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1. Introduction

Let H* be the Banach algebra of bounded analytic functions on the open unit disk
D. We denote by (H *°) the maximal ideal space &f*, the set of nonzero mul-
tiplicative linear functionals off *° endowed with the weé&ktopology of the dual
space offf . Identifying a point inD with its point evaluation, we think ab as
a subset oM (H*). Forgp e M(H®™), putKerp = {f € H*®; ¢(f) = 0}. Then
Kerg is a maximal ideal inH>°, and for a maximal ideal in H> there exists
Y € M(H®) such thatl = Kery. For f € H*™, the functionf(go) = ¢(f)on
M(H®) is called theGelfand transfornof f. We can identifyf with f, so that
we think of H* as the closed subalgebra of continuous function&gi *°). Let
L be the Banach algebra of bounded measurable functiod®ofMhe maxi-
mal ideal space of.> will be denoted byM (L*°). We may think ofM (L*°) as a
subset ofVf (H*°). ThenM (L) is the Shilov boundary off *°, that is, the small-
est closed subset @f (H*°) on which every function irH* attains its maximal
modulus. For a subsédi of M(H®), we denote the closure & by E. A nice
reference for this subject is [4].

For f € H*, there exists a radial limif (¢'?) for almost everywhere. Lét be
a bounded measurable function &b such thatfoz” log|h|df/2n > —o0. Put

27 ,if ) do
fz) = exp(/ ¢tz log|(e™)] —) zeD.
0o € 2

iO_Z

A function of this form is calleduter,and| f(e?®)| = |h(e’?)| almost everywhere.
Afunctionu € H* is calledinnerif |u(e’®)| = 1a.e. ordD. For a sequencg,,},
in D with Y~ (1 — |z,]) < oo, there corresponds a Blaschke product

o0 -
—Zn 2 — Zn
b(z) = ——, zeD.
nl_[=1 [Z,] 1= 2,2

A Blaschke product is calleidterpolatingif, for every bounded sequence of com-
plex numberda,},, there exist&i € H* such thati(z,) = a, for everyn. For a
nonnegative bounded singular measuré: # 0) onaD, let
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i0
Yu(z) = eXp(— / etz du), zeD.

e —z

Theny, is inner and is called aingular function. It is well known that every
function f in H* can be factored in a produ¢t= gk, wheregq is inner and: is
outer. Itis also well known that every inner functigican be factored in a product
g = BS, whereB is a Blaschke product anflis a singular function [4; 11].

For a subseE of M(H™), let I(E) = ({Kerg; ¢ € E} be the intersection
of maximal ideals associated with pointsih For f € H®, let Z(f) = {¢ €
M(H®>®); ¢(f) = 0} be the zero set of. In this paper, we assume that every ideal
is nonzero and proper. For an iddah H*, putZ(I) = ({Z(f); f €1}; then
I C I(Z(1)). AnidealI is calledprimeif, for any f, g € H* with fg € I, we
have f € I or g € I. There are many studies of prime idealsHi¥°; see [5, 15,
16, 17]. Recently, Gorkin and Mortini [7, Thm. 1] have proved that a closed prime
idealI of H* is an intersection of maximal ideals, thatis= 1(Z(1)). And they
pointed out that i/ is a (nonclosed) prime ideal such thatl ) N M (L) = ¢,
then the closure of is an intersection of maximal ideals; that is= 1(Z(I)),
wherel is the closure of in H>.

Let E be a closed subset 81 (H*°) \ D such thatE N M (L) = @. Let J(E)
be the set of functiong in H* that vanish on some open subsets (depending on
f) of M(H®)\ D containingE. ThenJ(E) is an ideal ofH*. In [8, Thm. 4.2],
Gorkin and Mortini also showed tha(E) = I(Z(J(E))).

Itis a very interesting problem to determine the class of ideatstisfyingl =
I(Z(I)). But it seems difficult to give a complete characterization of these ideals.

In Section 2, we shall introduce the following condition on idefala H* to
study the problem wheh = I(Z(I)) holds.

() Forany O< o < 1and for any subset of D such thatZ(I) N A = ¢, there
exists am € I such thaf|i||, < land|k| > o On A.

We shall prove that if satisfies conditioria), thenl = I(Z(I)). We shall also
give some examples of idealssatisfying condition«).

In Section 3, we study an ide#{ /) of H generated by a noninvertible outer
function f in H*. We shall show that there exist noninvertible outer functions
f andg satisfyingI(f) = I(Z(I(f))) andI(g) # I(Z(I(g))). As an applica-
tion of the theorem given in Section 2, we shall characterize noninvertible outer
functions f satisfyingl (f) = I(Z(I(f))).

2. Closure of Ideals

In order to prove thaf = I(Z(I)) for a closed prime ideal of H*, Gorkin
and Mortini [7] used the following formula given by Guillory and Sarason [10,
pp. 177-178]. LeR be an open subset @i such thabR N D is a system of rec-
tifiable curves. Then
F F
—dz = f —dz (2.1)

)

op U RND U
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holds for F € H* and an inner functiom satisfying|u(z)| < g for z € R and
lu(z)| > a forz€ D\ R, where O< o < 8 < 1. Formula (2.1) is used in several
papers; see [9; 13; 14]. We note thatifs not inner, equation (2.1) does not hold.
In this paper, we need another formula, which is similar to (2.1). The following
theorem is interesting in its own right.

THEOREM 2.1. Letf € H®, || fllo =1, and0 < ¢ <1/2 <o < 1 LetR be
an open subset oD such thatdR N D is a system of rectifiable curves satisfying
(i) 1f@)| <eforzeRr.

We assign the usual orientation @R. PutI" = dR N D. Leth be a function in
H®> such that)|h]l. =1,

(i) 0 <1/2 < |h(z)| forze D\ R, and

(i) |h(e®)| > o for almost every® € aD with | f(e?)| > .
Then

<4 +1-0)|F]1

/—dz— fFhdz

for everyF € H®, where| F||; = [02”|F(e"9)| de/ 2.
Proof. ForO<r <1, putD, = {z€ D; |z| < r} and
G, =D, \R. (2.2)

We assign the curves G, the usual positive orientation. Lét, be a subset of
aD such that

rA, = 9G, N dD,. (2.3)
Let F € H*. Then by Cauchy’s theorem,
F
/ —d +/ f—dz:O. (2.4)
aG.np, N
By (ii) and the dominated convergence theorem, we have
/ —dz /—dz asr — 1 (2.5)
aG,ND,
Put A A
E ={e"cdD; |f(e"?)] > ¢). (2.6)
Then

/ fFhdz —/ fFhdz
E aD

< / \fFRIlZ] < el Flle.  (2.7)
AD\E

By (iii) and o > 1/2, we have

/—dz—/fFfzdz

Therefore, by (2.7),

/_dz—foFﬁdz

<41 -0)llF]1.

= (e+4Q-0o)IlF]1. (2.8)
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By (ii), (2.2), and (2.3)|h| = 1/2 onrA,. Hence

fF
/Ar\E(7>(7’Z) dz

asr — 1. Then, by (2.6),

lim sup'/ (ﬁ)(rz) dz
r—1 AN\E h
By (2.4),
e[ () [.5)
—d — dz = — — dz.
/z;G,mD, h e Ena\ N (re)dz ' ANEN T (ra)de

Hence
F F
/ f—dz—i—r/ <f—)(rz) dz
dG,ND, h ENA, h

Fore? € E, by (i) and (2.6) we havee’ ¢ R for r (0 < ¢ < 1) sufficiently close
to 1. Then, by (2.2) and (2.3)%zna, (e??) — xr(e'®) asr — 1 for almost every
pointe’ in 3D. Hence by the dominated convergence theorem,

r/ <f—F>(rz)dz — / ﬁdz asr - 1 (2.10)
Ena\ N g h

Thus, forF € H*°, we obtain

/F =
/—dz—/ fFhdz
r h D
—f —dz—/ fFhdz

aG,np, "

/ —d +/ —dz
3G, ND,
F
= lim sup{/ f—dz+r/ <f—>(rz)dz
r—1 |Jag,np, N Ena\ h

<4 +1-0)llFllz (by(2.9)),

where the last equality follows from (2.10). O
Recall condition(«):

() ForanyO< o < 1and asubset of D suchthatZ(/) N A = @, there exists
anh eI suchthaf|i|| < land|k| > o OnA.

The main theorem of this paper is the following.

<2 [(fF)(rz)||dz] — 2/ [(fF)(@)|ldz]
AD\E

AD\E

< 2¢||Fll1.

lim sup

r—1

< 2¢|[Fl1. (2.9)

=lim

r—1

(by (2.5))

< lim sup

r—1

+(+41—-0)IFl1 (by(2.8)

+ (e +41—-0o)IIFl1

THEOREM 2.2. Let I be an ideal inH*> satisfying condition(«). Then/ =
I(Z(1)).

In order to prove our theorem, we need the following lemma due to Bourgain [2,
pp. 165-166]. We denote biy* the usual Hardy space ob.
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LemMma 2.3. Let f e H® with || f|l.o < 1 Then, fore > 0, there exists an open
subsetr of D such thatdr is a system of rectifiable curves and

(i) |f]l <eoOnR,
(i) [fI=d(e)onD\R,
(iii) fopap|Flldz] < C|F|1 foreveryF e H®,
whereé(e) is a fixed positive function ef(independent of), 8(¢) < ¢, andC is
a universal constant.

Proof of Theorem 2.2Let f € I(Z(I)) and| f|l«» = 1. We shall prove thaf €

I. Takees as O< ¢ < 1/2. Then, by Lemma 2.3, there exigte) (0 < 8(¢) < ¢)
and an open subs@&tof D such thabR N D is a system of rectifiable curves, say
I' = dR N D, satisfying the following conditions:

|f(2)| <e if zeR, (2.11)

|f(z)] = 8(e) if ze D\ R, (2.12)

/|F||dz| <C|F|ly for FeH™, (2.13)
r

whereC is a universal constant.

SinceZ(I) C Z(f) Cc {x e M(H®); | f(x)| < 8(¢)} and sincd satisfies con
dition (), there exists a functioh € I such that|x|l.c = 1 and|k| > 1— ¢ on
{ze D; | f(z)| = 8(¢)}. Then, by (2.12),

|h(z)] >1—¢ for ze D\ R. (2.14)

Put
E ={e"cdD; |f(e"?)] > ¢). (2.15)

Fore'® e E, by (2.11) we havee™ ¢ R for t (0 < ¢ < 1) sufficiently close to 1.
Hence, by (2.14),
|[h| >1—¢ ONE. (2.16)

Applying Theorem 2.1 fos = 1— ¢, we have

/—dz—/DfFﬁdz

By (2.11), (2.13), and (2.14), we have

< 8¢|F|1 for Fe H™. (2.17)

—dz

< —/|F||dz| < 2Cs||F|y for Fe H™. (2.18)

Hence, by (2.17) and (2.18), we obtain

/ fFhdz
oD

where(C; is another absolute constant. Sink®/H* is the dual space of the
Banach spaceH?, it follows by the preceding fact and in the same way as in [10,
pp. 177-178] thall fh + H*| < Cie. Hence|| f|h|> + hH*®| < Cie. By (2.15)
and (2.16),| f — f1h|?llsc < 2¢. Thus we gel| f + hH*®|| < (2+ Cy)e. Since

< Cig||F|1 for Fe H®,
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h e I, it follows thath H> c I. Hence we havef e I, which completes the
proof. O

Generally, the converse assertion of Theorem 2.2 does not hold; a counterexam-
ple isI = zH>. We shall prove that the converse of Theorem 2.2 is true under
some conditions oii; see Corollary 2.7. To show this, we need some notation.
For pointsny andm, in M (H®), the pseudohyperbolic distance fram to m, is

p(mg, mz) = supf| f(m2)l; I flleo <1 f(my) =0}
Forp e M(H®), let
P(p) ={me M(H®); p(p,m) <1},

which is called theGleason partcontaininge. Let G be the set of poinp in
M (H®) such thatP(¢) # {¢}. By Hoffman’s work [12],G is an open subset of
M (H*), and for eaclyp € G there exists an interpolating Blaschke produstich
thate(b) = 0 as well as a continuous one-to-one nigpfrom D onto P(¢) such
thatL,(0) =g andf oL, c H* forevery f € H®.

ProPosITION 2.4. Let] be anideal inH®>°.

(I I =1I1Z{I))andP(p) C Z(I) foreveryp € Z(I) N G, then! satisfies
condition(w).

(i) Let E be a closed subset 1 (H>°) \ D such thatt N M (L*°) = @. Then
J(E) satisfies condition).

To prove Proposition 2.4, we need the following lemmas due to Suarez.

LEMMA 2.5 [20, pp. 242—-244]. Let I be an ideal inH*. Then for every open
subset/ of M (H*) such thatZ(I) c U, there exists in I suchthatZ(f) c U.

For a functionf in H*°, put
Zoo(f) =(Z(H\G)U{me Z(f)NG; foL,=00nD}.

LeEMMA 2.6 [9, Thm. 1.3; 21, Thm. 2.5]. Letb be a Blaschke product and I€the
a closed subset dff (H°) such that|p| > 0onE. Let0 < ¢ < 1. Thenthereis
a factorizationb = bob; - - - b, such thatbg is a product of finitely many interpo-
lating Blaschke productsh;| > o onE, andZ(b;) = Z(b) for1 < j < m.

Proof of Proposition 2.4(i) Let0 < ¢ < 1andA c D suchthatZ(/) N A =
@. SinceZ(I(Z(1))) = Z(I), by Lemma 2.5 there existé € I(Z(1)) such that
[ fllc =1and

inf{| f(z)|; ze A} > 0. (2.19)
By Lemma 2.6, we can write
f =bh =bob1---byh, (2.20)

whereb is a Blaschke factor of, h € H* is zero-free onD, by is a product of
finitely many interpolating Blaschke products, and1 < j < n) are Blaschke
products such that
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|bj| > (14+0)/2 0N A (2.22)

andZ . (bj) = Zoo(b). SinceP(p) C Z(I)foroe Z(I)N G, we havef o L, =
O onD foreveryp € Z(I1) N G. Hence

Z(I) C Zso(f) = Zoo(b) U Zoo(h) = Zoo(bjh).

Thus we geb;h € I(Z(1)) for everyj, 1 < j < n. Thenb;h¥* € I1(Z(1)) for
every positive integet. By (2.19) and (2.20), ifi2(z)|; z € A} > 0. Therefore,
by (2.21), for a sufficiently largé we have

1+ 30
|b;h¥*| > +T >0 onaA.
Hencel satisfieqa).

(if) By Newman'’s theorem [18] (see also [11, pp. 179]), for each E there
exists a Blaschke produst such thab,(x) = 0. Let {z,}, be the zeros ab, in
D. Then there exists a sequence of positive integgrs- (p1, p2, ...) such that
pn — 0o asn — oo and) o p,(1— |z,|) < co. Associated withp,, we have
the following Blaschke product:

= —Zn Z2—zn \"
bPx(z) = (—"—.") , ze€D.
F@ ”1:[1 |zal 1= 2Zaz
Then

{t e MH™)\ D; [b:(O)| <1} C{¢ e M(H™)\ D; b*(¢) =0}

Hence we may assume thiat vanishes on a neighborhood ofin M(H®) \
D. SinceE is a compact set, there exist € £ (j = 1,2,...,n) such that
]_[f}zl by, vanishes on an open subsetlét ) \ D that containst. Thus we get
J(E) # {0}

Next, we prove that(E) satisfies condition(«). The proof is the same as
that for (i). Replacd = I(Z(I)) by J(E), and follow the proof of (i). In this
case, we havg € J(E). Then there is an open subdétof M(H*) \ D such
thatE c Uandf = 0onU. Let f = bh = bob;--- b,h be the factorization
in (2.20). We need to provies € J(E). Sincebg is an interpolating Blaschke
product,biby---b,h = 0onU. For¢ € U NG, (bibs---byh) o Ly(z) van-
ishes on some open subsetf Hence(b1b; - - - b,h) o L, = 0 on D, so that
Zoo(biby---byh) D U. SinceZy(b;) = Zoo(b), we haveZ,(bjh) D U. Thus
bjh € J(E) for everyj, 1 < j < n. Hence the proof of (i) works in this case,
too. O

CoroLLARY 2.7. Let] be an ideal inH > such thatP(p) C Z(I) for everyp €
Z(I)N G. Thenl = I(Z(1)) if and only if I satisfies conditioric).

Proof. Suppose thai = I(Z(I)). Let0 < ¢ < 1andA C D such that
Z(I)N A = ¢. By Proposition 24(i), there exists: € I(Z(I)) such thal|h ||« =
1and|h| = (1+ 0)/2 onA. Sincel = I(Z(I)), by the foregoing there exists a
g €I suchthat|gll. = 1and|g| > o on A. Hencel satisfieS«). The converse
is just Theorem 2.2. O
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CoroLLARY 2.8. Let ] be an ideal inH* that is algebraically generated by
countably many functions. Suppose ti®gp) c Z(I) for everyp € Z(I) N G.
Thenl(Z(1)) is the closure of an ideal generated by countably many functions.

Proof. Suppose that is an ideal generated byf,}, in H*. ThenZ(I) =
o1 Z(f,). SinceZ(f,) is aGs-set, soisZ(I). Let {V,}, be a sequence of de-
creasing open subsetsMf(H ) such thatZ (1) = (;; Vx. SinceVNZ(I) =

@, by the corona theorem [3] there is a subsgtC D such thatd; > V¢ and
AN Z(I) = ¢. By Proposition 24(i) and ourassumption/(Z (1)) satisfies con-
dition (o). Hence there exigt, € I(Z(1)) suchthat|h; |l = 1and h;| > 1-1/k
onV¢. Let J be an ideal generated ¥, }.. ThenZ(J) = Z(I) andJ satisfies
condition(e). Thus, by Theorem 2.2] = I(Z(J)) = I(Z(])). O

In Corollary 2.8, the conclusion does not mean that 1(Z(I)). For let! be an
ideal generated by a single functign= exp(—%j). Then!l =y H* is a closed
ideal of H*° and it is not difficult to see that satisfies the asssumption of Corol-
lary 2.8. Sincey¥2 ¢ I andy¥? € I(Z(1)), it follows thatl = I # I(Z(I)).

By Theorem 2.2 and Proposition 2.4(ii), we have the following.

CoroLLARY 2.9 [8, Thm. 4.2]. Let E be a closed subset af (H>°) \ D such
that E N M(L*®) = @. ThenJ(E) = I[(Z(J(E))).

We give other examples of ideals satisfying conditiai.

ProrosiTioN 2.10. The following ideald in H* satisfy condition(«).

(i) I is a prime ideal inH* that does not contain any interpolating Blaschke
products.

(i) For a function f in H* not vanishing orD, let I be the ideal inH > alge-
braically generated by functiong”, n = 1,2, ....

(iii) LetS be a set of nonnegative bounded singular measurés # 0) on
dD. Suppose thas satisfies the following conditions

(a) for u,v € S, there exists & € S such thath, < u A v, whereu A v is the
greatest lower bound oft and v;

(b) for everyu € S and every positive integer, there exists & € S such that
na < (.

Let ] be the ideal algebraically generated by singular functigns u € S.

Proof. (i) The proof is given in [7, pp. 187—-188] essentially. For the sake of com-
pleteness, we run through the proof here. Suppose tisah prime ideal inH >
and does not contain any interpolating Blaschke products. eb0< 1 and let
A be a subset ob such thatZ(I) N A = @. Then, by Lemma 2.5, there exists
an f € I such thal] f|l.c < 1andinf| f(2)|; z€ A} > 0. Put f = bF, whereb
is a Blaschke product an#él is zero-free onD. Sincel is prime,bel or Fel.
Suppose thaF € I. ThenF¥" ¢ I, |F¥"|» < 1, and|FY"| > o on A for a
sufficiently largen.

Suppose thai € I. Then inf{|b(z)|; z € A} > 0. By Lemma 2.6, there is a fac-
torizationb = bgbs - - - b such thabg is a product of finitely many interpolating
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Blaschke products arié;| > o on A for everyj, 1 < j < k. By our assumption,
bj e I forsomej, 1 < j < k. ThusI satisfieS).

It is not difficult to prove that an idedl with (ii) satisfies(«).

(iii) Let 1, u2 € S. Then, by (a), there existsig € S such thajuz < i A wo;
this yields|v,;| > [¥,;| for j =1, 2. Thus we getZ(Y,,) C Z(Yy) N Z(Y,).
Therefore, by the finite intersection propeffY{Z(y,,); u € S} # @. Hencel is
a proper ideal.

Let0 < o < 1andletA c D satisfyZ(I) N A = . By Lemma 2.5, there
exists anf € I such that inf| f(z)|; z € A} > 0. We may assume that = v,
for someu € S. For each positive integer, by (b) there exisk,, € S such that
ni, < w. Hencely,!"| < |, | on D. For a sufficiently large integer, we have
o < |[y"| < ¥, | on A. Therefore, conditioria) holds. O

By Theorem 2.2 and Proposition 2.10, we have the following corollary.

CoroOLLARY 2.11. Let f be a function inH > that does not vanish ob. Let] be
the ideal inH that is algebraically generated by functioffd™, n = 1,2, ....
Thenl = I(Z(1)).

We also have the following.
COROLLARY 2.12. Let/ be a prime ideal inrH>. Thenl = I(Z(I)).

Proof. Suppose that is prime. If I does not contain any interpolating Blaschke
product, then our assertion follows from Theorem 2.2 and Proposition 2.10.

Suppose thaf contains an interpolating Blaschke product Then, by [5,
Thm. 4.1; 16, Thm. 3.1], it is known that = Kery for somegp € M(H™).
HenceZ(I) = {¢} andl = Kerg = I({¢}) = I(Z(I)). We can also prove this
by using [6, Thm. 2.2]. O

3. Outer Functions

First, we recall Jensen’s equality. For a paint M (H*°), there is a probability
measuree, on M (L*) such thath(Lx) fdup, = @(f) forevery f e H*. We
denote by supp,, the closed support set pf,. Then

|09|<p(f)|5/ log|f |y, [ e H™:
M(L>®)

this is calledJensen’s inequalityWhen

logle(f)] =/ log| f1d,,
M (L)

we say thayf satisfies Jensen’s equality for a pairg M (H*°); see [11, Chap. 10].
Itis well known that every invertible function iff * satisfies Jensen’s equality for
every pointinM (H ). If f is an outer function irH*°, then f satisfies Jensen’s
equality for every point € D.

Let f be a function inH* that is not invertible inH>°. Thenl = fH* is an
ideal generated by. In this section, we study the problem whén= I(Z (1))
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holds for a singly generated ideal If £ has a nontrivial inner factor theh #
I(Z(1)) holds, so we are interested in the case that outer.

ExampLE 3.1. Letf(z) = (1—z)/2. Then f is an outer function and is not in-
vertible inH*>. LetI = fH* be the ideal generated iy Then it is not difficult

to see that, foh € I(Z(1)),
1 n
’ - Hh_h<l_<£> )H — 0 asn — oo.
o0 2 o

(S (5))

Thush e I and hencd = I(Z(1)).

There is an outer functiogi that is not invertible i/ > such thatl = fH> and
I # I(Z(I)). We shall give such an example.

ExaMPLE 3.2. Let

1 i0
f(z):exp(/ e.9+zlog0ﬁ>, zeD.
0 ! 27'[

e’ —Z

Then f is an outer function i * that is not invertible inF*°, and
)| = 0 for0<0 <1, (3.)
¢ 11 for1<6 <27 '

Let]l = fH®. Sincef is outer, by [12, Lemma 2.2P(¢) C Z(f) for everyp €
Z(f)NG. SinceZ(I) = Z(f), we haveP(¢) C Z(I) foreveryp e Z(I) N G.
We shall show that # I(Z(1)). By Corollary 2.7, itis sufficient to prove that the
ideal I does not satisfy conditio@). We have

1 4 do
bmf&ﬂ=/'E@”Ww9—n (32)
0 27'[

where P, is the Poisson kernel far € D. By elementary properties of Poisson
kernels, there exists a sequeti¢g}, in D such that,, — 1 and

1

1 ! , do
—= P. (¢")logh — < —=. 3.3
5 < [ Puteyiogs 5 <~ (33)

PutA = {z,},. Then, by (3.2)Z(I)NA = #. Letg € I and||g|l.c <1 Theng =
fh for someh € H®. Sincedu, = P, df/2r, by Jensen'’s inequality we have

an i0 i6 d@
loglg ()| < P.(e")log|g(e )|2—
0 T
! i0 i0 d@
< | Pi(e")loglg(e )|2— (becausdigllo < 1)
0 T

! i0 de
< f P log(hl0) 5 (by (31).
0 4

Here we have log||.0)/logé — 1astd — +0. Then there existX > 1 such
that
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log(J|h]|0f) < Klogd for 0 <6 <1
Hence

L e do
loglg(za)l SKf P, (e"")logh —.
0 27
By (3.3), we have

! do K
. . l9
limsuplog|g(z,)| < Klimsup | P, (¢”)logh — < ——.
0 2 3

n—o00 n—00

It follows that

lim supig(z,)| < e */3.

n— 00

Consequently] does not satisfy conditioa). O

In order to understand our main theorem (Theorem 3.2) in this section, we show
that the functionf given in Example 3.2 does not satisfy Jensen’s equality for a
pointm such thain(f) # 0. We use the same notation as in Example 3.2.nk.et

be a cluster point ofz,,},, in M(H°). Then, by (3.2) and (3.3),

-1/2 <loglm(f)| < -1/3. (3.4)
We shall prove that
log| f1dpm = 0. (3.5)
M(L>®)
Sincez, — 1, it follows that suppe,, C {¢ € M(L™); ¢(z) = 1}, wherez is the
identity function onD.
LetE = {¢?; —1 < 6 < 0}. Then, by (3.1), we havief| = xz on{p € M(L*®);
¢(z) = 1}. Since logm(f)| > —oo, by Jensen’s inequalityM(Lx) log| f|dum >
—o0. Since lod f| = 0 or —oo on suppu,,, we have

suppu, C {x € M(L™); log| f(x)| = 0}.

Thus we obtain (3.5). By (3.4) and (3.5j),does not satisfy Jensen’s equality for
a pointm such thatn(f) # 0.
Now our theorem is the following.

Tueorem 3.2. Let f be an outer function i/ that is not invertible inH *°.
Let/ = fH® be the ideal generated by Thenl = I(Z(1)) if and only if f
satisfies Jensen’s equality for every poinin M (H*) such thatn(f) # 0.

Proof. We may assume thdtf ||, = 1 Sincef is outer, we haveP(¢) C Z(I)
for everyp € Z(I) N G; see [12, Lemma 2.2]. Hence, by Corollary 2.7, it is suf-
ficient to prove thatl satisfies conditior(«) if and only if f satisfies Jensen’s
equality for every pointz in M (H ) such thatn(f) # 0.

First, suppose that does not satisfy Jensen’s equality for a pairin M (H*°)
such thain(f) # 0. Then Jensen’s inequality yields

0<Im(f)l < exp(f |Og|f|dum).
M(L>®)

By the corona theorem [3], there exists_a (et} in D such thatz, — m and
| f(za)| > m(f)/2. PUtA = {z4}e. ThENAN Z(I) = AN Z(f) = 0.
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Letgel and|gll <1 Theng = fh for someh € H*, and we have

exp( / |Og|f|dum>exp< f Iog|h|dum)
M (L) M (L)

= eXP(/ log|g| dum> <1
Hence, by Jensen’s inequality, M

Im(g)| = [m()llm(h)]|

[m(f)] exp(/ Ioglhldum>
M (L>®)

Im(f)] _
B exqu(Loo) log| f1 d,um)

Sincem € A, these inequalities imply thdtdoes not satisfy conditio).
Next, suppose that

/};Mm) log| f|dw, = loglp(f)| forevery p e M(H™), o(f) #0. (3.6)

IA

LetO< o <landletA c D satisfyZ(I)NA = @. Letm € A. Thenm(f) # 0,
so that by (3.6) we havﬁw(w) log|f|du, > —oo. Hence there exists an open
and closed subsét, of M(L*) such thatZ(f) N M(L*) C V,, and

eXP [y 1) 1091 £l ditm .
eXP [y (1), 1001 1 ditn

Let V,, be a measurable subset@® such thatty, = x,, . wherexy is the
Gelfand transform o, e L>. Let

(3.7)

27r do
hn(z) = exn/ me oglfl5—. z€D, (3.8)
T
and o o
b l 9
gm(2) = eXp/ XE)D\V,,, Og|f| _s zeD. (39)
Thenh,, andg,, are outer functions it *°, g,, is invertible inH>, and
f = hmgm- (310)
Henceh,, € I and
/ loglgm|di, =logle(gn)| forevery p € M(H™). (3.11)
M(L®)
We have

lm(hm)l

mo| exp(— /M . ool dum) (by (3.10) and (3.11))

ex « lo ditm
_ Py 091t s 6 and (3.9)
eprM(LOC)\vm logl f|dpm

>0 (by(3.7)).
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SinceA is compact, there existy, mo, ..., m; € A such that
maxX{| A, ..., A, |} = o onA. (3.12)
k 7 k 7
LetV =21V, V = (=1 Vi, and

27 i
+ do
h(z) = eXp/ e-e—zxv loglf| —. zeD. (3.13)
o €Y —z 2r

Thenxy = x, andZ(f) N M(L*) C V. Moreover, we havé € I by the same
reason as that used fby, € I. SinceV C \7,,,,. and| fll =1 by (3.8) and (3.13)
we havelh(z)| > |hy, (2)] for z € D. Hence, by (3.12)4| > o onU. Thus/ sat-
isfies condition(«), which completes the proof. O

We do not know of any function-theoretic characterization of an outer fungtion
such thatf satisfies Jensen’s equality for every poinMr{H *°) with m(f) # O.
Axler and Shields [1, Prop. 5] showed that a functjpm H> with Re f > 0 on
D satisfies Jensen'’s equality for every pointi{ H*°). For an inner functiomy,
the functiong + 1 satisfies this condition. P@A = H>* N H*® + C, whereC is
the space of continuous functions @ and H> + C is the set of complex con-
jugates of functions it > + C. Wolff [22] proved that, for everyf € L*°, there
exists an outer functioh € QA such thatif e H* + C. If f ¢ H*® + C, then
the function is not invertible inH *°. Thus there are many outer functionsga
that are not invertible iff>°. Sarason [19] proved that, jf € H*, thenf € QA

if and only if f|suppy., iS constant for every € M(H>) \ D. HenceQA outer
functions satisfy Jensen’s equality for everg M (H ). We have the following
corollaries as applications of Theorem 3.2.

CoroLLARY 3.3. Let/ = fH* be an ideal inH*> generated by a functiogf
that is not invertible inH*°, and letRef > 0on D. Thenl = I(Z(I)).

CoroLLARY 3.4. Let/ = fH* be an ideal inH* generated by an outer func-
tion in QA that is not invertible inH*°. Thenl = I(Z(I)).
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