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INTRODUCTION

With reference to the value-distribution theory of Rolf Nevalinna [13], modern re-
search is confronted with a problem formulated by Oswald Teichmiiller [17] as fol-
lows: '

If W is a simply connected Riemann suvface ovev a w-spheve, then it is known
that W can be mapped one-to-one and conformally onto either the disk l € | <1, the
plane € + o, or the complete {-sphevre, so that W becomes a single-valued function
of €, W= W(8). The value-distvidution of this function is to be investigated.

We are as yet far from a general solution of the main problem of geometric
value-distribution. However, there are two special classes of surfaces for which the
solution is attainable. The two classes are formed of those surfaces whose graphs
(in the sense of Speiser [15], Nevanlinna [13] and Elfving [2]) are formed of a finite
number of simply periodic ends or doubly periodic ends. For these classes we have
given explicit formulas for determination of order, defect and branch-indices.

In the present paper we obtain further geometric properties of the distribution of
a-points of a meromorphic function in one of the two classes described.

1. THE GRAPHS

We first consider some elementary properties of the graphs. We restrict atten-
tion to a simply connected Riemann surface over the w-sphere, with all branch or
boundary points lying over a finite number of base points aj, ***, a,. We connect
these points by a simply closed path L which separates the sphere into a positively-
circulated region J (inner region) and a negatively-circulated region A (outer re-
gion). The points above L on the Riemann surface form axes which together provide
a cell decomposition of the surface; each cell is a half-sheet lying over J or over A,
We now choose one point (node) in each such half-sheet. If two half-sheets have one
or more boundary axes in common, then we join the corresponding nodes by an arc.
The result is a graph in the surface, dual to the graph formed by the axes of the cell
decomposition. Each such graph has a finite or infinite set of inner nodes (indicated
by small circles) and outer nodes (indicated by small crosses), as shown in Figure 1.

To a branch point of order n, there corresponds a polygon with 2n vertices in
our graph. If n = 1, the basic point is covered simply; and n =« corresponds to a
logarithmic branch point in the w-sphere and to a “logarithmic elementary region”
in the surface.

Following E. Ullrich [19] we now choose a rational function R(t) and form the
function w = R(e%). The inverse function has a Riemann surface with two logarithmic
branch points, over the points R(0) and R{o) of the w-sphere. [If R(t) = (t + t71)/2,
we obtain the function w = cos z.] It is evident that each graph for a surface of this
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type is simply periodic. One half of such a graph we call a periodic end. If a sur-+
face has a graph formed of several periodic ends emanating from a common nucleus
(see Figure 2), then, by definition, the surface belongs to one of the two classes men-
tioned in the Introduction. Between two adjacent periodic ends there is a logarithmic
elementary region. We can determine the value-distribution of the corresponding
function (meromorphic for |Z| < ) from the graph alone.
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Figure 2

In addition to the simply periodic graphs obtained from the functions R(eZ%), we
are interested in doubly periodic graphs which are obtained in similar manner with
the aid of doubly periodic functions (see Figure 3). One half of such a doubly periodic
graph is called a doubly periodic end. From the two graphs shown in Figure 3, we
obtain the two ends shown in Figure 4. Doubly periodic ends were first mentioned by
E. Ullrich [18] and O. Teichmiiller [17].

A graph may consist of several doubly periodic ends. Or it may consist of sev-
eral simply periodic and doubly periodic ends emanating from a common nucleus; in
this case, it is clear that between two adjacent ends there must be a logarithmic
elementary region. For surfaces whose graphs are of either of these two types, the
value-distribution can also be calculated from the graph alone.

In an earlier investigation [9], it was shown that the surfaces capable of repre-
sentation by doubly periodic ends have no deficiencies. This is also valid for the
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mixed class. It is thus clear that one doubly periodic end suffices to remove the de-
ficiencies caused by simply periodic ends (Figure 5).

2. APPLICATION OF FUNCTION THEORY

For the study of our special class of surfaces, quasiconformal mappings are
especially suitable. By a quasiconformal mapping we shall mean a topological map-
ping w = T(Z) of a plane domain @ of the z-plane (z = X + iy) onto a domain A of
the w-plane (w =u + iv) having continuous partial derivatives with respect to x and
y except at certain isolated points. Thus |dw/dz| is in general dependent on
arg dz = ¢. The dilatation quotient D is defined as the ratio of major to minor axis
of the image ellipse of an infinitesimal circle;

= = aw | . i
(2.1) D—Dz/w—m;x'dz -~ min

¢ d

In general, some restriction is imposed on the values of D in 9. One has neces-
sarily D> 1, and D =1 at a point implies conformality at that point. The following
relation is useful for computation:

2.2) D(z) = |K| +VK*-1, K=

Let w(z) be a quasiconformal mapping of the z-plane onto the w-plane such that
w(e) =0, If w(z) deviates only slightly from conformality—for example, if the inte-
gral

(2.3) , S 5 (Dy /g - DY

2
|z|>To IZI N

u,Z{+ u§+v,2{+ vf;
u

DO =

Ny = UV

converges—then one has the relation of Teichmiilier and Belinsky [16], [1]:

(2.4) w=Tz{1+ e(z)} (T" = constant, lim g(z) = 0).

Z |— 00

The distortion formula contained in this theorem was proved by Teichmiiller [16]and
Wittich [22]; the former established the formula with the aid of the modulus theorem;
the latter established it by applying the differential equation of Ahlfors. The distor-
tion formula states that a circle with large radius is mapped on a curve differing
slightly from a circle. The torsion formula contained in the theorem was recently
proved by Belinsky [1]. He made use of various auxiliary theorems, some of which
are due to Grotzsch and Lavrentieff. According to Belinsky’s result, convergence of
the integral (2.3) implies that arg w. varies only slightly as |z| —«, with

arg z = constant. (Recently, R. Nevanlinna [14 ] has also proved the torsion formula,
but under stronger hypotheses.)

In order to determine properties of the value-distribution, we decompose the
Riemann surface into a finite number of parts. We then uniformize the parts by cor-
responding functions and piece together the images with the aid of quasiconformal
mappings satisfying (2.4). The result is a composite quasiconformal z-image of the
Riemann surface which, by known theorems, is also quasiconformally related, in the
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sense of (2.4), to the conformal image of the Riemann surface in a {-plane. Accord-
ingly, we are able to determine the desired properties in the quasiconformal z-
image instead of the conformal {-image. This possibility will frequently be ex-
ploited in the investigations to be described.

The uniformization of a surface with simply periodic ends is carried out as fol-
lows.

First we place a closed curve C about the nucleus, which consists of a finite
number of inner and outer nodes. The portion enclosed by C corresponds to a com-
pact subregion on the Riemann surface. As such, it is of no significance for the
asymptotic relations of value-distribution and can be disregarded in the following.

Our second step is to consider the logarithmic branch point a,. If we enclose an
in a sufficiently small circle of radius t, the branch element |w - a,| <t can be
mapped conformally onto a half-plane by means of a logarithmic function. In this
manner, p half-planes are obtained as images of the p branch elements.

The third and last step concerns the strip-neighborhood of the simply periodic
ends. After uniformization of the nuclear region and the logarithmic elementary re-
gions, there remain p half-strips corresponding to these ends. These regions on
the Riemann surface are uniformized with the aid of the inverse functions of
Wn = Rp(exp &,) (n=1, 2, -+, p), where Ry (t) is the rational function associated
with the nth periodic end. The p half-strips must be joined to the p half-planes
along corresponding boundaries, 'in accordance
with the corresponding decomposition of the Rie-
mann surface; this is achieved with the aid of
quasiconformal mappings, as shown schematically Z
in Figure 6, where ej, e, -+, ey, ey are the n
halves of periodic ends. We now arrange these
new half-planes in the proper manner alternately e
over the negative and positive real axis in a Z- 0 g
plane (z = Rei?). It remains to identify the free €7 ' 3
edges. To achieve this, we make use of the spiral
mapping

(2.5) | 7 = 7@ +iB

by which the Riemann surface is mapped from the
Z-plane to the z-plane. In the mapping Figure 6

_p __log A
(2-6) a= 2: B - 2.” ’

where

LWy Wy e wy

Tl oyl eee i *
wj) w3 wp

Here w, denotes the number of inner nodes (which equals the number of outer nodes)
on the right-hand boundary of one period of the end, and w;, is the corresponding
number for the left-hand boundary. Right and left are interpreted relative to the nu-
cleus. By virtue of (2.6) and spiral mapping,
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.2log A
p(1-1— )/
(2.7) 7 =z p 27 )

Thus our Riemann surface W has been uniformized quasiconformally and, by
(2.4), there is an asymptotic equation

(2.8) | ¢=yz{1+¢e(@}.

Thus it is permissible, as stated above, to observe first the properties of the value-
distribution in the z-plane and then to transform these to a conformally related -
plane by means of (2.8). '

A simple example of doubly periodic ends is shown in Figure 4a. Without loss of
generality, we normalize the base points a; (i =1, 2, 3, 4) of the surface so that
a, +a,+ ag=0 and a, = ©». The only logarithmi¢ branch point is at a,. We uniform-
ize a circular neighborhood of this point by a logarithmic function mapping it into a
Z-plane (as for the simply periodic ends above). The second step is the mapping of
the remaining region of the Riemann surface onto a half Z-plane by means of the in-
verse of the Weienstrass i(o-function: that is,

w

(2.9) Z=X+iY=S awv____ ., k.

a, Viaw3- B,W - g3

Again the two Z half-planes can be joined by means of quasiconformal mappings in
accordance with (2.4). If doubly periodic ends such of those in Figure 4b occur, the
Weierstrass {P-function is replaced by an elliptic function of the form.

(2.10) f(u) = Rllbo(u)] + ' (w) Rz[go () ].

For the mixed class in which the graphs have p simply periodic ends and q
doubly periodic ends, the uniformization is carried out as in the previous cases. It
is evident that we now have p + 2q half-planes, which must be joined alternately -
over the negative and positive real axes. In this case also a spiral mapping analogous
to (2.5) converts the surface.into a schlicht z-plane with the desired identification of
the two remaining free edges.

We have now given a survey of the theory of siniply and doubly periodic ends. In
the following sections we investigate the problems of the maximum modulus and of the
distribution of a-points for certain entire and meromorphic functions.

3. ON THE MAXIMUM MODULUS OF SOME ENTIRE FUNCTIONS

We now treat those transcendental entire functions that have Riemann surfaces’
representable by graphs formed of a finite number of simply periodic ends. Thus
the point w =« remains uncovered.

We select three exceedingly simple graphs S,, S, and S; (Figure 7) and choose
-1, +1, « as base points in the w-plane. For these three cases we seek the points
¢ for which
M(r) = w(l),

where M(r) is the maximum modulus of w({) for |§| =r,
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For the graph S, we can exhibit the function explicitly; it is the function
w = cos V¢, which assumes its maximum modulus on the negative real axis, as can
be shown by a simple calculation. The roots of the equation cos V€ + 1 =0 are to
be found on the positive real axis. -

For the graph S, it is no longer possible to describe the function explicitly in an
elementary manner. For this reason we employ the uniformization methods of Sec-
tion 2 and obtain as image in the z-plane a half-plane, as shown schematically in
Figure 8a. Since in this case w, = w), it follows that g8 = 0; our function (2.5) reduces

y 4 y4
M(r)

i 2

Figure 8a Figure 8b

to Z = Vz. Clearly the maximum modulus in the uniformized z-plane is taken on a
ray arg z = constant, According to (2.9), the maximum modulus for the function as-
sociated with S, will be found on the conformal image of a ray.

For the graph S, (Figure 7) the analysis is different. This graph has asymmetry
with reference to the boundary nodes. The spiral mapping (2.5) now has constants
=1/2 and 8 = -(2n)~'log 3 (Figure 9). The ray arg Z = 7/2 in the Z-plane, on
which the maximum modulus is assumed, is transformed into the logarithmic spiral

(3.1) log r = ~——3

In this case also we deduce from the formula (2.8) that the transcendental entire
function w = w({) corresponding to S; has its maximum modulus on a curve, only
slightly deviating from the logarithmic spiral (3.1).
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4. DISTRIBUTION OF THE a-POINTS

Again those functions are of interest that have graphs represented by one of the
following:

1. a finite number of simply periodic ends;
2. a finite number of doubly periodic ends;

3. a combination of p (p < «) simply periodic ends and q (g < <) doubly periodic
ends.

Our task is to determine for such functions the distribution or arrangement of the
a-points in the {-plane. Two cases must be distinguished, those in which 8 = 0 and
those in which 8 # 0.

Applying known methods, we first uniformize the Riemann surface piecewise and,
after the desired identification, we obtain a surface over the Z-plane consisting of
parallel periodic strips of width 27i (this concept has no meaning for quasiconform-
ally mapped domains, but that is of no import for our asymptotic investigations).
Over this Z-plane, the a-points lie on straight lines Y = h. We must now map these
straight lines onto the z-plane or the {-plane.

We consider first the case 8 = 0. This leads to the transformation z = Zl/ a
(@ >1/2), or :

x=X*" -( ‘;—1) xot-2y2 ( ':_1) X4yt L

(4.1). :
-1 - -1 -l
y=(% x"l'lY--(“ )xa By,
1 3
We shall consider the following special cases:

a=1/2: x=X2-Y? y=2Xh;

a=1: x=X, y=h
o=3/2: x=X/ +—£1§‘h2X“‘4/3 +vee,  y =§hX'1/3 + eee,

If we use polar coordinates: Z = Reif, z = rei®, with
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XZ T he -1 h
R = vX%+ h?, 0 = tan %+ 07,

we obtain the representation in the z-plane:

a log r = log X + O(t?),
(4.1")

ad =%+ n7 + O(t?),

with t = h/X.

By the distortion theorem, the a-points (zeros of w({) - a) are to be found in the
¢ -plane in narrow strips, which can be determined by means of transformations (4.1)
and (4.1').

If 8+ 0, the straight lines Y = h have the following representation:

(@2 +B2)logr =a log X+ B% + Bnrw + O(t?) ,

(4.2)

(@2 + 8% =~Blog X+ a-g+ ann + O(t?) ,
or
(4.2" Blogr+ a¢=§+ nm + O(t?),

from which it follows that, for |X|— « ,
(4.2M) Blogr+ a¢=nr.

Again, in accordance with the distortion theorem (2.4) or (2.8), the a-points are to
be found in narrow strips with spiral boundaries, called briefly spiral strips.

5. EXAMPLES

Example 1. We take the graph S, of Figure 7a. Here « = 1/2 and 8 = 0. In the
z-plane, the a-points lie on parabolas, as shown in Figure 10; in the figure, a cross
denotes an' a-point for which a lies in the neighborhood of the logarithmic branch
point, and a small circle denotes an a-point for which a lies near w = +1. The
transformation to the {-plane is obtained here, as in the cases to follow, from (2.8).

Example 2. We consider the graph S,. Here a = 1/2, 8 = -(27)~!log 3. A neigh-
borhood of the end is mapped onto a spiral strip in the z-plane (Figure 11). The
boundary spirals of the strip are asymptotic to the logarithmic spiral

log r = (log 3)"1¢.

In the figure, a cross denotes an a-point for which a lies near the logarithmic
branch point, and a circle denotes an a-point for which a is near w = +1.
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Example 3. Let us consider the graph of Figure 12a with two simply periodic
ends. Here we have o =1, 8 = 0. The two ends are mapped by (4.1) onto a parallel
strip of finite width, as shown in Figure 12, A cross denotes an a-point for which a
is near the logarithmic branch point. There are also algebraic branch points over
a,;, so that additional a-points are located in the parallel strip. The circles denote
a-points for which a is near a, (where there is an logarithmic branch point).

Example 4. The surface has a graph as shown in Figure 13a; here a =1,
B = -(2m)~'log 2. Both ends are mapped onto narrow spiral strips in the z-plane.
The discussion is similar to that of Example 2 (Figure 11). The cross denotes an
a-point for which a is close to a,.

Example 5. A final example of simply periodic ends is indicated in Figures 14a
and 14b. In Figure 14a', the end e; approaches a region in the z-plane containing
the ray arg z = 27j/3 (j = 1, 2, 3). The boundary curves approach the ray asymptoti-
cally, As |z| —s o, the arguments of the a-points approach 27j/3. The cross denotes
an a-point for which a is near the logarithmic branch point at a,. For the graph of
Figure 14b, the images of the rays 0 = nr are determined by (4.2"). The ends
e, €,, €3 in the z-plane contain the corresponding spirals. The boundary curves of
the regions approach the spirals (4.2") asymptotically.
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Figure l4c
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Example 6. We study the distribution of a-points for the graph shown in Figure
15. The asymmetry is due solely to the simply periodic ends. The doubly periodic
ends are almost exclusively responsible for the value-distribution, in particular, for
the counting function n(r, a), so that we can restrict our attention to a-points arising
from these ends. Because of the double periodicity, a typical a-point distribution in
the Z-plane lies over an infinite number of straight lines Y = h;; thus, from our pre-
vious analysis, it is apparent that the distribution in the z-plane is along two double
families of spiral curves. The result is shown schematically in Figure 16.

Example 7. If we have only one doubly periodic end, a distribution following a
spiral can be achieved only under the condition that the boundary be asymmetric, as
illustrated in Figure 17. The spirals in the z-plane are similar to those in Figure
16.

Example 8. If we consider only a half of a double periodic end (Figure 18), we
speak of a quarter-end. The quarter-ends are highly interesting from the point of
view of value-distribution. As in Example 7, the boundaries can be asymmetric, so
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Figure 21

that the a-points lie on spirals. The uniformization over the Z-plane shows that in
this plane the a-points lie over rays (Figure 19a). Figure 19b shows the distribution
of a typical a-point in the z-plane.

Example 9. We conclude our examples by the graph of Figure 20. The figure
consists of four quarter-ends with certain relative asymmetries. It is evident that
the a-point distribution is given schematically by Figure 21.
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