Wyz, 03) = i(To, ug(62)) = i(Ty, ui(62)).
For every t in [1, 2], let T¢: u;(P, I'z) — S, be defined by
(1) Ty(z) = (1 - (t- 1)) Ty(z) +(t - 1)P, T (z).

In the next paragraph, we shall prove that this homotopy introduces no fixed points on
the boundary of u;(P, I'z); if we assume this for the moment, it follows that

i(P, Wy,, 0,) = i(Ty, u (8,)) = i(T,, uy(6,)).
But for x inmﬂ Sy,
T,(x) = P Ti(x) = Py [x+ (P, Wy2X(x) - %(x))] = P) P, Wy (x(x)) = P; Wy1(x).
Hence, by the reduction theorem,
i(P, Wy, , 0,) = i(T,, u1(6,)) = i(P; Wy;, ui(65) N ;).

But if P} Wy;(x) = %, then y;(x) = Wy,;(x) (by Remark 1 above); hence y;(x) is in
I'; N T, and therefore in T'>. Therefore P, Wy, (X(x)) = x(x) (by Remark 1), and
thus (since i(P, Wy,, 0,) is defined), X(x) is in 6., so that x is in u;(6) N S; .
Therefore

i(P, Wy,, 05) = i(P; Wyp, uy(62) N8)) = i(P; Wyy, int P, T'y).

It remains only to prove that homotopy (1) above introduces no fixed point z on
the boundary. This is equivalent to the assertion that no point r = uil(z) on the
boundary of P, T lies on the line segment joining P, Wy,(r) and X(P;r), each of
the three points having the same Pj-projection. Suppose, if possible, that such an r
exists. Let x = P;r. We see that r = %(x) implies that P, Wy,(r) = r, and this con-
tradicts the fact that i(P, Wy, , int P, T'5) is defined. Therefore r # X(x).

Because P, + (I - P;)W is a contraction mapping on (Pjlx) 0 I';, with fixed
point y;(x) = y,(X(x)), and since y,(r) # y,(X(x)), the point
Aj = Pyy,(r)+ (I - Py)Wy,(r)
is closer to

Ay, = yi(x) = Py (x)+ (I - P)Wy,;(x)
than is the point

As = y,(r) = v+ (I - P,)Wy,(r).
NOW, for 1= 1, 2, 3, let Ai = Ail + Aiz + A13, where

PiA; = Ay, (Pr-Pi)A; =4y, Aj-PrA; = A3,
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Clearly,
Ajp = Ag) = Az =X, Apy = Agz = (T- PWy,(r), A - Aqfl <Az - Ay

But r = A3; + A3, is on the line segment joining P, Wy,(r) = Aj; + A2 and
&%(P;r)=A,; +Ajy,, so that A3, is on the line segment joining Aj, and A,,. Let
Ay =2gA1p+ (1 - 2g)Ay, with 0 <A< 1. Then ||A; - A,ll < ||As - A,| implies
that

A2+ A3 - App - Ags|l < IxoAj+ (1 - 20)Az, +As3 - Apy - Aps
= [xo(A1, - App) + A3 - Aps]l.
Let q be a real number between the two norms above. Then the set
S={beB;[b-(Az3-413)] <aqa}

contains A, - Ay, in S;, and hence it must also contain P(A3 - Aj3) = 0. Since
S is convex, it must contain xg(A;, - A,;), contrary to the definitions of g and S.
This contradiction completes the proof of the theorem.

4. COMPARISON OF NOTATIONS

In this section, we shall compare the notation of this paper with that of Cesari
[5]. The notations I, P, and T are common to both. The Banach space B and its
finite-dimensional subspace S in this paper are Cesari’s S and Sp, respectively.
In [5], Cesari studies the equation Kx = 0, where K=E - N, E is linear (but not
necessarily bounded), and N is nonlinear (E and N are not necessarily everywhere
defined). The operator E is assumed to have a “partial inverse” H, and the map-
ping T is then defined by

(2) T = P+ H( - P)N.

It is then shown [5, Theorem (ii)] that under suitable assumptions, T is for each x*
in V a contraction of S§(x*) into itself (the symbol S§ is used in [5] when x* is

understood), with fixed point T (x*). V, T, S§(x*), and T (x*) in [5] correspond to
PI, T, (P-1x*) N T, and y(x*) in this paper. T (x*) satisfies the condition
KT (x*) = PKZ(x*), so that KT (x*) = 0 if and only if

(3) PKZ(x*) = 0.

This is Cesari’s determining equation.

In [5], the T of this paper would be denoted by U S§(x*), where the union is to
be taken over all x* in V. If we write

(4) W(z) = Pz - PKE(Pz) + H(I - P)N(z)
for z in T, then, since PH=0 and (I - P)P =0,

(5) Tz = Pz+ (I - P)Wz = Pz+ (I - P)H(I - P)Nz = Pz + H(I - P)Nz,
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and this coincides with (2). On the other hand, if we use y(x) for T(x) in (4), then
W(y(x)) = Py(x)+ H(I - P)Ny(x) - PKy(Py(x));

since (5) implies that y(x) = Ty(x) = Py(x) + H(I - P)Ny(x), it follows that
y(x) - W(y(x)) = PKy(Py(x)), and finally, by applying P to both sides, we find that

x - PWy(x) = PK2(x).

Thus the determining equation of the present paper (Section 2) coincides with the de-
termining equation of Cesari [5, (8)]. Moreover, if u denotes the degree used by
Cesari in [5], then

n(T, W, P) = i(PWy, int PT) = d(I - PWy, int PT, 0) = d(PKZ, int V, 0) = p .

5. CONCLUDING REMARKS

In 1950, J. Cronin [10] introduced a “multiplicity” which is this paper’s
n(I", W, P), and she proved that if W is completely continuous and “differentiably
close” to a completely continuous linear operator, then this number is the same as
the Leray-Schauder index of W. Theorem 1 of this paper generalizes Cronin’s re-
sult; its proof requires no “differentiability” hypothesis.

The theoretical connection demonstrated in Theorem 1 depends on the construc-
tion of a map W' satisfying the Leray-Schauder hypothesis; but in order to construct
the map W', we must know Cesari’s H and ¥ as well as the given maps E, N, and
P. Therefore the connection established by Theorem 1 is not a reduction of the
Cesari method to the Leray-Schauder method.
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