ACTIONS OF ELEMENTARY p-GROUPS ON $S^n \times S^m$

L. N. Mann

1. INTRODUCTION

By an elementary p-group of rank k we shall mean a group isomorphic to the direct product of k copies of Z_p (the additive group of integers modulo a prime p). Smith [7] has shown that, for an effective action of such a group on the n-sphere S^n , it is necessary that $k \le (n+1)/2$ if $p \ne 2$ and $k \le n+1$ if p=2. In this paper we extend Smith's result by showing that if an elementary p-group of rank k acts effectively upon $S^n \times S^m$, then

$$\begin{split} k \, & \leq \, \big[(n+1)/2 \big] + \big[(m+1)/2 \big] \qquad \text{for } p \neq 2 \,, \\ k \, & \leq \, n+m+2 \qquad \text{for } p = 2 \,; \end{split}$$

here [x] denotes, as usual, the largest integer not exceeding x. Conner [2] and Heller [4] have investigated the free actions of such groups on $S^n \times S^m$.

Following Smith, we deal with cohomology manifolds rather than with manifolds, and our final result will be stated for a generalized cohomology product sphere rather than for the actual product $S^n \times S^m$. The techniques of this paper will be those used in [5].

2. PRELIMINARIES

An action of a transformation group G on a space X is said to be *effective* if the identity of G is the only element of G that leaves X pointwise fixed; an action is said to be *free* if every element of G, except the identity, moves each point of X. The fixed point set of G on X is denoted by F(G). If H is a normal subgroup of G, there exists a natural action, not necessarily effective, of the quotient group G/H on F(H).

All spaces considered will be compact Hausdorff spaces, and $H^i(X)$ will denote the ith Čech cohomology group of X with coefficient group Z_p (p prime). Our definition of a cohomology n-manifold over Z_p , denoted by n-cm mod p, will be that given in [1]. Roughly speaking, an n-cm mod p is a connected compact Hausdorff space that has a local cohomology structure (coefficient group Z_p) resembling that of euclidean n-space.

We shall need the following results from [5] dealing with the actions of elementary p-groups on n-cm's mod p. Lemmas 2.1 and 2.2 correspond to Theorem 2.2 and Lemma 3.4, respectively, of [5].

LEMMA 2.1. Let G be an elementary p-group of rank k acting effectively on an $n-cm \ X \ mod \ p$ satisfying the first axiom of countability. If F(G) is not empty, then

Received March 7, 1963.

$$k \leq \begin{cases} n/2 & \text{for } p \neq 2, \\ n & \text{for } p = 2. \end{cases}$$

LEMMA 2.2. Let G be an elementary p-group acting effectively, but not freely, on an $n\text{-}cm\ X$ mod p satisfying the first axiom of countability. Consider the set of components

 $\mathscr{C} = \{C \mid C \text{ is a component of } F(K),$ where K runs through the cyclic subgroups of G\}.

Suppose C_M is a component in $\mathscr C$ that is not properly contained by any member of $\mathscr C$, and let K_M be a cyclic subgroup such that $F(K_M)\supset C_M$. Finally, suppose that T is a subgroup of G/K_M leaving C_M invariant. Then T is effective on C_M .

3. MAIN RESULTS

The ith modulo p Betti number of X, denoted by $\beta_i(X)$, is defined as the dimension of the vector space $H^i(X)$. As in [1], $\dim_p X$ will denote the cohomology dimension of X modulo the coefficient group Z_p . If $\dim_p X = n$, we shall say that X satisfies modulo p Poincaré duality provided $\beta_i(X) = \beta_{n-i}(X)$ for all $i \geq 0$. An n-cm X mod p is said to be orientable if $\beta_n(X) = 1$. An orientable n-cm mod p satisfies modulo p Poincaré duality in the above sense [1].

LEMMA 3.1. Suppose X is a connected space such that $\dim_p X = n$, X satisfies modulo p Poincaré duality, and $\Sigma_{i=0}^n \beta_i(X) \leq 4$. If G is an elementary p-group of rank k acting freely on X, then $k \leq 2$.

Proof. If $\Sigma_{i=0}^{n} \beta_i(X) = 1$, then n=0, and X is a point; hence, k=0. If $\Sigma_{i=0}^{n} \beta_i(X) = 2$, then X is a modulo p cohomology n-sphere, and $k \leq 1$ by a well-known result of Smith [7]. If $\Sigma_{i=0}^{n} \beta_i(X) = 4$, then X has the modulo p Betti numbers of a product of two spheres, and $k \leq 2$ by a result of Heller [4]. (Strictly speaking, Heller's results are in the setting of singular homology theory, and one should probably refer to [5, Theorem 2.3] for a proof of the above statement in the present Čech cohomology setting.) Finally, if $\Sigma_{i=0}^{n} \beta_i(X) = 3$, the techniques of [4] or [5] may be used to show that $k \leq 1$. To be precise, one can employ formula (3) of Theorem 2.3 in [5] and obtain a contradiction by letting k=2 and s=n/2.

THEOREM 3.2. Let X be an orientable n-cm mod p, satisfying the first axiom of countability, and with $\Sigma_{i=0}^{n} \beta_{i}(X) \leq 4$. Then, if G is an elementary p-group of rank k acting effectively on X,

$$k \leq \begin{cases} \frac{n+2}{2} & \text{for } p \neq 2, \\ n+2 & \text{for } p = 2. \end{cases}$$

Proof. We consider first the case where $p \neq 2$ and proceed by induction on n. If n = 1, X is a circle and $k \leq 1$. Suppose then that n > 1. By Lemmas 3.1 and 2.1, we may suppose that the action of G is not free and has no fixed points.

Let C_M be a component maximal in the sense of Lemma 2.2, and let K_M be an associated cyclic subgroup, that is, let $F(K_M) \supset C_M$. It will be assumed that C_M is chosen from among the components of largest modulo p cohomology dimension.

By Floyd [3], $\Sigma \beta_i(F(K_M)) \leq \Sigma \beta_i(X) \leq 4$, and hence $F(K_M)$ consists of at most four components. Moreover, G/K_M leaves $F(K_M)$ invariant. We proceed to verify that either G/K_M leaves C_M invariant or C_M is a point.

By Smith [6], each component of $F(K_M)$ is an orientable mod p cm. If C_M is not a point and if G/K_M does not leave C_M invariant, there must be another component of $F(K_M)$ of the same modulo p cohomology dimension as C_M . In this case $F(K_M)$ would consist of precisely two components. Since G/K_M contains no elements of even order, no element of G/K_M could permute the two components of $F(K_M)$; hence, G/K_M would have to leave C_M invariant. We consider now the two cases.

(i) G/K $_M$ leaves C_M invariant. Since C_M is maximal, G/K $_M$ must be effective on C_M by Lemma 2.2. Moreover, C_M is an orientable mod p cm, $\Sigma\,\beta_i\,(C_M) \le 4$, and

$$\dim_{\mathbf{p}} C_{\mathbf{M}} \leq \dim_{\mathbf{p}} X - 2 = n - 2$$
.

We may therefore apply our induction hypothesis to the action of G/K_M on $C_{M^{\bullet}}$. Since this action might possibly be free,

$$\text{k-1} = \text{rank } G/K_{M} \leq \text{max} \left(2, \frac{\dim_{p} C_{M} + 2}{2}\right).$$

Since $\dim_p C_M \leq n$ - 2, we finally conclude that

$$k \leq \max\left(3, \frac{n+2}{2}\right)$$
.

Now $\frac{n+2}{2} \ge 3$ for $n \ge 4$. Hence we need to consider separately the cases n=2, 3. If n=3, C_M is a circle, and hence

$$k - 1 = rank G/K_M < 1.$$

Therefore $k \le 2$. If n = 2, C_M is a point, k - 1 = 0, and k = 1.

- (ii) C_M is a point. Since $F(K_M)$ now consists of at most four points, it is easy to verify that there must exist a subgroup T of G/K_M of rank k-2 that leaves C_M invariant. In fact, if $p \neq 3$, then G/K_M itself must leave C_M invariant. By Lemma 2.2, T is effective on the point C_M . Hence, $k-2=\mathrm{rank}\ T=0$, and k=2.
- If p = 2, we proceed as above, after first noting that k \leq 2 for the circle. Again consider a maximal component C_M and associated cyclic subgroup K_M . We recall that $\Sigma \beta_i(F(K_M)) \leq 4$ and consequently $F(K_M)$ consists of at most four components, each an orientable mod 2 cm. If $F(K_M)$ consists of four components, each component must be a point; if $F(K_M) = C_M$, G/K_M leaves C_M invariant; if $F(K_M)$ consists of three components, either G/K_M leaves C_M invariant or each component is a point. Finally, if $F(K_M)$ consists of two components, either G/K_M leaves C_M invariant, C_M is a point, or $F(K_M)$ consists of two cohomology spheres. Therefore, we have three cases to consider.
- (i) G/K $_M$ leaves C_M invariant. By Lemma 2.2, G/K $_M$ is effective on the orientable mod 2 cm C_M . Moreover, $\Sigma\beta_i(C_M)\leq 4$ and $\dim_2 C_M\leq n$ 1. By induction on n,

$$k - 1 = rank G/K_M \le max(2, dim_2 C_M + 2)$$
.

Hence, $k \le \max(3, n + 2) \le n + 2$.

(ii) C_M is a point. $F(K_M)$ consists of at most four points, and consequently there exists a subgroup T of G/K_M of rank at least k - 3 that leaves C_M invariant [5, Lemma 2.4]. Since T is effective on C_M ,

$$k - 3 \le rank T = 0$$
.

Hence $k \leq 3$.

(iii) $F(K_M)$ consists of two cohomology spheres. In this case there exists a subgroup T of G/K_M of rank at least k-2 that leaves C_M invariant. Since C_M is a cohomology sphere,

$$k$$
 - 2 \leq rank T \leq dim₂ C_M + 1 \leq (n - 1) + 1.

Hence $k \le n + 2$.

COROLLARY 3.3. Let X be an (n + m)-cm mod p, satisfying the first axiom of countability, that has the same modulo p Betti numbers as $S^n \times S^m$. If G is an elementary p-group of rank k acting effectively on X, then

$$k \leq \begin{cases} \left\lceil \frac{n+1}{2} \right\rceil + \left\lceil \frac{m+1}{2} \right\rceil & \text{for } p \neq 2, \\ n+m+2 & \text{for } p = 2. \end{cases}$$

Proof. The case p = 2 follows directly from (3.2).

Suppose now $p \neq 2$. If n or m is odd,

$$\left[\frac{n+1}{2}\right]+\left[\frac{m+1}{2}\right]=\left[\frac{m+n+2}{2}\right],$$

and the corollary follows from Theorem 3.2. If n and m are both even, we proceed to show that the action must have a fixed point, in which case it would follow from Lemma 2.1 that

$$k \leq \frac{n+m}{2} = \left\lceil \frac{n+1}{2} \right\rceil + \left\lceil \frac{m+1}{2} \right\rceil$$
.

Letting $\chi(X) = \sum (-1)^i \beta_i(X)$ (that is, taking $\chi(X)$ to be the modulo p Euler characteristic of X) and using a result of Floyd [3], we conclude that

$$\chi(X) \equiv \chi(F(G)) \mod p$$
.

But $\chi(X) = 4$, and p is an odd prime. Therefore $\chi(F(G)) \neq 0$, and F(G) is not empty.

REFERENCES

- 1. A. Borel *et al.*, *Seminar on transformation groups*, Annals of Mathematics Studies No. 46, Princeton University Press, Princeton, N.J., 1960.
- 2. P. E. Conner, On the action of a finite group on $S^n \times S^n$, Ann. of Math. (2) 66 (1957), 586-588.
- 3. E. E. Floyd, On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952), 138-147.
- 4. A. Heller, A note on spaces with operators, Illinois J. Math. 3 (1959), 98-100.
- 5. L. N. Mann and J. C. Su, Actions of elementary p-groups on manifolds, Trans. Amer. Math. Soc. 106 (1963), 115-126.
- 6. P. A. Smith, Transformations of finite period. II, Ann. of Math. (2) 40 (1939), 690-711.
- 7. ——, Permutable periodic transformations, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 105-108.

University of Virginia Charlottesville, Virginia