PUSHING A 2-SPHERE INTO ITS COMPLEMENT
R. H. Bing

1. INTRODUCTION

We investigate the extent to which a closed set in E3 can be slightly pushed to
one side of a surface. One of the main results (Theorem 2.1) states that if U isa
complementary domain of a 2-sphere S (possibly wild) in E3, then U can be
slightly shoved into U plus a Cantor set. We show in Theorem 5.1 that for each
¢ > 0 there exists a Cantor set C on S and an e-map f: S— U + C that takes S - C
homeomorphically into U. This and other related results are given for surfaces in
3-manifolds as well as for 2-spheres in E3.

Wilder has given a converse for Theorem 5.1 in which he shows [19] that a com-
pact locally connected continuum S in E3 is a topological 2-sphere if its first
homology is trivial, if S separates E3, and if for each ¢ > 0 and each component U
of E3 - S there exists a Cantor set C on S and an e-map f: S— U+ C. He gives a
corresponding characterization for 2-manifolds, where instead of supposing that the
first homology of S is trivial, he supposes it is finitely generated, and he insists
furthermore that C does not locally separate S.

For a 2-sphere S in E3 we use Int S and Ext S to denote respectively the
bounded and the unbounded components of E3 - S. In case D is a cell, we use Bd D
to denote the combinatorial boundary of D, and Int D to denote D - Bd D.

The distance function is denoted by D. In case f, g are maps of a set A into a
metric space, we use D(f, g) to denote the least upper bound of D(f(a), g(a)), a € A.
We call a map f an g-map if D{f, I) < ¢, where I is the identity map. A null se-
gquence of sets is a sequence of sets whose diameters converge to zero. We use
V(X, €) to denote the set of all points q whose distance from X is less than &. We
call V(X, ) the e-neighborhood of X, but we note that this is only a special sort of
neighborhood of X. In general, we call any open set containing X a neighborhood of
X.

A subset X of E3 (or of a triangulated manifold M) is called fame if there exists
a homeomorphism h: E3 — E3 (or M — M) such that h(X) is a polyhedron. A
closed set which is a topological complex but for which there exists no such homeo-
morphism is called wild. They say that X islocally tame at a point p of X if there
exists a neighborhood N of p and a homeomorphism h of N onto a combinatorial
cell that takes N-X onto a polyhedron. We say that X islocally tame mod K if X
is locally tame at each point of X - K. A finite graph is the sum of a finite number
of arcs (topological segments) such that if two of the segments intersect each other,
the intersection is an end point of each.

There are several criteria for determining whether or not a 2-sphere in E3 is
tame [1, 3, 4, 8, 9, 11, 13, 14, 16]. One of the most useful of these [4] says that a 2-
sphere is tame if its complement is 1-ULC. Using I'™ to denote an m-cell, we say
that a set Y is n-ULC if for each € > 0 there exists a 6 > 0 such that each map of
Bd I™*! into a 6-subset of Y can be extended to map I™t! into an &-subset of Y.
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We say that a set Y is locally simply connected at a point p of Y if for each neigh-
borhood N; of p there exists a neighborhood N, of p such that each map of Bd 12
into N,-Y can be extended to map I% into N; -Y.

Suppose S is a 2-sphere and D;, D,, **- is a null sequence of mutually exclusive
disks in S such that 2 D, is dense in S. Any set homeomorphic with S - Z Int D;
is called a Sievpifiski curve or universal plane curve. A Sierpifiski curve X in E3
is called tame if there exists a homeomorphism h: E3 — E3 such that h(X) lies in a
horizontal plane. A point in the image of one of the Bd D;’s is called an accessible
point of the Sierpinski curve, and an image point of S - ¥ D; is called an inacces-
sible point. Accessible points have the property that they lie on arcs in the Sierpin-
ski curve that do not locally separate it, but inaccessible points do not have this
property. Hence, the property of being an accessible point is a topological property
(Theorem 3.2 of [6]). It has been shown [18] that any two Sierpinski curves are
homeomorphic, and that if X;, X, are two Sierpifnski curves in the same plane P,
then there exists a homeomorphism of P onto itself taking X; onto X,.

In the last section of this paper we prove some theorems about tame Sierpinski
curves. It was shown in [5] that for each 2-sphere S (possibly wild) in E3 there
exists a tame Sierpinski curve X in S such that each component of S - X is small.
We show in Section 9 that certain sets in S can be buried in such tame Sierpinski
curves: This enables one to construct tame arcs in S with great abundance and
some precision. Tame arcs may be extended to bigger tame arcs. Tame arcs are
accessible at interior points from either side with other tame arcs. Triangulations
of S with tame 1-skeletons can be refined by other triangulations with tame 1-
skeletons. David Gillman [10] and Joseph Martin have obtained results of this type.

C. E. Burgess read an early version of this paper, and the author is indebted to
him for some helpful comments.

2. FREEING ALL BUT A CANTOR SET

THEOREM 2.1. Suppose S is a 2-spherve in E3 and U is a component of E3 - s.
Then for each € > 0 there exists a Cantov set C on S and a map f: U —U + C
such that

Df, D <e,
f=1o0n U - V(S ¢), and
f is a homeomovphism on U - £71(C).

Proof. We shove U “almost” into U with a sequence of shoves. At intermediate
stages it is permitted that parts of U be moved into E3 - U provided they go into
certain controlled neighborhoods of certain open 2-simplexes on S. The theorem
will follow from one application of Theorem 3.3 of the next section and then repeated
applications of Theorem 3.2,

Let T; be a curvilinear triangulation of S of mesh less than £€/4 such that the
1-skeleton K3 of T; is tame. That there exists such a triangulation follows from
[5]. Let U; be an open set containing S - K; such that each component of U; is of
diameter less than £/4, and such that for each component U;; of U; there exists a
2-simplex D; of T; with Int D;; c U;; and S:U,;; = D;;. Note that U, -K; = 0.
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We find from Theorem 3.3 that there exists a homeomorphism
fl:U1+U+K1 —’U1+U

such that D(f;, I) < £/2. In applying Theorem 3.3, we let T; be both the T; and T,
of the statement of that theorem, and U; both the U; and the U,, and we let U be
Ext S.

Let TZ be a curvilinear tr1angu1at1on of S of mesh less than £/8 such that T,
refines T; and the 1-skeleton K of T is tame. That there exists such a re-
finement follows from Theorem 9 2 of the last section of this paper. Let U;'Z be an
open set containing S - K} such that U}, c U;, each component of U} is of diameter
less than &/8, and for each component Ub; of U} there exists a 2-simplex Dj; of
T, with Int D5; c U; and S-Ub; = Db;.

It follows from Theorem 3.2 that there exists a homeomorphism
f,: U, +U+K, »U,+U+K,

such that f; =I on (U + Kj) - U; and f, takes each component of Uj into itself.
Since f;(U) c U; + U, £,£,(0) c U, + U. Since each component of U; is of dia-
meter less than £/4, D(f,, I) < /4.

The homeomorphisms f;, f, we have defined are the first two terms of a se-
quence of homeomorphisms f;, f,, f3, --- such that D(f;, I) < £/21. Hence the
sequence f;, £, f;, f3f, f;, - converges to a continuous map f that moves no point
as much as €. We note that since £, f;(U) c U} + U, K, - f,£;(U) = 0. We wish to
preserve this property for the limit map f, and with this end in mind we subdivide
T 5 before reapplying Theorem 3.2. If we were to define f; before subdividing, we
m1ght pull points of £ fl(U) near K,.

Let T, be a curvilinear triangulation of S such that T, refines T}, the 1-
skeleton K, of T, is tame, and for each 2-simplex Dj; of T) there is a core 2-
simplex D,; of T, such that

1 !
D);-f,f,(0) c Int D,; c D,, c Int D}

We pick such a core D;; for Dj3; even if D};-f, fl(U) = 0. Let U, be an open set
containing S - K, such that U, c U}, such that U};-f,£;(U) c U,; (where Uj; is
the component of U, associated with the core 2-simplex Dj; of T, in Int D};), and
such that for each component U,; of U, there exists a 2-simplex D3j of T, with
Int D; C Up; and S- U,; = Dy;. Note that f,£;(U) c U, + U. When we apply £3, we
shall not pull points of flz fl(Uf near K ) since f3 reduces to I on f,f;(U) - U, and
takes each component of U, onto itself.

We are now ready to define f3. Skipping details of how we go from T3 to T3,
we find the following: a triangulation T3 of S that refines T, so that the 1-skele-
ton K4 of T3 is tame; an open set U3 containing S - K3 such that U3 c U,, each
component of U; is of diameter less than £/16, and for each such component Ug;
there exists a 2-simplex D3; of T3 with Int D3; € Ug; and S-Us; = D3;; a homeo-
morphism f5: f, f (U) — Uz + U such that

f3 =1 on fzfl(ﬁ) - Uz,
£3(U,;- £, £,(0)) € U,; for each component U,; of U,, and
f£,£,£,(0) Us; =0 if D3;-K, # 0.
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Continuing in this fashion, we define Ty, K4, Uy, f4, Tg, K5, Ug, fg, . As we
noted previously, f;, f; fj, 13 fz fj, --- converges to a continuous map f. It takes U
into U. Since f(U) misses each K;, f(U) - S is at most a closed 0-dimensional set
C' (which in turn lies in a Cantor set C). Since f; is a homeomorphism and is the
identity except very near S, f is a homeomorphism on U - £-1(C).

3. FREEING 1-SKELETONS

In this section We take care of some housecleaning details and justify some of the
steps used in the proof of Theorem 2.1. For concreteness of treatment we deal with
Ext S rather than the arbitrary set U of the previous section.

THEOREM 3.1. Suppose

S is a 2-sphere in E3
T, is a curvilinear triangulation of S whose 1-skeleton K| is tame, and

U, is an open set containing S - K, such that fo'r each component U11 of U,
there exists a 2-simplex Dy; of T so that Int D,; € Uy; and S- U11 =Dy,

Then for each open set V containing S - K, there exists a homeomovphism
f: U; + ExtS+ K; —V+ ExtS+K,

such that £ =1 on Ext S+ K; - U;.
Proof. Let g be the continuous real-valued function defined on S by the relation

3

g(p) = minimum (D(p, E> - U}), D(p, E> - V).

It follows from Theorem 7 of [2] that there exists a homeomorphism h of S into
K, + V such that for each point p of 5 - K,

D(p, h(p)) < g(p) and
h(S) is locally tame at h(p).
It follows from [9] that h(S) is tame, and from Theorem VI 10 of [1 5] that
V + Ext S = V + Ext h(S) D Ext h(S).
We now describe a homeomorphism
f: U, + Ext S+ K, — Ext h(S) + K,
satisfying the conclusion of Theorem 3.1. The homeomorphism f is fixed except on

the U,; and takes each of these into itself, so we define only the part f; of f re-
stricted to ‘U]_ ie

Let abcd be a solid tetrahedron in E3 and p; a point of h(S) - (K; + Dp;). Since
h(S) is tame, there exists a homeomorphism h;: E3 — E3 such that

h, h(S) = Bd abed,  h;h(Dy;) = abc,  h h(p,) = d.
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By pushing some points radially away from d, one finds that there exists a homeo-
morphism f}: E3 — E3 such that

f; = I outside Int abed + hy(V-U;;) and

f1h.(U;;) € E> - abcd = Ext Bd abed.
Then
-1
THEOREM 3.2. Suppose S, T,, Ky, U; are as in Theorvem 3.1, and T, is a
curvilinear triangulation of S such that T, vefines T, and has a tame 1-skeleton
K,.
Then for each open set U, containing S - K, there exists a homeomovphism
f: U; + Ext S+ K; — U, + Ext S+ K;
such that
f=1IonK; +ExtS-U, and
f takes each component of U, into itself.
Pyroof. This result follows from the proof of Theorem 3.1 if we insist that
K, c h(S) c U, + K;; so we suppose this. The homeomorphism f is the homeomorph-

ism f of Theorem 3.1.

The theorem is true without the hypothesis that T, refines T;, but we made the
simplifying assumption because it is part of the context in which we used the theorem.

THEOREM 3.3. Suppose S, Ty, K, Uy, Ty, K,, U, are as in Theorem 3.2.
Then for each € > 0 theve exists a homeomovphism

' U, +ExtS+ K; = U, + ExtS
such that
f'=1 on ExtS - V(S, ¢),
£'(Uy;) € V(Uy;, &) for each component U,; of U,, and
f' moves no point of (K, + Ext 8) - U, more than ¢ .

Proof. The homeomorphism f' is the homeomorphism f of Theorem 2 followed
by a homeomorphism that shoves h(S) + Ext h(S) into Ext h(S).

Of course, Theorems 3.1, 3.2, 3.3 hold as well for Int S as for Ext S.
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4. SIMPLE CONNECTIVITY OF THE COMPLEMENT OF A 2-SPHERE

The following is an application of Theorem 2.1.

THEOREM 4.1. Suppose S is a 2-sphere in E3. For each £ > 0 there exists a
0> 0 and a sequence of Cantor sets Cy, Cp, +++ on S such that if J is a simple
closed curve in E3 - S of diameter less than & such that D(J, S) > 1/i, then J can
be shrunk to a point on an ¢-subset of (E3 - S) + Cj.

In addition the following theorem holds.

THEOREM 4.2. Suppose S is a 2-sphere in E3 and U is a component of
E3 - S. Then theve exists a 0-dimensional Fy-set ¥ on S such that U+ F is
1-ULC.

Proof. It follows from repeated applications of Theorem 4.1 that an F,-set F
exists such that to each ¢ > 0 there corresponds a 6 > 0 such that, for each disk
D, each map of Bd D into a 6-subset of U can be extended to map D into an €-sub-
set of U+ F. We show that U + F is 1-ULC by showing that each map f of Bd D
into a (< 0)-subset of U + F can be extended to map D into a 3¢-subset of U + F.

We suppose that D is a round planar disk and that the closed set f'l(F) is O-
dimensional. Let pj q;, p2d3, *-- be a null sequence of mutually exclusive secants
for D such that the closure of each component of D - Z p;q; is a disk which misses
f'l(F), and such that f can be extended to map Bd D + Z p;q; into a subset of
U + F with each f(p; q;) contained in U.  That the p;q;’s can be chosen so that f
can be so extended follows from the fact (Theorem 5.35 in Chapter II of [20]) that
U is 0-ULC. Only a few of the f(p;q;) will have large diameters, and we discard
them so that the diameter of the image of Bd D and the remaining p;q;’s is less
than 6. For convenience in notation we suppose none were thrown away. Since F
can be extended to map each component of D - Z p;q; into a small subset of U + F
(in no case requiring an image with a diameter as much as ¢ but in most cases re-
quiring a much smaller image), f can be extended to map D into a subset of U + F
that lies in an ¢-neighborhood of f(Bd D + Z p; q;).

5. PUSHING A 2-SPHERE “ALMOST” TO THE SIDE

THEOREM 5.1. Suppose S is a 2-spheve in E3 and U is a component of
E3 - 8. Then for each € > 0 there exists a Cantor set C on S and a map g of S
into U + C such that D(g, I) < € and g takes S - C homeomovphically into U.

Proof. Let 6 be a positive number so small that each d-subset of S lies in an
e/2-disk in S.

It follows from Theorem 2.1 that there exists a Cantor set C; on S and a map £
of S into U+ C; such that D(f, I) < 6/2 and f is a homeomorphism on S - f-1(C;).
Each component of f'l(Cl) is of diameter less than & and lies in an g/2-disk on S.

As pointed out in Theorem 9 of [7], there exists a component Y- of S - f’l(C 1)
such that each component of S - Y is of diameter less than g/2. Also, as pointed
out there, there exists a map f; of Y onto S such that D(f;, I) < £/2, and such that
for each point p of S, fil(p) is either a point of Y or a component of Y - Y.

Let C, be a Cantor set in S that contains f; (Y - Y). Thena C and a g satisfy-
ing the conclusion of Theorem 5.1 are

N

C=C;+C, and g(p) =7l (p).
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Questions. Is a 2-sphere S in E3 tame if for each ¢ > 0 and each component
U of E3 - S there exists an e-map f: S — U? Hempel has shown [14] that S is
tame if there exists a homotopy Hi(s) (0<t< 1, s€8) of S into S+ U such that
Hy =1 and H(S) c U for t> 0. Is S tame if for each Sierpinski curve X on S
there exists a homotopy H; of X into X + U such that Hy = I and H¢(X) c U for
t> 0? Burgess has shown [8] that S is tame if there exists such an H; and if in
addition each H; is a homeomorphism and Htl(X) . th(X) =0 if t; # t,.

6. PUSHING TO THE SIDES OF SURFACES

In the preceding sections we have dealt with 2-spheres in E3, but since we were
dealing with them only locally, our results apply equally well to arbitrary two-sided
2-manifolds embedded in 3-manifolds.

THEOREM 6.1. Suppose
M3 is a connected 3-manifold,
M? is a connected 2-manifold in M3 that separates M3,
U is a component of M3 - MZ, and

g is a nonnegative continuous veal function defined on M3 such that g is
positive on an open subset V of M?2.

Then there exists a 0-dimensional subset C of V and a map £: U — (U - V) + C
such that

D(x, {(x)) < g(x),
f is a homeomovphism on U - £71(C).

In fact, for each neighbovhood N of V there exists such an f that is the identity on
U - N.

Proof. We suppose g =0 on M?Z - V.

The only change of approach used here over that used in the proof of Theorem 2.1
is to start with a triangulation T; of V such that each 1-simplex of T; is tame,
each 2-simplex D; of T; lies in an open 3-cell O; of diameter less than the mini-
mum value of g on O;, and such that D; lies in an open subset of M2 which in turn
lies on a 2-sphere in O;. This is possible by Theorem 5 of [4]. We take small mu-
tually exclusive open subsets U; in the O;’s about the Int D;’s and shove as before—
first freeing the 1-skeleton of T; and then in a countable number of steps freeing
all but at most a Cantor set on each Dj.

The following result follows from the methods used in the proof of Theorem 4.2.

THEOREM 6.2. Suppose M3, M2, U are as in Theovem 6.1. Then theve exists
a 0-dimensional Fy-set ¥ on M% such that U + F is locally simply connected at
each point of M2,

Duplicating the arguments used in proving Theorem 5.1, we obtain the following
extension of it.

THEOREM 6.3. Suppose M3, M2, U are as in Theovem 6.1. Then for each
e > 0 theve exists a closed O-dimensional set C on M2 and an &-map
f: M2 — U + C such that f takes M2 - C homeomorphically into U.
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7 FREE GROUPS

We now set forth some known results from algebra [12, Chapter 7], one of which
we use to prove a topological theorem that will help us in the next section.

Consider a group expressed with generators and relations. An element of the
group is an equivalence class of words where the letters of the words are generators
and their inverses. If the group is free, two words belong to the same equivalence
class if and only if one can be changed to the other with a finite number of opera-
tions, where each operation consists either of the insertion of two adjacent letters
xx-1 somewhere in the word or the cancellation of two such letters. The following
result shows that any word that can be reduced to the trivial word can be so reduced
with cancellations alone.

THEOREM 7.1. For a free group, any wovd that belongs to the equivalence class
of the identity element contains two adjacent letters, one of which is the invevse of
the other.

Proof. Suppose w; isa word in the equivalence class of the identity. Then
there exists a sequence wj, Wy, ***, W, such that w, has no letters and w;;; is ob-
tained from w; by either ad]acently inserting two letters xx-! somewhere in the
word or cancellmg two such letters. We suppose that the operations of cancellation
and insertion have been performed so as to minimize the number of steps in going
from w; to w, (the word with no letters). We show that in this case, each operation
was a cancellation. This will establish the theorem.

Suppose not each operation was a cancellation. There exists a j such that the
operation of going from w; to wj4) was not a cancellation but all the following
operations were cancellations. W1th no loss of generality, we suppose that w; is
the shortest word in the equivalence class of the identity element with the property
that

1) W; cannot be reduced to w, by cancellation alone, but

2) Ww; can be changed, with one insertion, to a word that can be reduced to w,,
by cancellation alone.

Suppose wj+1 results from Wj by inserting xx-1 somewhere, and Witz results
from w;,; by cancellmg yy~*. Since wjp differs as a word from wj, neither of
the letters inserted is one of the letters cancelled. Let w' be the word obtained
from w; by cancelling the same yy-! as was cancelled in going from w, j+1 to w
This leads to a contradiction because w' is shorter than W; and has propertles (J
and (2) mentioned above. Hence the theorem follows.

We do not need the following two results in this paper, but they are listed since
they follow from the same methods and seem of interest.

THEOREM 7.2. If w and w' ave words in the same equivalence class of a free
grvoup, then they can be veduced to the same wovd by cancellation alone.

. Proof. Theorem 7.2 is an immediate consequence of Theorem 7.1 if we consider
that ww'-1 is equivalent to the trivial word w'w'-1l.

Suppose G = {aj, a5, +»+ /r; =r, = --- = 1} is a group and two words belong to
the same equivalence class if one can be changed to the other with a finite sequence
of operations of the following types:

1) Insert an aj;ay! or an aj;la; somewhere.

1

2) Imnsert r; or ry somewhere.
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3) Cancel r, or r{l somewhere.

1 1

4) Cancel a;a;" or aj a; somewhere.

There is no need of operations of type 3, since any such operation can be re-
placed by one of type 2 followed by a sequence of those of type 4. The following
theorem shows that these can be done in a prescribed order.

THEOREM 17.3. If two words arve equivalent, it is possible to change the first to
the second by fivst pevforming a finite number of operations of typel, then a finite
number of type 2, and finally a finite number of type 4.

Proof. We prove the theorem by showing that if w, can be changed to w, by
one operation of type 1, 2, or 4 (say of type j) and w, can be changed to w3 by tak-
ing the operations in the prescribed order, then w; can be changed to w3 by opera-
tions in the prescribed order.

Casel. j = 1. This order of operations is already as prescribed.

Case2. j=2. Let w; =vyVv, and w, =vrv,. Change w; =v;Vv, to
vir -1y flvlrvz by a sequence of operations of type 1. Since v;r-1 Vil can be
changed to 1 by one operation of type 2 and a sequence of type 4 (and by hypothesis
virvy can be reduced to w3 by operations in the prescribed order), interspersion
of these operations reduces vj r-1 vilv, rv, to w3 by a sequence of operations in
the prescribed order.

Case3. j=4. Let w) =v; xx~1 v, and w, = v v,. Change wIl =vyxx~lv, to
Vi xx-1 vil vy v, by operations of type 1. Since each of v, xx-1 vi' and vjv, can be
reduced by operations in the prescribed order, their product can also be reduced.

Finally we come to the topological theorem responsible for our excursion into
group theory.

THEOREM 7.4. Suppose D;, D,, -+-, D, is a finite collection of mutually exclu-
sive polyhedral disks in E3 and J is a polygonal simple closed curve in general
position with vespect to ZD; that can be shrunk to a point in E3 - ZBdD;. Then, if
J intersects X D;, theve exists an avc axb in J that intersects Z D; only at its end
points and such that xa and xb abut on the same D; from the same side.

Proof. We suppose, without loss of generality, that each D; lies in the same
horizontal plane. Theorem 7.4 then follows from Theorem 7.1, since the fundamental
group of E3 - = Bd D; is a free group on n generators. A loop corresponds to a
word, where a letter x of the word is represented by the loop crossing a D; in one
direction and the inverse x-! of the letter is a crossing in the other direction. The
letters in the word are ordered as the crossings of the D’s by the loop. We note in
the following paragraph why a trivial loop corresponds to a word in the fundamental
group of E3 - =ZBd D;, which is in the equivalence class of the identity element.

Suppose E is an oriented 2-simplex, p, is a vertex of E, and { is a map of
Bd E into E3 - Bd D; such that f(py) goes to the starting point used in computing
the fundamental group of E3_.Z BdD;. The map under f of the positively oriented
path around Bd E starting and ending at py represents a loop. For each loop there
corresponds a word whose letters are ordered in the order that the loop crosses the
D;’s and the letter a; or ai"l is assigned to the crossing according to whether the
crossing is from below or above. If the loop can be shrunk to a point in E3 - ZBdD;,,
then the map f can be extended to map E into E3 - ZBd D;. We call this extended
map f also, and we suppose that it is so nice that there exists a triangulation T of
E such that f takes each 2-simplex of T homeomorphically onto a 2-simplex in E3
without vertices on any of the D;’s. By shelling T, we get a sequence of disks
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E=E, E,, E3, ***, E,;, such that E | is a single 2-simplex of T and each E;_; is
the sum of E; and such a single 2-simplex. We suppose that E | misses each Dj;.
The word corresponding to f(Bd E;) belongs to the same equivalence class as the
word corresponding to f(Bd E;,;), since each the words are the same or one word
can be changed to the other by the single insertion or deletion of two letters of the
sort xx-1. This is because the boundary of each 2-simplex of T either misses a
D; or crosses it twice in opposite directions. Since f(Bd E, ) corresponds to the
word with no letters, f(E) corresponds to a word in the equivalence class of the
identity.

8. SPHERES LOCALLY TAME MODULO SIERPINSKI CURVES

In a certain sense the theorems of this section are generalizations of the result
of Doyle and Hocking [9] that a 2-sphere is tame if it is tame modulo a tame finite
graph. We use the results of this section only mildly in the rest of this paper (to
help establish Theorem 9.2, which in turn was used in the proofs of Theorems 2.1
and 6.1), but the results have outside interest and will be used extensively in another
paper to give a simplified proof of the result that any open subset of any two-sided
surface in any 3-manifold can be “almost” approximated from either side.

THEOREM 8.1. Suppose X is a tame Sievpiiiski curve that lies in a 2-spheve S
(possibly wild) in E3. Then Jor each € > 0 there exists a 6> 0 such that each simple
closed curve of diameter less than b in E3 - S can be shrunk to a point on an & -
subset of E3 - X.

Proof. We suppose with no loss of generality that X lies in a horizontal plane P.

Since each component of P - X is 0-ULC and P - X contains only a finite num-
ber of such components with diameters greater than g/3, there exists a 6 > 0 such
that each pair of points of the same component of P - X whose distance apart is less
than & can be joined by an arc in P - X of diameter less than £/3. We show that
this is the 6 promised by the theorem. Note that 6 < g/3.

Suppose J; is a simple closed curve in E3 - S of diameter less than 6. Without
. loss of generality we suppose that J; is polygonal and contains no vertex on P. We
show that if N is the convex hull of the £/3-neighborhood of J;, then J; can be
shrunk to a point in N - N-X. In the easy case that J; misses P, we can shrink J;
to a pointin N - N-P and hence in N - N-X. We show in any case that J; can be
shrunk by reducing the number of points in J, - P.

Let Dy, Dy, ++-, D, be the closures of the components of P - X intersecting J;.
It follows from Theorem 7 of [2] that there exists a 2-sphere S' in E3 - J; that
contains Bd D; + Bd D, + --- + Bd D, | and is locally polyhedral

mod Bd D} + Bd Dy + - + Bd D,,.

It follows from [9] that S' is tame. Hence, J; can be shrunk to a point in E3 - S'.
In particular, J; can be shrunk to a point in E3 - (Bd D} + Bd D, + +-+ + Bd Dp,).

For convenience we suppose each D; is a disk. (If some D; were unbounded,
we would replace it with a disk D; such that Bd D; = Bd D; and D; € D; + Bd C,
where C is a large oriented cube whose interior contains X + J;.) Hence we sup-
pose the D,;’s are mutually exclusive polyhedral disks.
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It follows from Theorem 7.4 that there exists an arc p; x; q; of J; that inter-
sects P only in its end points, and p;, q; belong to the same component of P - X.
Let p; y; q; be an arc in P - X of diameter less than /3 such that

J, =W -p1x391) +P1 Y1 Q)

is a simple closed curve. Shrink J; to J, in N - X by leaving the points of

J; - p1X;4d; fixed and moving points of p; x; q; along rectilinear segments to

points of p; y; q;. In a neighborhood of p; y; q we shove J, slightly to one side of
P and onto a polygonal simple closed curve JZ that 1ntersects P in two fewer points
than J; does. It follows again from Theorem 7.4 that, unless J2 misses P, some
arc p, x, q, of J, intersects P only at its end points and has its end po1nts on the
same component of P - X. Let p,y,q, be a polygonal arc in P - X of diameter
less than £/3 such that J; = (JZ - P2X,4q3) + P, Y2 d, is a polygonal simple closed
curve. Push J straight to J3 in N, and adjust J3 to J3 by pushing J3 in a
neighborhood of P> ¥ 4, slightly to one side of P.

We continue this procedure and get a sequence of polygonal simple closed curves
Jqi, I, I3, I3, J5, - , Jo, J5 such that each can be pushed to the next in N - N-X and
J' misses P. Smce J]'rl can be shrunk to a point in N - N- P, J, can be shrunk to a
pomt in an g¢-subset of E3 - X,

Although Theorem 8.1 was stated only for simple closed curves, each map of a
simple closed curve into E3 can be approximated by a homeomorphism. Hence, we
have shown that each map of Bd I% into an ¢-subset of E3 - S can be extended to
map 12 into an e-subset of E3 - X, It is in this form that we use Theorem 8.1 in
the proof of the following result.

THEOREM 8.2. A 2-spheve S in E3 is tame if it is locally tame modulo a
tame Sierpinski curve X in S.

Proof. We show that S is tame by showing that E3 - S is 1-ULC. See Theorem
2 of [4].

It follows from [9] that the closure of each component of S - X is a tame disk.
Let §; be a positive number so small that each 6;-subset of one of these disks lies
in a subdisk of diameter less than £/3. Let 0, be a number promised by the pre-
v1ous theorem such that each simple closed curve of diameter less than 6, in

- S can be shrunk to a point on a 3,-subset of E3 - X,

Let f be a map of Bd I2 intoa & 2-subset of E3 - S. Then f can be extended to
map I% into a 6;-subset of E3 - X. Let Y be the component of 12 - £-1(S- £(12))
containing Bd I2, Let g be a map of I2 into f(Y) + (S - X) such that each compo-
nent of 12 - Y is sent into a disk in S - X of diameter less than e£/3. Since each
such disk in S - X is tame, we can adjust f slightly in a neighborhood of 12 - Y
by shoving to one side of these disks so that the adjusted g(I%) misses S.

It may be convenient to use Theorem 8.2 in the following more general form.

THEOREM 8.3. Suppose S is a 2-spheve in E3, X is a time Sievpinski curve
in S, and U is an open subset of S such that S is locally tame at each point of
U - X, Ther S is locally tame on U.

Proof. To show that S is locally tame at a point p of U, use Theorem 8 of [2]
to adjust S to a 2-sphere S' such that S' contains X, S' is locally tame mod X,
and S' agrees with S in a neighborhood of p. Since S' is tame by Theorem 8.2, S
is locally tame at p.
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We can extend Theorem 8.2 as follows.

THEOREM 8.4. A 2-spheve S in E3 is tame if it is locally tame modulo the

sum of a finite number of tame Sievpinski curves X1, Xy, vy Xpe

Proof. 1t follows from repeated applications of Theorem 8.3 that S is locally

tame mod X, + X3 + .-+ + X, locally tame mod X3 + X4 + +-- + X, -, locally tame
mod X, and finally locally tame everywhere. Hence it is tame.

Our arguments apply to arcs as well as to Sierpinski curves, so we have the fol-
lowing generalization.

THEOREM 8.5. Suppose S is a 2-sphere in E3; X1, X5, **+, X, is a finite col-
lection of subsets of S such that each is either a tame finite grvaph ov a tame Sier-
pinski curve; U is an open subset.of S such that S is locally tame at each point of
U-U-(X} + X, + -+ X,). Then 8 is locally tame on U.

9. BURYING SETS IN SIERPINSKI CURVES

THEOREM 9.1. Suppose S is a 2-spheve in E3 and K is a tame finite graph
(or tame Sierpinski curve) in S. Then for each ¢ > 0 therve exists a tame Sievpinski
curve X on S such that each point of X is an inaccessible point of X and each com-
ponent of S - X is of diameteyr less than €.

Proof. We deal only with the case where K is connected, since the general case
can be treated in an analogous manner. We suppose diameter K> g.

It follows from Theorem 1 of [5] that there exists a tame Sierpifiski curve X; on
S such that each component of S - X, has diameter less than €. For each integer
i> 1, let X; be a tame Sierpinski curve on S such that X; c V(K, 1/i), and such that
each component of S - X; of diameter more than ¢/i is at a positive distance from K.
The existence of such Xj’s follows from the facts [5] that we can get tame Sierpifiski
curves in S with arbitrarily small holes and that we can cut out parts of these curves
that are far from K. The required Sierpinski curve X will lie in K + Z Xj.

Let G; be the decomposition of S such that an element of G; is either an inac-
cessible point of X; or the closure of a component of S - X;. Let G be the decom-
position of S such that the element of G containing p is also a component of the in-
tersection of the various elements of the G; that contain p. No element of G sepa-
rates S. Also, G has only a null sequence of nondegenerate elements, and none of
these intersects K. The sum of these nondegenerate elements is dense in S. Using
the fact that the decomposition space of G is a 2-sphere [17], we find that there
exists a null sequence of mutually exclusive disks D;, D,, **- in S such that each
of these disks has diameter less than £, none of them intersects K, and each non-
degenerate element of G lies on the interior of one of the disks. Then
S - ZInt D; = X is the required Sierpifnski curve.

We show that X is tame by showing that K + Z X; lies on a tame 2-sphere. Ad-
just S to a 2-sphere S' such that S' contains K+ ZX; and S' is locally tame
mod K + Z X;. It follows from Theorem 8.5 that S' is locally tame mod K, and from
another application of Theorem 8.5 that S' is locally tame everywhere—and hence
tame.

The following theorem is an application of Theorem 9.1.

THEOREM 9.2. Suppose S is a 2-spheve in E3 and T, is a triangulation of 8
such that the 1-skeleton of T, is tame. Then for each ¢ > 0, theve exists a triangu-
lation T , of mesh less than ¢ such that T, vefines T, and the 1-skeleton of T, is
tame.
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