SUMS OF SMALL NUMBERS OF IDEMPOTENTS
Carl Pearcy and David Topping

1. INTRODUCTION

Recently, Stampfli [16] showed that every (bounded, linear) operator on a separa-
ble, infinite-dimensional Hilbert space & is the sum of 8 idempotent operators.
Using this fact, Fillmore [8] gave an elementary proof that every operator on & is
the sum of 64 operators each having square zero, and he also showed that every
operator is a linear combination of 257 projections (that is, Hermitian idempotents).
These results at first seem somewhat surprising, and since the proofs involve some
rather intricate constructions, they do not clearly reveal why the theorems are true.

It is the purpose of this paper to introduce techniques that seem to provide a
more natural way of looking at such questions. Using these techniques, which are
based partly on the theory of commutators [2], [9], we are able to improve the above-
mentioned results considerably, and at the same time to give arguments that are
relatively transparent.

In Section 2, we show that most operators on <# (more precisely, every operator
in class (F) of [2]) can be written as the sum of four idempotents, and that every
operator on o can be written as.the sum of five idempotents. We also show that
every operator on & is the sum of five operators having square zero, and that
every Hermitian operator on s# is a real linear combination of eight projections.
All of these results remain valid, moreover, on nonseparable spaces.

In Section 3 we take up the question as to which of these constructions can be
carried out in the framework of von Neumann algebras, and we show that essentially
all of the above results are valid in every properly infinite von Neumann algebra
(that is, in every algebra without direct summand of finite type). Our sharpest re-
sults are obtained in the case of a factor of type III acting on a separable Hilbert
space, where our knowledge of commutators is complete [3]. In such a factor, every
nonscalar operator can be expressed as the sum of four idempotents, and also as the
sum of four operators each having square zero.

Finally, in Section 4 we consider a certain class of von Neumann algebras, and
we show that each algebra of the class can be generated by various small sets of
special operators. This is related to the result of Davis [4] that a I -factor on a
separable space can be generated by three projections.

2. IDEMPOTENTS, SQUARE-ZERO OPERATORS, AND PROJECTIONS

Throughout Sections 2 and 3, & will denote a complex, infinite-dimensional, but
not necessarily separable, Hilbert space. We denote by £ (<¢) the algebra of all
bounded, linear operators on <. As in [2], we denote by (F) the class of operators
obtained by removing from 2{s#) all operators of the form AI + C, where A is a
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scalar and C belongs to the unique maximal norm-closed ideal of Z(s#). (For a
separable space &, this ideal is precisely the ideal of compact operators,)

Throughout this section, we suppose that # = # (B H, where & is a fixed Hil-
bert space, and we remind the reader that this decomposition leads to an isomor-
phism between £(s) and the 2 X 2 matrix algebra over £ (). In particular, every
operator on < can be viewed as a 2 X 2 matrix

( . : )
C D
with entries from £ () and acting on o1 @ A = o in the usual fashion.

We shall first prove that every operator of class (F) on &£ can be written as the
sum of four idempotents; for this, the following lemma is needed.

LEMMA 2.1. Evevy opevator T of class (F) on ' is similar to a matrix

(A B>
C D
wheve A + D is of class (F) on K.
Proof. By Corollary 3.4 of [2], T is similar to an operator of the form

A VvV

B O
where V is an isometry on & of deficiency equal to the dimension of o#. If A is
already of class (F), the proof is complete. If not, we have the equation

( I 0)(A V)(I 0) (A+VV* V)

-V* I B O V* I * -1

Since V has deficiency equal to the dimension of &, it is clear that VV* -1 is of
type (F), from which it follows that A + (VV* - I) is of type (F).

THEOREM 1. Every opevator on o of class (F) is the sum of four idempo-
tents, and every opevator on H is the sum of five idempotents,

Proof. Let T be written as the matrix
A B
)
C D
and consider first the case that T is of class (F). It obviously suffices to show that
some operator similar to T is the sum of four idempotents. By Lemma 2.1, we may
assume that A + D is of class (F). We now invoke Theorem 4 of [2] to exhibit

A + D - 41 (which is also of class (F)) as a commutator, say A + D - 4I = XY - YX.
Next we define
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Z =XY-A+2I, U=B-X+2-1, V=C+(¥X-I)Y-2Z.

Then the equation

A B XY X 1-7Z 1-2 I U 0 0
C D I-YX)Y 1-YX Z Z 0O O vV 1
represents T as the sum of four idempotents.

Turning now to the case that T is arbitrary, we may suppose that A + D fails to
be of class (F), for otherwise the above reasoning applies. Let E be a projection on
o whose null space and range each have the same dimension as &. Then E is an
operator of class (F), as is A+ D - E. Writing

A B A-E B E 0O
- (* - (59,
C D C D 0 0
we see that the first term on the right can be expressed as the sum of four idempo-
tents, and that the last term is a projection.

Theorem 1 comes close to being best possible, because Stampfli has shown [16,
Theorem 1] that not every operator can be written as the sum of three idempotents.
It seems likely that every operator is the sum of four idempotents, but we have been
unable to prove this for operators outside the class (F).

Next we examine the situation arising when operators of square zero are
summed.

THEOREM 2. Every operator on # of class (F) is the sum of four operatorvs
each having squave zevo, and every opevator on H is the sum of five such opera-
tors.

Proof. As in the proof of Theorem 1, let T be the matrix
A B
(0 o)
and consider first the case that T € (F). Applying a similarity transformation, if
necessary, we may (by Lemma 2.1) assume that A + D is of class (F). By Theorem

4 of [2], we may choose operators X and Y such that A + D = XY - YX. Next we
define

Z =XY-A, U=B+7Z-X, V=C+Y¥YXY-Z.
Then the equation

(e o) G o (G200

represents T as the sum of four operators each having square zero.
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Turning to the case that T is arbitrary, we may suppose that A + D is not of
class (F). Since the space & is infinite-dimensional, we can choose a partial
isometry W on o whose initial and final spaces are the orthogonal complements of
each other. Then W2 = 0, and it is easy to see that W must be of class (F) on .

Furthermore, the operator
( o )
0 0

is of class (F) on &, and its square is zero. Now
A B A-W B W 0
C D C D 0 0
and since A+ D - W is of class (F), the first part of the proof allows us to write the

first term on the right as the sum of four operators whose squares are zero, as re-
quired.

The idempotent operators appearing in Theorem 1 are not generally Hermitian.
If one considers a similar problem for projections, one must clearly treat linear
combinations instead of sums, since the sum of any number of projections is positive
semidefinite. We proceed now to show that () is the complex linear span of its
projections. Our basic tool is again commutator theory, but the following lemma is
used to solve some operator equations. ‘

LEMMA 2.2. Let B be any Hevmitian operator with |Bl|| < 1/2. Then theve
exists a Hevmitian contvaction A such that A(I - A2)1/2 =B where (I - A2)1/2 s
the positive semidefinite squarve root of 1 - A%. Furtheymove, A can be chosen
Jrom any von Neumann algebra containing B.

Proof. Elementary calculus shows that the function f(x) = x(1 - x2)1/2 ig strictly
increasing on the interval [-1/v2, 1/v2], and clearly f(-1/V2)=-1/2,
£(1/V'2) = 1/2. It follows that there exists a real-valued continuous function g(x) de-
fined on the interval [-1/2, 1/2] such that for x € [-1/2, 1/2], f(g(x)) = x. Define
A = g(B), and note that A is a Hermitian contraction belonging to any von Neumann
algebra containing B. Since f(A) = f(g(B)) = B, the result follows.

THEOREM 3. Every Hermitian opevatov on H is a veal linear combination of
eight projections.

Proof. Any Hermitian operator T on & can be written as a matrix
( ) - )
M L

on & D «# with K and L Hermitian.

We shall construct eight contraction operators A}, ---, Ag, which we shall then
use to build the eight projections needed for the proof. For later notational con-
venience, we formally define S; = (I - A; A¥)L1/2 (i=1, ---, 8).

By Theorem 1 of [9], it is possible to choose operators B; and B such that
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(B¥B, - B; Bf)+ (B, B} - BIB,) = K+ L.

Now choose A > max(||B, ||, | B, ), define A; =x~1B; (i =1, 2), and note that
la;] <1 (i=1, 2). Letting

H = K - 2%(ATA] - A%A,),

we decompose H = H' - H™ into its positive and negative semidefinite parts, and we
choose p > max(|H"|, JH™||). Define A; = (u"1H")1/2, Ag=(u-1H")!/2 and
note that A; and Ag are positive contractions.

Now consider the operator
C =M-2X%(S;A) - S3A;) - 1(S7A7 - SgAg),

and let C = C; +iC, be the decomposition of C into its real and imaginary parts.
Choose ¢ > max (|| C;], | C, || ). Then by Lemma 2.2 there exists a Hermitian con-
traction Az such that S3A3 = (20)~*'C;, and a skew-Hermitian contraction As such
that SgAg = (20)"1iC,. Finally, define Ay = -A3 and Ay = A%.

We are now ready to determine the real coefficients needed to form the linear
combination in question. These are

2
@) =A%, 0y =A%, wy=wg=0, ay=0g=-0, a;=p, 0g=-p.
As was pointed out earlier, each A; (i=1, ---, 8) is a contraction, and if we de-
fine T; = (I - A¥A;)1/2 (i=1, .-+, 8), then it is not hard to see that S;A; = A;T;
(i=1, ---, 8). Using this last relation, we can easily verify that each operator

ATA; A¥s;
S; A, S;

is a projection. Assembling the above information, we obtain the equations

8 8 8
2 O‘iAi*Ai =K, 2 OliSiz = L, 27 @;SjA; = M,
i=1

i=1 i=1

and by taking the adjoint of the third equation, we see that

8
* *
E OliAi Si = M

i=1

H

8
which shows that T = 2J;_; @;E;, as desired.

COROLLARY 2.3. Every opevator on # is a complex linear combination of
sixteen projections.
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3. PROPERLY INFINITE VON NEUMANN ALGEBRAS

In this section we shall extend most of the results of the preceding section to
operators in an arbitrary properly infinite von Neumann algebra. (A von Neumann
algebra « is properly infinile if it contains no nonzero finite central projection.
For the general theory of von Neumann algebras, see [5].) If « is properly infi-
nite, then [11, Corollary, p. 41] there exists a projection E € « such that
I~E~1I-E. Moreover, if E is any such projection, the projection I - E can be
written as the sum I - E= F; + F, + -+- of an infinite sequence of orthogonal pro-
jections F, € «, each equivalent to E. Suppose now that a properly infinite algebra
« and a projection E € .« with the above properties are fixed. It is standard alge-
bra that the equivalence E ~ I - E can be used to obtain a spatial isomorphism ¢ of
~ onto the 2 X 2 matrix algebra M,(E 4 E) over E #E, and we suppose this done.
(Strictly speaking, to fix such an isomorphism, one must also specify a partial
isometry implementing the above equivalence.) In addition, the relations

E+F,+F,++ =1 and E~ F, ~ F,~ -

can be used (together with an appropriate choice of partial isometries) to construct a
spatial isomorphism ¥ of  onto the algebra M (E -« E) of all 8 X 8¢ matrices
over E . E that act as bounded operators; we suppose this done. (Since E ~ I,

E 4 E is spatially isomorphic to # and thus is also properly infinite; but we do not
yet use this information.) The principal fact we need at present regarding ¢ and ¥
is that if T € « is carried by ¢ onto a 2 X 2 matrix in M,(E & E) of the form

(2 o)

then T is carried by ¥ onto a matrix of the form

A, 0O

B; 0 O
(*)

B, 0 O

The following lemma gets our program under way.

LEMMA 3.1. Let o be a properly infinite von Neumann algebra, and let
T € . Then there exist operators A, B, C, D € A such that

T = (AB - BA) + (CD - DC).

Proof. As was pointed out above, we may write T as the sum of two operators
T =T, +T,, where

K 0 0 M
o(T,) = ( ) and &(T,) = ( )
L 0 0 N
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The isomorphism i carries the operator T) onto a matrix of the form (*), and
the construction in Section 1 of [15] can be applied to this matrix to show that it is a
commutator of operators from the algebra. The operator T, can be handled simi-
larly, and the proof is complete.

We are now prepared to prove the analogues of Theorems 1 and 2 in properly in-
finite von Neumann algebras, but the incompleteness of knowledge concerning com-
mutators in von Neumann algebras (see [2], [3]) forces us to modify the proofs
somewhat.

THEOREM 4. Every operator in a propevly infinite von Neumann algebra A is
the sum of five idempotents in L.

Proof, In view of the isomorphism ¢, an arbitrary operator T € « can be re-

garded as a matrix
(( ; D )

with entries from the properly infinite algebra E .« E. By Lemma 3.1, there exist
operators R, S, X, Y € E#E such that (RS- SR)+ (XY - YX)=A+D - 5I, Next
we define

Z=RS+XY-A+2I, U=B+Z-R-X-I, V=C+(SR-IS+(YX-IY-%Z.

Then the equation

A B RS R XY X I-Z2 1-27%
C D (I-SR)S 1I-SR I-YX)Y I-YX Z Z
I U 0 O
0 O vV I
represents T as the sum of five idempotents in .

THEOREM 5. Every opevator in a properly infinite von Neumann algebra A is
the sum of five opevators in « each having squave zevo.

Proof. As before, let T € # be regarded as the matrix
A B
(e )
with entries from E «E. By Lemma 3.1, we may choose operators R,S, X, Y in
EAE sothat A+ D= (RS - SR) + (XY - YX). Next we define

Z =RS+XY-A, U=B+Z-R-X, V=C+SRS+YXY - Z.

Then
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A B RS R XY X -Z  -Z
C D -SRS -SR -YXY -YX A 4
0 U 0 0
0 0 vV 0

and therefore T is the sum of five operators in & each having square zero.

In order to generalize Theorem 3 to operators in an arbitrary properly infinite
algebra, we need the following lemmas.

LEMMA 3.2. Let & be a properly infinite von Neumann algebva, and suppose
that F is a projection in A& suchthat ¥ ~1-F., Then F~ 1, and 1- F can be
wyitten as the sum 1 - F =G|+ G, + -+ of an infinite sequence of ovthogonal pro-
jections G; € A, each equivalent to 1.

Proof. By [11, Corollary, p. 41], # contains a projection E with I~ E ~ I - E.
Using Generalized Comparability [11, Lemma 4, p. 43], we can find a central projec-
tion H € « such that EH < FH and (I- E)(I-H) < (I- F)(I - H). Then

E = EH+ E( - H) < FH+E(I-H) ~ FH+(I-E)(I-H)~ I-FH+(I-E)(I-H)
S(I—F)H+(I—F)(I—H) =I-F~F,

so that E < F. By symmetry, F < E; thus F ~ E ~ I, and the first statement is
proved.

Since I - F ~ I, we see that I - F is a properly infinite projection, and the
second statement follows immediately from [5, Corollary 2, p. 319].

LEMMA 3.3. If « is a properly infinite von Neumann algebra, and H is any
Hermilian opevator in A, then theve exist opevators A, B € A such that

= (A¥A - AA*) + (B*B - BB*).

Proof. By [7, Theorem 3] there is a projection E € « such that EH = HE and
E ~I- E. By Lemma 3.2, E ~ I, and there exists a sequence {F_}%_, of ortho-
gonal projections F, € 4, each equivalent to I, suchthat I- E=F;+ F, + -
Since H = EH + (I - E)H, it suffices to prove that EH and (I - E)H are self-commu-
tators in «, and by symmetry it suffices to deal with one of these operators, say
EH. Let G and K be orthogonal spectral projections of EH such that G+ K = E,
GH is positive semidefinite, and KH is negative semidefinite. Then G, K € ¢, and
we define four projections in . as follows:

P1=G+F1, P2=F3, P3=K+F2, P4=F4+F5+"’

It is clear that the P; are mutually orthogonal and have sum I. Furthermore, since
F;~ 1 for a11 i, each P; ~ I, so that the P; are mutually equivalent. Using the
famlly {P,}% | andan approprlate collection of partial isometries implementing
the equivalence of the P;, we obtain a spatial isomorphism 7 from . onto My(.#)
such that the operator EH is carried by 7 onto a matrix of the form
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H, O

7(EH) = H, ,

0] 0
where H, € « is positive semidefinite and Hj € A is negative semidefinite. Since
7(EH) can be viewed as the direct sum of the operators

(Hl 0) (H2 O)
and
0 0 0 0

in M, (), we have reduced the problem to showing that every operator in Mp(#) of

( )
0 0

[where H, is a positive (or negative) semidefinite operator in ] is a self-commu-
tator in M,(#). To complete the proof, we can now carry out the construction of
[9, Lemmas 1 and 2] in M,(#), using the fact that M,(.#) is spatially isomorphic
to My ().

THEOREM 6. Every Hermitian opevaloy in a properly infinite von Neumann
algebra is a real linear combination of eight projections in the algebra.

Sketch of the proof. Let . be an arbitrary properly infinite algebra. By em-
ploying the isomorphism ¢ of « onto M,(E£E) as above, we can regard a Hermi-
tian operator H € « as a 2 X 2 matrix

( ) - )

M L

with entries from the properly infinite algebra E .« E. One now simply copies the
proof of Theorem 3, noting that all the constructions required can be carried out in

the ring E&E. Of course, Lemma 3.3 is used in place of [9, Theorem 1]. We leave
the details to the interested reader.

The success of Theorems 1 and 2 is due partly to the availability of an exact
characterization of commutators in the algebra £ (s). Although existing informa-
tion about commutators in a general von Neumann algebra is sketchy, Brown and
Pearcy [3] have completely described the situation for factors of one other type.
The next theorem is a direct application of their description.

THEOREM 7. Let 4 be a von Neumann factor of type 111 that acts on a separ-
able Hilbevt space. Then each nonscalayr operatov in A is the sum of four idempo-
tents in £, and also the sum of four opevators in A each having squave zero,

In a factor of type III, the nonzero commutators are precisely the nonscalar
operators, that is, the operators that are not scalar multiples of the identity opera-
tor [3, Theorem 1]. Knowing this, one easily proves Theorem 7 by adapting the
techniques employed in the proofs of Theorems 1 and 2.
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We remark that Theorems 4 and 5 fail in any von Neumann algebra ¢ of finite
type (and hence in any algebra having a finite direct summand). In the first place,
idempotents are similar, in «, to projections [11, Theorem A, p. 20], and thus have
nonnegative (center-valued) trace. Consequently, any sum of idempotents has non-
negative trace, so that negative semidefinite operators in #, for example, cannot be
obtained by summing idempotents in -,

On the other hand, any operator T €  such that T2 = 0 must have central trace
zero, which implies that not every operator in ¢ can be a sum of operators with
square zero. To see this, consider the polar decomposition T = V(T*T)1/2., Then
V € « is a partial isometry whose initial space is the orthocomplement of the null
space of T and whose final space is the closure of the range of T. Let E = VV*,
and note that TE = 0, since the null space of T contains its range. Further, ET = T,
so that tr (T) = tr (ET) = tr (TE) = 0.

It is perhaps appropriate to note also that Theorem 6 fails in many finite von
Neumann algebras of type I. In particular, suppose that .« is an n-homogeneous
algebra whose center ¥ contains infinitely many orthogonal nonzero projections.
Let 2 be an extremely disconnected compact Hausdorff space such that 3 is c*-
isomorphic to C(&’), and recall that « is C*-isomorphic to the algebra M (&) of
all n X n matrices over C(&'). If A € & is a finite linear combination of projec-
tions from ., then the function A(-) in M_(2') corresponding to A has the prop-
erty that the trace of A(x) can assume only finitely many values as x ranges over
Z. Since there are functions in C(&') that take on infinitely many values, it follows
easily that not every operator in « can be a finite linear combination of projections.

We do not know whether a von Neumann algebra of type II; is the linear span of
its projections.

4, GENERATORS FOR CERTAIN VON NEUMANN ALGEBRAS

Throughout this section, we assume that o# is a separable, infinite-dimensional
Hilbert space. A von Neumann algebra . acting on o is said to be generated by a
family {Ti} of operators if « is the smallest weakly closed *-algebra of operators
containing each T;.

We shall consider von Neumann algebras # on & with the following property:
(G) «# C £() has a single generator and is *-isomorphic to M ().

The purpose of this section is to exhibit various small sets of generators for von
Neumann algebras with property (G). It is known that every properly infinite von
Neumann algebra of type I and every hyperfinite II;-factor have property (G) [13],
[17]. Furthermore, examples of von Neumann algebras of types I, and III with
property (G) have been given [14], [17]. The following elementary lemma was first
noted by Douglas and Topping [6].

LEMMA 4.1. Let 4 be a von Neumann algebra having a single genevator A.

Then the opevators
0 A 0 I
0 0 0 O

genevate M ().
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COROLLARY 4.2. Let o be a von Neumann algebra having a single genevator
A. Then the idempotent opevators

I I I A
and
0o O 0 O
generate M,(A).

The proofs of these two propositions are easy computations, which we omit.

LEMMA 4.3. If A is an inveriible opevator on K, then the opevator

- (, )

on H P H generates a von Neumann algebra of type 1,.

Proof. By [1, Lemma 7.1], T is a binormal operator, and therefore [1, Theo-
rem 1] generates a von Neumann algebra of the form B (P ¥, where £, is of type 1,
and ¢ is abelian. But the normal kernel [1, p. 420] of T is A NA™* , where / and
A* are the null spaces of T and T*, respectively, and it is easy to see that the in-
vertibility hypothesis on A guarantees that this normal kernel is the zero subspace.
Thus @ acts on the zero subspace, and # () € = &, as was to be proved.

LEMMA 4.4. A von Neumann algebva RB. of type 1, acting on K is always
genervated by two of its projections.

Proof. By [1, Theorem 2], & is spatially isomorphic with a von Neumann alge-
bra M,( %) of all 2 X 2 matrices with entries from an abelian von Neumann algebra
%. By a well-known result of von Neumann [12],  has a single Hermitian genera-
tor, say A. It is clear that if @ and A are any positive scalars such that A + AI is
invertible, then a(A + AI) also generates J, so that we may assume that A is posi-
tive definite and has norm less than one. Now define

I 0 A B
E = ) and F=( ),
0 O B I-A

where B = (A(I - A))!/2 ¢ §. Note that B is invertible, and that E and F are pro-
jections in . We assert that the von Neumann algebra 9% generated by E and F is
exactly &#. To see this, observe first that the three matrices

A 0 A B 0 B
EFE=( , EF=( ), EF-—EFE=( )
0 0 0 0 0 O

all belong to &, as does the matrix

(B-l O)
0 0o/’

since A generates 5. The algebra % also contains the matrices
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GG DG = CD-C e

which, by Lemma 4.1, generate . Thus 2 = A.

THEOREM 8. Let  be a von Neumann algebra having property (G). Then &
can be genevated by each of the following:

a) one partial isometry,

b) two operators with square zevo,
c) two idempotents,

d) four projections.

Proof. To show that a von Neumann algebra .« with property (G) satisfies the
conclusion of the theorem, it suffices to show that M,(#) does, since a *-isomor-
phism between von Neumann algebras is an ultraweak homeomorphism. Thus part
(a) follows immediately from [14, Lemma 1]. Part (b) follows from Lemma 4.1, and
part (c) is a consequence of Corollary 4.2. To prove part (d), note that by translat-
ing the original generator by a suitable scalar, we may assume that « is generated
by an invertible operator A. Then the maitrices

G o) = (o)

together generate M,(.«), by Lemma 4.1. Each matrix individually, however, gen-
erates a subalgebra of type I,, according to Lemma 4.3. Moreover, each of these
subalgebras of type I, is generated by two projections, in accordance with Lemma
4.4, Thus Mj,(.) is generated by four projections, and the proof is complete.

Added in Proof. Recently, Saito [Generators of hyperfinite factors, to appear]
has shown that every von Neumann algebra with property (G) can be generated by
three projections; this improves part (d) of Theorem 8 and extends the result of
Davis [4]. For completeness, we sketch a modified proof of Saito’s theorem. Let
«£.be a von Neumann algebra having a single invertible generator A with norm less
than 1, and define S = (I ~ AA*)1/2 T = (I - A*A)L/2, Then the three projections

(1 0 ) 1 (I I) (AA* SA )
0 0 2\1 1 A*S T2
generate M,(«/) (use Lemma 4.1), and they are unitarily equivalent in M, (.4 ).
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