REPLACEABILITY OF ℓ - ℓ METHODS OF SUMMATION

H. I. Brown

In this note we characterize replaceability of an ℓ - ℓ method in terms of the kernel of the natural functional $\sum x_n$ on ℓ , the set of absolutely convergent series. (See [1] for terminology and notation.)

An ℓ - ℓ method is *absolutely regular* if it preserves the functional $\sigma(\mathbf{x}) = \sum \mathbf{x}_n$ on ℓ . An ℓ - ℓ method A is *replaceable* if there exists an absolutely regular ℓ - ℓ method B such that the corresponding absolute summability fields satisfy the inclusion relation $\ell_B \supseteq \ell_A$. Let ℓ_0 be the kernel of σ .

THEOREM. The following statements about an l-l method are equivalent.

- (a) A is replaceable.
- (b) For each k = 1, 2, ..., the sequence e^k is at a positive distance from the $\ell_A\text{-closure}$ of ℓ_0 .
 - (c) l_0 is not l_A -dense in l.
 - (d) σ is ℓ_A -continuous on ℓ .
- (e) The dual space ℓ_A' of ℓ_A contains a functional f such that $f(e^k) = 1$ for $k = 1, 2, \cdots$.

Proof. If A is replaceable, say by B, then $B \in \ell_A'$, B vanishes on ℓ_0 , and $B(e^k) = 1$ for $k = 1, 2, \cdots$; hence, each e^k lies outside the ℓ_A -closure of ℓ_0 ; that is, (a) \Rightarrow (b). (We are considering ℓ with the relative seminorm topology of ℓ_A .) If some e^k does not belong to the ℓ_A -closure of ℓ_0 , then certainly ℓ_0 cannot be ℓ_A -dense in ℓ_A , so that obviously (b) \Rightarrow (c). Since ℓ_0 is the kernel of σ , it is either ℓ_A -closed or ℓ_A -dense. Hence, (c) \Rightarrow (d). If σ is ℓ_A -continuous on ℓ_A , we may extend it (by the Hahn-Banach Theorem) to some ℓ_A such that ℓ_A on ℓ_A . Thus, ℓ_A if ℓ_A if (e) is satisfied, then (by [1; p. 360, Lemma]) there exists an ℓ_A method B such that $\ell_A \supseteq \ell_A$ and ℓ_A and ℓ_A for all ℓ_A . Hence ℓ_A hence ℓ_A is replaceable.

REFERENCE

1. H. I. Brown and V. F. Cowling, On consistency of ℓ - ℓ methods of summation, Michigan Math. J. 12 (1965), 357-362.

State University of New York at Albany