COMPLETE THEORIES OF ALGEBRAICALLY CLOSED FIELDS
WITH DISTINGUISHED SUBFIELDS

H. Jerome Keisler

Two models M; and M, for an applied first order predicate logic L are said
to be elementarily equivalent, in symbols M; = M, (see [13]), if every sentence of
L. that holds in one of the models holds in the other. It is well known that any fwo
algebraically closed fields of the same characteristic ave elementarily equivalent.
(For fields of characteristic zero, Tarski proved this result in [14; note 16]; see
also [12]. In [14], he also stated the result without proof for fields of prime char-
acteristic. The details of his proof have not been published, but can easily be re-
constructed from his remarks. For a proof of the theorem for fields of arbitrary
characteristic, see Robinson [8] or Vaught [17]. Tarski also proved that any two
real closed fields are elementarily equivalent [14].)

Tarski [14] mentioned several problems which arise when a new unary predicate
symbol P is added to the formal system for field theory so that one can study
couples (A, B) of fields, where B is a subfield of A and the set of elements of B
corresponds to the predicate P. The following results concerning couples (A, B;)
and (A,, B,) of fields are known from the literature. In each case A; and A, are
assumed to be algebraically closed fields of the same characteristic.

I. If Ay =B and A, = B,, then (A, By) = (A,, B;). (This follows at once from
the fact that A} = A,.)

. If By, B, ave algebraically closed fields and Ay + By, Ay # By, then
(A;, By) = (A,, By) (A. Robinson [9; Th. 5.3]).

nI. If By, B, ave real closed fields and A1, A, are finite algebraic extensions,
then (A1, By) = (Ap, By) (Tarski[14; p. 43]).

IV. If B1, B, are real closed fields and A), Ay ave infinite extensions, then
(A, By) = (A,, B,). (This is a consequence of Robinson’s Theorem 4.9 in [9].)

V. If By, By are elementarily equivalent to the field of rational numbers, then
(A1, By) = (A,, By). (Robinson proved this in [10], and pointed out that the result re-
mains true if in place of “the field of rational numbers” we read either “the semi-
ring of natural numbers” or “a finite algebraic extension of the field of rational num-
bers”.)

D. Scott asked the following more general question:

Suppose B, B, ave fields that ave elementarily equivalent to each other, and
Ay, Ay ave algebraically closed extensions of By, B,. Under what conditions are
(A, By) and (A,, B,) elementarily equivalent ?

The purpose of this paper is to prove the following theorem, which, in conjunc-
tion with the results I-IV above, answers Scott’s question.

THEOREM A. Suppose B, By are fields that are elementarily equivalent to
each other, and suppose A,, A, are algebraically closed extensions of By, B,.
Suppose furthev that the field B, is neithev algebrvaically closed nor veal closed.
Then the couples (A, B,) and (A,, B,) are elementarily equivalent.
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Notice that Theorem A is a generalization of the result V above of Robinson. It
will be seen that the argument that we shall use to prove Theorem A can also be
used to prove Robinson’s Theorems II and IV above; however, our methods of proof
appear to be quite different from those of Robinson in [9], [10]. Our theorem was
first announced in [3], where it was indicated that the limit ultrapower construction
was used in the proof. (Limit ultrapowers are discussed, for example, in [4] and
[6].) The proof that we shall give here uses the more convenient notion of a special
model, due to Morley and Vaught [7], in place of limit ultrapowers. The special
models, together with some classical results of Steinitz [11] in the theory of fields,
are our chief tools. The theorems of Steinitz have previously been used by Robin-
son [8] and Vaught [17] to prove that any two algebraically closed fields of the same
characteristic are elementarily equivalent.

We mention in passing the natural generalization of Scott’s question that arises
where A;, A, are only elementarily equivalent to each other and not necessarily
algebraically closed. Robinson in [9] has proved the following special theorem: if
all of Ay, A;, By, B, are veal closed fields and B,, B, are dense proper subfields
of Ay, Ay, then (A, By) = (A, B,). The general question of Scott seems to be ex-
tremely difficult, but an attempt to obtain further special results is likely to be
fruitful.

In Section 1 we introduce our notation, and in Section 2 we state the definition
of a special model and some known results that we shall need. Some known results
from field theory are stated in Section 3. The proof of Theorem A is given in Sec-
tion 4. Some generalizations of Theorem A and some results that are analogous to
Theorem A but do not generalize it are given in Section 5. The proofs of the results
in Section 5 are easy modifications of the proof of Theorem A. Finally, in Section 6
we shall give a restatement of our results in terms of complete theories.

1. PRELIMINARIES

We shall work with a first order predicate logic L that is similar to the formal
system developed in [14]. L has individual variables

u, uO’ u1’ T, v, V(): v]_, U, W, WO’ Wl) Tty

an identity symbol =, logical connectives A, \v, T (and, or, not), quantifiers V, &
(for all, there exists), individual constants 1, 0, binary operation symbols +, -, and
a unary predicate symbol P. We refer to [14, pp. 6-15] for the definitions of ferm,
atomic formula, formula, free variable, sentence, polynomial, and abbreviations
such as u - v, nu, u?, u; + *** + u,. The letter n will always be used for an arbi-
trary natural number.

For a detailed exposition of the theory of models we refer to [13]. The discus-
sion below, however, should enable one with sufficient background in algebra to read
this paper.

By a model (for L) we mean a 6-tuple
<M, N, +, -, 0, 1>
where M is a non-empty set, N C M (inclusion in the wide sense), where + and

are binary operations on M X M into M, and where 1, 0 are elements of M. No
confusion will arise from our convention of using the same symbols +, *, 1, 0 as
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names for the operation symbols and constants of L. and as names for their inter-
pretations in a model. We shall also adopt the convention of using the same symbol
for the set of elements of a model as for the model itself. By the power (or cardi-
nality) of a model M we shall mean the power of the set M of all its elements.

If ¢ is a sentence, then the following three statements all have the same mean-
ing: M is a model of ¢; M satisfies ¢; ¢ holds in M. By a tkeory (in L) we
simply mean a set of sentences (of L). If M is a model of every sentence ¢ in a
theory I', we say that M is a model of I'. A theory I' will be said to be consistent
if it has a model. The following compactness theovem is a consequence of Gddel’s
completeness theorem; see [2], for example.

If every finite subset of a theorvy T' is consistent, then T" is consistent.

We shall write M= M' if M and M' are elementarily equivalent to each other.
By the tZeory of M, in symbols Th(M), we mean the set of all sentences that hold in
M. Thus M = M' if and only if Th(M) = Th(M'). It is easily seen that if M = M' and
M is finite, then M' is also finite and, in fact M and M' are isomorphic (see [13],
for example).

We shall also consider the formal system Lg that has all the symbols of L with
the exception of the predicate symbol P, and the formal systems L(C) that are ob-
tained from L by adding a set C of new individual constants c. The notions intro-
duced above will be applied to models for L and L(C) as well as to models for L.
Notice that any formula of Ly is also a formula of L, and any formula of L is also
a formula of L(C).

By a field A we shall understand a model
A=<A +,,1, 0>

for L that satisfies the field axioms (see [16], for example). If A is a field and B
is a subalgebra of A, then by the couple (A, B) we shall mean the model

(A’ B) = <A: B: +, % 13 0>

for L. Thus the couples (A, B) are models for L which satisfy the field axioms

and also the axioms which state that B is closed under the operations of A. It is

not difficult to see that if (A;, B;) = (A,, B,), then A; = A, and B; = B,. On the
other hand, it could well be that A; = A, and B, =B, but not (A, B;) = (4,, B,),

for the embeddings of B; in A; and of B, in A, may differ. We assume a familiar-
ity with the theory of fields, but we shall state some standard definitions and results
as we need them.

If M is a model for L, we denote by (M, m_).¢c the model
(M’ mC)CGC =<M, N, +, -, 0, 1, mC>C€C

for L(C).

2. SPECIAL MODELS

In this section we introduce the important notion of a special model, which is due
to Morley and Vaught [7]. We shall also state without proof those theorems from [7]
concerning special models that we shall need. First we develop some set-theoretic
notation.
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The letter v will always denote an arbitrary ordinal number, and «, 8 will de-
note arbitrary cardinals. We identify cardinals with initial ordinals; thus w is both
the first infinite cardinal and the first infinite ordinal. The confinality of o is
written cf(a) and is defined as the least cardinal B8 such that @ can be represented
in the form @ = Z€<B Y where each Vg is a cardinal less than o. Let

Ol*= Z ZB.
B<la

The following lemma is well known (see [7]).
LEMMA 2.1. There exist avbitrarily lavge cardinals & such that o = o*,

It is easily seen that the statement “a = a* for all infinite @” is equivalent to
the generalized continuum hypothesis. In this paper, however, we shall not assume
the continuum hypothesis. Two cardinals @ such that @ = a* are o = w and

w
a=w+ 29422 4 ..

A set I of subsets of a set X is said to be an ideal of subsets of X if x, y € I and
z C x Uy implies z € I; I is said to be @ -complete if, wherever JC I and J has

power less than «, then U J el

In Definition 2.2 below we shall define the notion of a special model. The reader
will notice that Definition 2.2 is somewhat more involved than the properties of
special models stated in Lemmas 2.3 to 2.5. Furthermore, we shall never have oc-
casion in this paper to use the definition of special models, but shall require only
the properties 2.3 to 2.5. Thus the reader may skip the statement of Definition 2.2
and proceed at once to Lemmas 2.3 to 2.5.

DEFINITION 2.2. A model M for L is said to be special if M is of infinite
power &, and theve exists an I such that:

(i) I is a cf(a)-complete ideal of subsets of M;
(ii) each member X of 1 has powevr less than o;
(iii) M is the union of an ascending chain of members of 1; and

(iv) whenever X € I, M' is anothev model for L such that
(M, m), ex = (M', m), ex,

XcYc M, and Y has poweyr less than o, then theve exists a function f on Y onto
a member of I such that fm = m fov all m € X, and

(My fm)meY = (M" m)meY .

The following result of Morley and Vaught was not explicitly stated in [7] but fol-
lows easily from the definition. For a proof see [5, Lemma 1].

LEMMA 2.3. Suppose that M is a special model of power o, that M'= M, and
that C is a subset of M' of power at most &. Then theve exists a function £ on C
into M such that

(M, fc) = (M', c)

c€C ceC*
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The main theorem of [7] (its Th. 3.5) is the following.

LEMMA 2.4. (a) If M is an infinite model for L and if w < @ = o*, then theve
exists a special model M' = M of power .

(b) Any two elementarily equivalent special models of the same power are iso-
movrphic.

Definition 2.2 and Lemmas 2.3 and 2.4 apply not only to models for L, but also
to any logic L' which is like L but has a different collection of predicate and opera-
tion symbols (for example, Ly or L(C)); in case the logic L' has an uncountable
number B of symbols, Lemma 2.4 (a) requires the additional hypothesis that o > B.
We also need the following result, which is a special case of Theorem 3.7 of [7].

LEMMA 2.5. (a) If (A, B) is a special model of power &, thern B is either
finite ov is also a special model of power .

() If M, m_)_c is a special model of power ¢, then so is M.

3. LEMMAS FROM FIELD THEORY

Let us first recall some algebraic facts, which may be found, for example, in
[11, pp. 113-125]. It follows from Zorn’s lemma that if A is a field and B is a sub-
field of A, then there exists a maximal set C of elements of A that are algebrai-
cally independent over B; such a set C is called an algebraic basis of A over B,

It is known that any two algebraic bases of A over B have the same power, and that
power is called the degree of transcendence of A ovey B. The field A is an alge-
braic extension of B if and only if A is an extension of transcendence degree zero
over B. We need the following classical theorem of Steinitz.

Let Ay, A, be algebraically closed extensions of the fields By, B, such that the
degrvee of transcendence of A1 over B) is equal to that of A, overy B), and let g
be an isomorphism of By onto B,. Then g can be extended to an isomovphism £ of
A, onto A,. .

If, moveovey, h is a one-to-one function on an algebraic basis C; of Ay over
B, onto an algebrvaic basis C, of A, over By, then £ may be chosen so that h c f{.

A special case of the above result is that, for any two fields B; and B, each
isomorphism g of B; onto B, can be extended to an isomorphism f of the alge-
braic closure of B onto that of B,.

The following lemma, which was pointed out to the author by Bjarni Jonsson, is a
corollary of the theorem of Artin and Schreier in [1].

LEMMA 3.1. Let B be a field which is neither veal closed nov algebraically
closed, and let A be an algebraically closed extension of B. Then for each natuval
number n therve exists an element a € A which is not algebraic of degree less than
oy equal to n over B.

Proof. We may assume that A is an algebraic extension of B. By the theorem
of Artin and Schreier in [1], A cannot be a finite algebraic extension of B. Suppose
first that B is a perfect field [16, pp. 121-125]. Then for any element a € A, there
exists an a' € A - B(a); since B is perfect there exists an a" € A such that
B(a") = B(a, a'). The degree of a" over B must be greater than the degree of a,
and the desired result follows. On the other hand, if B is not perfect then B has
prime characteristic p, and for some b € B the p-th root of b is not in B; it fol-
lows that, for each n, the p”-th root of b has degree p™ over B.
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In the lemma below we collect some useful facts that follow easily from the
definitions involved.

LEMMA 3.2. (i) If A, is a field and A, = A, then A, is a field.

(ii) If A, is an algebraically closed field and A, = A,, then A, is algebraically
closed.

(iii) If A, is a veal closed field and A, = A,, then A, is real closed.

4. THE MAIN THEOREM

LEMMA 4.1. Suppose that
(i) A is a field and B is a subfield of A;
(ii) (A, B) is a special model of power o;

(iii) for every natural number n, therve exists an element a € A which is not
algebraic of degrvee at most n over B.

Then the degree of tvanscendence of A over B is .

Proof. Since A is of power o, the degree of transcendence of A over B is at
most a.

Let us consider a set C of @ new individual constants. For each pair of natural
numbers n, Kk, let gn,k(VO’ **+, Vi) be the formula of L. which states that “no poly-
nomial of degree at most n and of k + 1 variables, with coefficients in P, has
Vg, ***, Vi as a root.” We may now form the set A(C) of all sentences

On,%(Cos "5 €1

of L(C) such that cgp, -+, ¢). are distinct elements of C. Then (A', B', a.).ec is a
model of A(C) if and only if the elements a_, c € C, are algebraically independent
over B'.

We shall show that the theory
I = Th((A, B)) u A(C)

is consistent. If 84, 8, € A(C), then it is easily seen that ¢, /\ §, is a consequence
of some member of A(C). Thus to show that I" is consistent, it suffices to prove
that, for each n and k, there exists a k-tuple <a;, -, 8;,, > € AKX which satisfies
the formula 6, 1(vg, *--, v}) in the model (A, B), that is, which is a root of no poly-
nomial of degree less than or equal to n with coefficients in B. For this purpose,
let m = (n + 1)K, By (iii) there is an element a € A which is not algebraic of de-
gree less than or equal to m over B. It follows that no polynomial of k + 1 vari-
ables, of degree at most n, and with coefficients in B, has the (k + 1)-tuple

2 k
<a, a_n+l’ a(n+1) S a(n+1) >

as a root. Thus we may take a;j = a(nt1)) for j=0,1, -, k, and we have shown that
I is consistent.

By the Compactness Theorem, I' has a model (A', B, ¢).¢c- Since

Th((A, B)) c T,
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it follows that (A', B') = (A, B). Hence by Lemma 2.3, there exists a function f on
C into A such that

(A) B’ fC)CEC = (Al; B'; C)CEC .

Then, since A(C) c T', (A, B, fc)cec is a model of A(C), and the elements fc, c € C
are algebraically independent over B. Recalling that C is of power ¢, we conclude
that the degree of transcendence of A over B is at least o.

LEMMA 4.2. Suppose that, for i =1, 2, B is a field, A; is an algebraically
closed extension of Bi, and there exists an element a € A; that is not algebraic of
degrvee at most 2 over B;. If By =By, then (A1, B1) = (A, Bp).

Proof. We first observe that, for i = 1, 2 and for all n, there exist elements
a € A; that are not algebraic of degree at most n over Bj. In case Bj is real
closed or algebraically closed, this follows because A; must be a transcendental
extension; otherwise we apply Lemma 3.1. By Lemma 2.1, there is a cardinal
a > w such that @ = a*, Then by Lemma 2.4 (a), there exist special models
(Ay', By = (A1, By) and (A", Bp") = (A, Bp) of power a. Then the hypotheses (i)
to (iii) of Lemma 4.1 are satisfied when (A, B) = (A;', B;") and when

(A, B) = (A,', B,Y).

By Lemma 4.1, the degrees of transcendence of A;' over B;' and of A,' over B)'
are both «@. Applying Lemma 2.5 (a), we see that B;' and B)' are either finite
fields or special fields of power «. Since B; =B,, By =B;', and B, =B}/, it fol-
lows that B;' = B,'. Thus B;', B,' are either both finite or both infinite. In either
case, there is an isomorphism f on B;' onto B3'; in the infinite case we use Lemma
2.4 (b). By Lemma 3.1 (b), A;' and A;' are both algebraically closed. Therefore
we may apply the theorem of Steinitz to show that f may be extended to an iso-
morphism g on A;' onto A,'. It follows that (A,', B;') and (A,', B,'") are iso-
morphic, and hence elementarily equivalent, so that (A, B;) = (A,, B,).

Theorem A now follows at once from Lemmas 4.2 and 3.1.

5. SOME GENERALIZATIONS

In this section we shall briefly indicate three directions in which Theorem A can
be modified. The first result is analogous to Theorem A, while the next two results
generalize Theorem A.

THEOREM 5.1. Suppose that By, B, are elementarily equivalent fields with
algebraically closed extension fields A,, A, respectively. Let C be a non-empty
set of new individual constants, and suppose that for i = 1, 2 the elements a;., c € C,
of A; are algebraically independent over B;. Then

(A, By, 23 Jeec = (A2, By, 2820)cec -

—. Proof. By Lemma 2.1 there exists a cardinal @ > w such that ¢ = @* and
C < a. By Lemma 2.4 (a), there exist special models

(A1', Bi', 250 )cec = (A4, By, a50)cec

of power o for i=1, 2. In the models (4;', B;', a;c)cec, the elements a;., ¢c € C
are algebraically independent over B;'. By Lemma 2.5 (b), the models (A;', B;')
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are special; since C is non-empty, it follows from Lemma 4.1 that A;' has degree
of transcendence o over Bj'. By Lemma 2.5 (a), B;' and B,' are either special
fields of power a or finite. Since B;' = B,', it follows by Lemma 2.4 (b) that there
is an isomorphism g on Bj' onto B,'. Since C < @, the function ajc—azcon C
onto C may be extended to a one-to-one function h on an algebraic basis on Ay’
over Bj' onto an algebraic basis on A,' over By'. Then, by the theorem of Steinitz
stated in Section 3, g can be extended to an isomorphism f on A;' onto A;' such
that fa, =a,_ for all c € C. Then f is an isomorphism on the model

(Alr’ B, a'lcz)cEC

onto (A,', B,', a5.)cec- It follows that

(A5 By a3 deec = (A2, By 2300 e s

and hence
(A, By, a3 )cec = (A0 By 85 ) cec

Our proof is complete.

Recalling that any subalgebra of a field A generates a unique subfield of A, we
may state the following theorem.

THEOREM 5.2. Suppose that, for i = 1, 2, B; is a model for Lg, A;i is an alge-
braically closed extension field of B;, and theve is an a € A; thal is not algebraic of
degree at most 2 over the subfield genevated by B;. If B) = B, then

The proof of Theorem 5.2 is a straightforward modification of the proof of
Theorem A. It depends on the fact that, since B; is closed under + and -, all ele-
ments of the field generated by B; are of the form (a - b)/(c - d), where
a, b, c,deB; and c # d. As we mentioned in the introduction, the special case of
Theorem 5.2 in which B;, B, are elementarily equivalent to the semiring of natural
numbers was proved by Robinson in [10].

Let us now consider an arbitrary S-termed sequence <P, >,<g of new finitary
predicate symbols, and let Lj', L' be the logics obtained from Lg, L. by adjoining
these new symbols. For each y <8, let P, have t(y) argument places. If A isa
field with a subfield B and each Sy is a t(y)-ary relation on B, then we may form
the model

(B1 S-y)y(ﬁ =<B,+, -, 1,0, S—y>-}/<ﬁ

for Ly' and the model

(A, B, S))ycp = <A, B, +,, 1,0, 8>y <

for L'. The following result may be proved by an easy modification of the proof of
Theorem A.

THEOREM 5.3. Assume the hypotheses of Lemma 4.2, and suppose that Sy is a
tly)-ary relation on B; for vy <B,i=1,2. If

(B1, Siy)y<pg = Bz, S2.) <,
then
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(Al} Bl’ Sl’}/)')/<B = (A2.7 BZ, SZ)/)7<B .
The ideas involved in Theorems 5.1 to 5.3 may be combined in the obvious way

to obtain the following more general results.

THEOREM 5.4. Theovem 5.3 vemains tvue when we assume the hypothesis of
Theovem 5.2 in place of the hypotheses of Lemma 4.2.

THEOREM 5.5. Suppose that, for i = 1, 2, (Bj, Siy)y<p ts a model for Lo', A;
is an algebraically closed extension field of B;, C is non-empty, and the elements
a;., ¢c € C, of A; are algebraically independent over the subfield genevated by B;. If

(Bl, Sl-y)'y<B = (B27 SZ-}/) v<B>

then

(Ag, By, S19, 21c)y<p,cec = (A2, By, Sy 350)y <8 cec -

6. COMPLETE THEORIES

We can state Theorem A and its modifications in a different way, by saying that
certain theories are complete instead of that certain models are elementarily equi-
valent. Indeed, in Robinson’s papers [9] and [10], the results were usually stated in
terms of complete theories. A theory I is said to be complete in L if T" is con-
sistent and any two models (for L) of T" are elementarily equivalent. Thus, for
example, Th(M) is a complete theory for every model M. A theory I is decidable
if the set of all logical consequences of I' is recursive. It is well known (for exam-
ple, see [15], Th. 1) that any complete recursive (or even recursively enumerable)
theory is decidable.

We shall denote by Z the theory consisting of the field axioms together with, for
each n> 0, the formula

Vuguy =~ u, Av(ug + ug*v+ »=+u,*v:=0Vou =0).

n

Thus 2 is a recursive theory in Lg, and the class of models of Z (for Lg) is
exactly the class of algebraically closed fields.

The relativization R(¢) of the formula ¢ of L, or L(C), to the unary predicate P
is defined recursively as follows (for example, see [15], [9]):

if ¢ is atomic, then R(¢) = ¢ ;
R(T¢) = TR(¢);

R A ¥) = R(¢) A RY);

R(p V ¥) = R($) V RY);

R(H x ¢) = T x(P(x) A\ R(¢));

R(V x ¢) = Vx(TP(x) Vv R(9)).

Roughly speaking, R(¢) is obtained from ¢ by restricting all bound variables of ¢
to P. We let R(I') be the set of all R(¢), ¢ €T.



80 H. JEROME KEISLER
Notice that if B is a field, then
% U R(Th(B))

is a theory in L; furthermore, (A', B') is a model of that theory if and only if
B' =B and A' is an algebraically closed extension of B'.

Theorem 6.1 is a restatement of Theorem A.

THEOREM 6.1. If B is a field that is neithey algebraically closed nov real
closed, then the theory

% U R(Th(B))

is complete in L.
COROLLARY 6.2. If B is a field and Th(B) is decidable, then the theory

Z U R(Th(B))

is decidable.

Proof. Let T' = Z U R(Th(B)). Since Th(B) is decidable, it is a recursive set of
sentences. It follows that R(Th(B)) is recursive. Since Z is also recursive, I'" is
recursive. If B is neither real closed nor algebraically closed, then I" is complete
and hence is decidable. In the case that B is algebraically closed, the fact that I"
is decidable is stated by Robinson and follows from the results I and II in the intro-
duction. If B is real closed, the decidability of T follows from the results III and
IV in the introduction.

Although many fields B are known to have undecidable theories Th(B), the only
fields that are known to have decidable theories (and thus satisfy the hypotheses of
Corollary 6.2) are the finite fields, the real closed fields, and the algebraically
closed fields. Moreover, the special cases of Corollary 6.2 that arise when B is
either finite, real closed, or algebraically closed were known to Robinson in [9].
Tarski in [14; note 16], has raised the interesting question whether a simple mathe-
matical characterization of those fields whose theories are decidable can be given,
and this question is still open.

Theorems 5.1 to 5.5, like Theorem A, may be restated in a form analogous to
Theorem 6.1, and they have corollaries analogous to Corollary 6.2. We give such a
restatement only for Theorem 5.1.

THEOREM 6.3. Left B be a field, and let C be a non-empty set of new individ-
ual constants. Let N(C) be the set of sentences of L(C) which states that the ele-
ments of C are algebraically independent over P. Then the theory

Z U R(Th(B)) u A(C)

is complete in L(C).

Note that the set A(C) of sentences introduced in the above theorem is exactly
the same as the set A(C) introduced in the proof of Lemma 4.1. For the following
corollary let us assume that C is denumerable and that we have a suitable Gédel
numbering of the symbols and formulas of the logic L(C).
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COROLLARY 6.4. If B is a field such that Th(B) is decidable, and if A(C) is

as in Theovem 6.3, then the theory

Z U R(Th(B)) U A(C)

is decidable.

10.

11.

12.

13.

14.

15.

16.

17.
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