DIFFERENTIABLE FIBRE SPACES AND MAPPINGS
COMPATIBLE WITH RIEMANNIAN METRICS

Joseph A. Wolf

1. INTRODUCTION

P. A. Griffiths and I recently [3] characterized differentiable covering spaces in
terms of mappings of Riemannian manifolds satisfying a condition on shrinking of
tangent vectors. Here the characterization is extended to locally trivial differenti-
able fibre spaces by means of Ch. Ehresmann’s notion of a connection for a mapping
of maximal rank. Section 2 is an extension of Ehresmann’s theory, culminating in
Proposition 2.3 and its corollaries. Our main results are Theorems 3.5 and 3.6.

I wish to thank Professor R. Hermann for several informative conversations.

2. THE EHRESMANN CONNECTION FOR A
MAPPING OF MAXIMAL RANK

In this section we develop a mild extension of Ch. Ehresmann’s theory [1] of
connections and holonomy for differentiable fibre spaces, in order to establish
terminology and because it does not seem to be in print.

2.1. The holonomy system of the Ehvesmann cornnection. Let ¢: E — B be dif-
ferentiable of rank dim B. Given x € E, consider the subspace

Vey={Xe€E:¢,X=0}

of the tangent space to E at x. The subspace V, is called the vertical space at x,
and dim Vx = dim E - dim B. The vertical distribution is ¥ = {Vi}txer. An
Ehresmann connection for ¢ is a differentiable distribution & = {Hx} xeg on E
that is complementary to 7. Then E, =V, ® H, for every x € E, and ¢ induces a
linear isomorphism of H, onto Bg(y). The space Hy is the hovizontal space at x.

We fix an Ehresmann connection & for ¢: E — B. A tangent vector X € E is
horizontal (respectively, vertical) if X € H, (respectively, X € V,); a sectionally
smooth curve in E is khovrizontal (respectively, vertical) if each of its tangent vec-
tors is horizontal (respectively vertical). Here we make the convention that all sec-
tionally smooth curves are parameterized so as to be regular (nowhere vanishing
tangent vector) on each smooth arc.

Let a(t), ¢ < t< d, be a sectionally smooth curve in ¢(E) C B. Given
x € ¢~1(a(c)), there is at most one sectionally smooth korizontal curve o (t),
c < t<d, in E such that: (i) a,(c) = x, and (ii) ¢ o @, = a. If it exists, o, is
called the hovizontal lift of @ to x. If o, exists for every x € ¢~-1(a(c)), then we
say that o has hovizontal lifts. In that case the {vanslation along o is the map
Yyt o~ (a(c)) — ¢-1(a(d)) given by x — a (d).
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Ehresmann [1] has studied the case where ¢(E) = B and every sectionally smooth
curve has horizontal lifts.

Given u, v € ¢(E), let &,  denote the collection of all translations
¢=1 () — ¢-1(v)

along sectionally smooth curves from u to v with horizontal lifts. &y denotes &yuy,
and B denotes the set of all maps &, X & — Pyw defined by conjunction of trans-
lations (defined only if neither &, nor &, is empty). The holonomy system & of
¢ consists of 8 and all & ..

Each &, is a semigroup under B. If each &, contains a bijective translation
so that all ®,, are isomorphic, then we speak of any &, as the holonomy semigroup
of . If, further, every element of some (and thus every) &,, is bijective, we speak
of any &, as the holonomy group of <.

The following lemma, which is similar to results of Ehresmann, Reeb and others,
illustrates use of the holonomy system.

LEMMA 2.2, Let ¢: E — B be a differventiable map evevywhere of vank dim B.
If u € $(E), then ¢ ~1(u) is a closed regularly embedded submanifold of E. If
Y: ¢-1u) — ¢ ~1(v) is a translation velative to an Ehvesmann connection for ¢ ,then
Y is diffeventiable,

Proof. A vector field on E is vertical if and only if it annihilates the smooth
functions constant on fibres. Thus [X, Y] is vertical if X and Y are vertical. Now
the vertical distribution 7 is integrable, and Frobenius’ Theorem shows that the
arc components of the fibres are submanifolds of E. Since the fibres are closed, by
continuity of ¢, it follows that they are closed regularly embedded submanifolds.

View the Ehresmann connection as a system of ordinary differential equations.
In local coordinates the coefficients are differentiable because H, depends differ-
entiably on x; thus the solution curve at time t depends differentiably on the initial
data. This proves differentiability of ¥. Q. e. d.

Lemma 2.2 allows a short proof of the following results; the first two are due to
Ehresmann [1].

PROPOSITION 2.3. Lef ¢: E — B be a differentiable map of vank dim B, whevre
E is connected and B is paracompact. Suppose that theve exists an Ehvesmann con-
nection o for ¢, relative to which every smooth curve in ¢(E) has horvizontal lifts;
let u € ¢(E), and let the holonomy group d,, of & be given the compact open top-
ology for its action on ¢~1(u). Then ¢: E — ¢(E) is a diffeventiable fibve bundle with
topological structure group ®.,.

Proof. The map ¢(E) is open in B by the rank condition, so we may assume ¢
surjective in the proof. Give B a Riemannian metric, and let u € B, Let U be a
normal coordinate neighborhood of u. Given v € U, let v(t), 0 < t < 1, be the
geodesic arc in U from u to v. We now define a mapping

h: o~ () x U —¢-HU) by (x,v)— v (1),
where v, (t) is the horizontal lift of v(t) to x. The mapping h is surjective because
v*(t) = v(1 - t) has horizontal lifts, and is injective by construction. The retraction

v, (1) — x of $-1(U) onto ¢-1(u) is differentiable, as is the projection

¢: vx(1) — v(1) = v;
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thus h™! is differentiable. This proves that ¢ is differentiably locally trivial. With
this local trivialization, the transition functions have values in the local system
{<I>u} of holonomy groups. Thus we have constructed an Ehresmann-Feldbau bundle
with group &,,.

The product on &, is continuous because we are dealing with the c-o topology.
Continuity of inversion is seen by reversmg the curves based at u. Thus &, isa
topological group, and now &, X ¢~ 1(u) — ¢~1(u) is continuous because we are using
the c-o topology. Therefore &, is a topological transformation group of ¢-1(u).
Now it follows ([2, p. 19]) that the transition functions are continuous. . e. d.

COROLLARY 2.4. Let ¢: E — B be a differentiable proper map of vank dim B,
where E is connected, and wheve E and B ave pavacompact. Then ¢: E — ¢(E) is
a locally trivial diffeventiable fibre space.

Here we recall that a map is called proper if the inverse image of every com-
pact set is compact.

Proof. E admits a Riemannian metric because it is paracompact, and this im-
plies the existence of an Ehresmann connection ¢ for ¢. We must prove that
every smooth curve in ¢(E) has horizontal lifts relative to &#. Our assertion will
then follow from Proposition 2.3.

Let a be a smooth curve in ¢(E). Without loss of generality we may assume
that it is given by a(t), 0<t< 1. If 0 <r < s< 1, then a*’° denotes the restricted
curve a(t), r < t< s. Viewing o¢ as a system of ordlnary differential equations,
one sees that there is a continuous function s(y) on ¢ ~}(a(r)) such that r < s(y) < 1
and a¥:5(Y) has a horizontal lift to y. The function s(y) attains its minimum, say
r', because ¢~!(a(r)) is compact. Now r < r'< 1 and a® *' has horizontal llftS
It follows that the restricted curve a(t), 0 < t < 1, has horizontal lifts. Similarly,
the curve B(t) = (1 - t), 0 < t < 1, has horizontal lifts. This proves that o has
horizontal lifts. @. e. d.

The following corollary summarizes our remarks on Ehresmann connections.

COROLLARY 2.5. Let ¢: E — B be a diffeventiable map of vank dim B, where

E and B are connected and paracompact. Then the following statements ave equi-
valent:

(i) ¢: E — ¢(E) is a locally trivial diffeventiable fibre space.

(ii) There exists an Ehvesmann conneclion for ¢, velative to which every sec-
tionally smooth curve in ¢(E) has horizontal lifts.

(iii) If or is any Ehvesmann connection for ¢, then every sectionally smooth
curve in ¢(E) has hovizontal lifts velative to .

Proof. To see that (iii) implies (ii), we must construct a connection. Choose a
Riemannian metric on E, and define Hy to be the orthogonal complement of the
vertical space Vyx in the tangent space E; for every x € E. Now (ii) implies (i) by
Proposition 2.3, so we need only verify that (i) implies (iii). This being a matter of
integrating horlzontal lifts of vector fields on B, it follows from local triviality.

Q. e d.
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3. METRIC-COMPATIBLE MAPS

. We next define a class of maps to which Proposition 2.3 applies.

DEFINITION 3.1. Let f: M — N be a differentiable map of Riemannian mani-
folds. Then { is metric-compatible if there exists a continuous function A on N
with positive real values that bounds shrinking of certain tangent vectors in the fol-
lowing sense: If x € M and Y € Ng(y), then there exists X € M, such that (i)
£,X = Y and (ii) the length || Y| is not less than A(f(x))]X]-

We list some immediate consequences of the definition.

(3.1.1) Let f: M — N be metric-compatible. Then f is everywhere of rank
dim Nj; in particular, dim M > dim N.

(3.1.2) Let f: M — N be a differentiable map of Riemannian manifolds of the
same dimension. Then f is metric-compatible if and only if f is complete in the
sense of [3]. In that case the differential f, is a linear isomorphism on each tangent
space M.

(8.1.3) The main feature of the definition is that A cannot blow up on the boun-
dary of £f(M) in N. For example, if M is the unit disc in hyperbolic metric and N
is the Euclidean plane, then the inclusion M — N is not metric-compatible.

DEFINITION 3.2. Let f: M — N be a differentiable map of Riemannian mani-
folds, everywhere of rank dim N. Then the associated Ehvesmann connection
o = {Hy } xen iS defined by:

H, is the orthogonal complement of V= Kernel (f* on M,).

The above definition associates an Ehresmann connection with every metric-
compatible map. We define M to be horizontally complete relative to f if every
sgnooth horizontal (for the associated Ehresmann connection) vector field of bounded
length on M, whose image on N under f is a well-defined vector field on N, can be
integrated globally. This definition is justified by the following folk lemma, which
shows that completeness implies horizontal completeness.

LEMMA 3.3. Let X be a differentiable vector field of bounded length on a com-
plete Riemannian manifold M. Then X is globally integvable: given x € M, therve
exists a smooth curve a(t), - < t <, in M such that a(0) = x ard a'(t) = Xy (t)-

We give a proof because we have been unable to find one in the literature. Let I
be a maximal interval containing 0 on which o can be defined with @¢(0) = x and
a'(t) = Xa(t)- The interval I is nontrivial and is open by local integrability of X. It
is thus described by inequalities a < t < b. By hypothesis, ”X” < m for every
y € M. If b < «, it follows that @ ([0, b)) is in the closed ball B of radius mb about
x. The ball B is compact because M is complete; hence a extends to b by con-
tinuity. Thus b = . Similarly, a = -=. Q.e.d.

PROPOSITION 3.4. Let f: M — N be a metrvic-compatible map of connected
Riemannian manifolds. If M is complete, then M is horizontally complete velative
to f. If M is horizontally complete relative to f, then £(M) = N, and every section-
ally smooth curve in N has horizontal lifts relative to the associated Ehvesmann
connection.

Proof. The first statement is contained in Lemma 3.3. Now assume that M is
horizontally complete. We shall lift curves in £(M) and then prove that f(M) = N.
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Let a(t), a < t< b, be a sectionally smooth curve in f(M). We may assume o
to be smooth, for we need only lift its smooth arcs. If a < t < b (respectively,
a = t; respectively, t = b), then there exist a < c < t< d < b (respectively,
a =t < d < b; respectively, a < ¢ < t = b) such that ¢ is one-to-one on [c, d] (re-
spectively, [a, d]; respectively [c, b]; thus we may assume o has no self-intersec-
tions. Now

a(fa,b]) c TcUcCKCN,

where T is a tubular neighborhood, U is open, and K is compact. The derivative
a' is extendible first to T and then to a smooth vector field Y on N that vanishes
off K. The horizontal lift X of Y to M is of bounded length because f is metric-~
compatible and because Y is bounded by compactness of K. Further, X can be in-
tegrated globally, and the horizontal lifts of @ are the appropriate restrictions of
the integral curves through points of f-1(a(a)).

Now we need only prove that f(M) = N. This is done as in [3], with some minor
technical changes. If f(M) # N, then [3, p. 254] gives a geodesic arc a(t), 0<t< 1
(we choose t proportional to arc length) in N such that a(t) € f(M) for 0 <t < 1
and a(1) is a boundary point y of f(M) in N. As above, a' extends to a bounded
vector field Y on N, and X denotes its horizontal lift. Let B(t), - < t < o, be the
integral curve of X through a point of £-1(a(0)), and let {t,} — 1 (0 t, < 1) The
sequence {a(ti)} converges to the boundary point y, and a(tl) = £(3(;)). But
{8(t;))} — B(1), so that £(8(1)) = y, which implies that y is not a boundary point.
Thus f(M) = N. Q. e. d.

Combining Propositions 2.3 and 3.4, we obtain the following extension of the re-
sult of [3].

THEOREM 3.5. Letf f: M — N be a metric-compatible map of connected Rie-
mannian manifolds. Suppose that M is horizontally complete velative to f. Let G
be the holonomy group of the associated Ehresmann connection in the compact-open
topology for its action on a fibve. Then f(M) = N, and f: M — N is a differentiable
Jfibrve bundle with topological structure group G.

We now combine Theorem 3.5 and Corollary 2.5.

THEOREM 3.6. Let ¢: E — B be a differentiable map, wheve E and B are con-
nected pavacompact manifolds. Then the following conditions ave equivalent:

(i) ¢: E — B is a locally trivial diffeventiable fibre space.

(ii) ¢: E — B is the fibve space undevlying a differentiable fibre bundle with
topological structure group.

(iii) ¢ is of vank dim B, E and B admit Riemannian metrvics such that E is
hovizontally complete for ¢, and ¢ is metric-compatible.

(iv) ¢ is of rank dim B. Given a complete Riemannian metric on B, E admits
a complete Riemannian metric (which is in particular hovizontally complete for ¢)
Jor whichk ¢ is metric-compatible.

Proof. Since B admits a complete Riemannian metric, (iv) implies (iii).
Theorem 3.5, (iii) implies (ii). That (ii) implies (i) is seen by throwing away the
structure group. Thus we need only prove that (i) implies (iv).

Let do? and ds be complete Riemannian metrics on B and on E. As usual,
we consider the vertical distribution ¥ = {V_}, .z and the Ehresmann connection



70 JOSEPH A: WOLF

H = {Hx}er, where Hy is the (ds%)-orthogonal complement of V, in E,. We de-
fine a new Riemannian metric ds? on E by the three conditions

(a) ds? and ds? give the same inner product on each V,,
(b) V, L H, under ds?, and

(c) ¢, Hy — B¢(x is a linear isometry if H, is given the inner product from
ds? and Bg(y) is given that of do?.

Now ¢: (E, ds?) — (B, do?) is metric-compatible by construction, and & is the
associated Ehresmann connection by definition and (b) above.

Now assume (i). We must prove that (E, ds?) is complete. Let {x;} be a
Cauchy sequence in E for dsZ, and define Vi = qb(xi). Taking vertical and horizontal
components of any tangent vector X to E, we note that

”X" ds?2 Z ” ¢* X"dO'Z'

so that ¢ decreases distance. Thus {y.} is a Cauchy sequence in B for do? Now
{yi} —y in B because do? is complete. By (i) and Corollary 2.5, &# gives a local
trivialization of ¢-1(U) for some neighborhood U of y, x; = (v, y;) in product co-
ordinates, and ¢(v;) =y. The sequence {v;} is a Cauchy sequence in ¢-1(y) rela-
tive to the metric induced by ds2 because the fibre is closed. Thus it is a Cauchy
sequence relative to the metric induced by ds% because they are the same. Now
{v;} — v because ds{ is complete. Thus {x;} —x=(v,y). @ e. d

REFERENCES
1. Ch. Ehresmann, Les connexions infinitesimales dans un espace fibrve difféven-
tiable, Colloque de Topologie, Bruxelles (1950), 29-55.

2. N. Steenrod, The topology of fibve bundles, Princeton University Press, Prince-
ton, 1951.

3. J. A. Wolf and P. A. Griffiths, Complete maps and differventiable coverings,
Michigan Math J. 10 (1963), 253-255.

The University of California at Berkeley



