
Michigan Math. J. 50 (2002)

On Ideals inH∞Whose Closures Are
Intersections of Maximal Ideals

Keij i Izuchi

Dedicated to Professor Kôzô Yabuta on his sixtieth birthday

1. Introduction

LetH∞ be the Banach algebra of bounded analytic functions on the open unit disk
D.We denote byM(H∞) the maximal ideal space ofH∞, the set of nonzero mul-
tiplicative linear functionals ofH∞ endowed with the weak∗-topology of the dual
space ofH∞. Identifying a point inD with its point evaluation, we think ofD as
a subset ofM(H∞). Forϕ ∈M(H∞), put Kerϕ = {f ∈H∞; ϕ(f ) = 0}. Then
Kerϕ is a maximal ideal inH∞, and for a maximal idealI in H∞ there exists
ψ ∈M(H∞) such thatI = Kerψ. For f ∈ H∞, the functionf̂ (ϕ) = ϕ(f ) on
M(H∞) is called theGelfand transformof f. We can identifyf with f̂ , so that
we think ofH∞ as the closed subalgebra of continuous functions onM(H∞). Let
L∞ be the Banach algebra of bounded measurable functions on∂D. The maxi-
mal ideal space ofL∞ will be denoted byM(L∞). We may think ofM(L∞) as a
subset ofM(H∞). ThenM(L∞) is the Shilov boundary ofH∞, that is, the small-
est closed subset ofM(H∞) on which every function inH∞ attains its maximal
modulus. For a subsetE of M(H∞), we denote the closure ofE by Ē. A nice
reference for this subject is [4].

Forf ∈H∞, there exists a radial limitf(eiθ ) for almost everywhere. Leth be
a bounded measurable function on∂D such that

∫ 2π
0 log|h| dθ/2π > −∞. Put

f(z) = exp

(∫ 2π

0

eiθ + z
eiθ − z log|h(eiθ )| dθ

2π

)
, z∈D.

A function of this form is calledouter,and|f(eiθ )| = |h(eiθ )| almost everywhere.
A functionu∈H∞ is calledinner if |u(eiθ )| = 1 a.e. on∂D. For a sequence{zn}n
in D with

∑∞
n=1(1− |zn|) <∞, there corresponds a Blaschke product

b(z) =
∞∏
n=1

−z̄n
|zn|

z− zn
1− z̄nz , z∈D.

A Blaschke product is calledinterpolatingif, for every bounded sequence of com-
plex numbers{an}n, there existsh∈H∞ such thath(zn) = an for everyn. For a
nonnegative bounded singular measureµ (µ 6= 0) on ∂D, let
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ψµ(z) = exp

(
−
∫
∂D

eiθ + z
eiθ − z dµ

)
, z∈D.

Thenψµ is inner and is called asingular function. It is well known that every
functionf in H∞ can be factored in a productf = qh, whereq is inner andh is
outer. It is also well known that every inner functionq can be factored in a product
q = BS, whereB is a Blaschke product andS is a singular function [4; 11].

For a subsetE of M(H∞), let I(E) = ⋂{Kerϕ; ϕ ∈ E} be the intersection
of maximal ideals associated with points inE. For f ∈ H∞, let Z(f ) = {ϕ ∈
M(H∞); ϕ(f ) = 0} be the zero set off. In this paper, we assume that every ideal
is nonzero and proper. For an idealI in H∞, putZ(I ) =⋂{Z(f ); f ∈ I }; then
I ⊂ I(Z(I )). An idealI is calledprime if, for any f, g ∈ H∞ with fg ∈ I, we
havef ∈ I or g ∈ I. There are many studies of prime ideals inH∞; see [5, 15,
16, 17]. Recently, Gorkin and Mortini [7, Thm. 1] have proved that a closed prime
idealI ofH∞ is an intersection of maximal ideals, that is,I = I(Z(I )). And they
pointed out that ifI is a (nonclosed) prime ideal such thatZ(I ) ∩M(L∞) = ∅,
then the closure ofI is an intersection of maximal ideals; that is,Ī = I(Z(I )),
whereĪ is the closure ofI in H∞.

LetE be a closed subset ofM(H∞) \D such thatE ∩M(L∞) = ∅. Let J(E)
be the set of functionsf in H∞ that vanish on some open subsets (depending on
f ) ofM(H∞) \D containingE. ThenJ(E) is an ideal ofH∞. In [8, Thm. 4.2],
Gorkin and Mortini also showed thatJ(E) = I(Z(J(E))).

It is a very interesting problem to determine the class of idealsI satisfyingĪ =
I(Z(I )). But it seems difficult to give a complete characterization of these ideals.

In Section 2, we shall introduce the following condition on idealsI in H∞ to
study the problem when̄I = I(Z(I )) holds.

(α) For any 0< σ < 1 and for any subsetA of D such thatZ(I ) ∩ Ā = ∅, there
exists anh∈ I such that‖h‖∞ ≤ 1 and|h| ≥ σ onA.

We shall prove that ifI satisfies condition(α), thenĪ = I(Z(I )). We shall also
give some examples of idealsI satisfying condition(α).

In Section 3, we study an idealI(f ) of H∞ generated by a noninvertible outer
functionf in H∞. We shall show that there exist noninvertible outer functions
f andg satisfyingI(f ) = I(Z(I(f ))) andI(g) 6= I(Z(I(g))). As an applica-
tion of the theorem given in Section 2, we shall characterize noninvertible outer
functionsf satisfyingI(f ) = I(Z(I(f ))).

2. Closure of Ideals

In order to prove thatI = I(Z(I )) for a closed prime idealI of H∞, Gorkin
and Mortini [7] used the following formula given by Guillory and Sarason [10,
pp. 177–178]. LetR be an open subset ofD such that∂R ∩D is a system of rec-
tifiable curves. Then ∫

∂D

F

u
dz =

∫
∂R∩D

F

u
dz (2.1)
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holds forF ∈ H∞ and an inner functionu satisfying|u(z)| < β for z ∈ R and
|u(z)| ≥ α for z∈D \ R, where 0< α < β < 1. Formula (2.1) is used in several
papers; see [9; 13; 14]. We note that ifu is not inner, equation (2.1) does not hold.
In this paper, we need another formula, which is similar to (2.1). The following
theorem is interesting in its own right.

Theorem 2.1. Let f ∈H∞, ‖f ‖∞ = 1, and 0 < ε < 1/2 < σ < 1. LetR be
an open subset ofD such that∂R ∩D is a system of rectifiable curves satisfying

(i) |f(z)| < ε for z∈R.
We assign the usual orientation on∂R. Put 0 = ∂R ∩ D. Let h be a function in
H∞ such that‖h‖∞ = 1,

(ii) 0 < 1/2 ≤ |h(z)| for z∈D \ R, and
(iii) |h(eiθ )| ≥ σ for almost everyeiθ ∈ ∂D with |f(eiθ )| > ε.

Then ∣∣∣∣∫
0

fF

h
dz−

∫
∂D

fFh̄ dz

∣∣∣∣ ≤ 4(ε + 1− σ)‖F‖1

for everyF ∈H∞, where‖F‖1=
∫ 2π

0 |F(eiθ )| dθ/2π.

Proof. For 0< r < 1, putDr = {z∈D; |z| < r} and

Gr = Dr \ R̄. (2.2)

We assign the curves in∂Gr the usual positive orientation. LetAr be a subset of
∂D such that

rAr = ∂Gr ∩ ∂Dr. (2.3)

Let F ∈H∞. Then by Cauchy’s theorem,∫
rAr

fF

h
dz+

∫
∂Gr∩Dr

fF

h
dz = 0. (2.4)

By (ii) and the dominated convergence theorem, we have∫
∂Gr∩Dr

fF

h
dz→−

∫
0

fF

h
dz asr → 1. (2.5)

Put
E = {eiθ ∈ ∂D; |f(eiθ )| > ε}. (2.6)

Then ∣∣∣∣∫
E

fFh̄ dz−
∫
∂D

fFh̄ dz

∣∣∣∣ ≤ ∫
∂D\E
|fFh̄| |dz| ≤ ε‖F‖1. (2.7)

By (iii) and σ > 1/2, we have∣∣∣∣∫
E

fF

h
dz−

∫
E

fFh̄ dz

∣∣∣∣ ≤ 4(1− σ)‖F‖1.
Therefore, by (2.7),∣∣∣∣∫

E

fF

h
dz−

∫
∂D

fFh̄ dz

∣∣∣∣ ≤ (ε + 4(1− σ))‖F‖1. (2.8)
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By (ii), (2.2), and (2.3),|h| ≥ 1/2 onrAr . Hence∣∣∣∣∫
Ar\E

(
fF

h

)
(rz) dz

∣∣∣∣ ≤ 2
∫
∂D\E
|(fF )(rz)| |dz| → 2

∫
∂D\E
|(fF )(z)| |dz|

asr → 1. Then, by (2.6),

lim sup
r→1

∣∣∣∣∫
Ar\E

(
fF

h

)
(rz) dz

∣∣∣∣ ≤ 2ε‖F‖1.
By (2.4),∫

∂Gr∩Dr

fF

h
dz+ r

∫
E∩Ar

(
fF

h

)
(rz) dz = −r

∫
Ar\E

(
fF

h

)
(rz) dz.

Hence

lim sup
r→1

∣∣∣∣∫
∂Gr∩Dr

fF

h
dz+ r

∫
E∩Ar

(
fF

h

)
(rz) dz

∣∣∣∣ ≤ 2ε‖F‖1. (2.9)

For eiθ ∈E, by (i) and (2.6) we havete iθ /∈ R̄ for t (0 < t < 1) sufficiently close
to 1. Then, by (2.2) and (2.3),χE∩Ar (e iθ )→ χE(e

iθ ) asr → 1 for almost every
point eiθ in ∂D. Hence by the dominated convergence theorem,

r

∫
E∩Ar

(
fF

h

)
(rz) dz→

∫
E

fF

h
dz asr → 1. (2.10)

Thus, forF ∈H∞, we obtain∣∣∣∣∫
0

fF

h
dz−

∫
∂D

fFh̄ dz

∣∣∣∣
= lim

r→1

∣∣∣∣−∫
∂Gr∩Dr

fF

h
dz−

∫
∂D

fFh̄ dz

∣∣∣∣ (by (2.5))

≤ lim sup
r→1

∣∣∣∣∫
∂Gr∩Dr

fF

h
dz+

∫
E

fF

h
dz

∣∣∣∣+ (ε + 4(1− σ))‖F‖1 (by (2.8))

= lim sup
r→1

∣∣∣∣∫
∂Gr∩Dr

fF

h
dz+ r

∫
E∩Ar

(
fF

h

)
(rz) dz

∣∣∣∣+ (ε + 4(1− σ))‖F‖1
≤ 4(ε +1− σ)‖F‖1 (by (2.9)),

where the last equality follows from (2.10).
Recall condition(α):

(α) For any 0< σ < 1 and a subsetA ofD such thatZ(I )∩ Ā = ∅, there exists
anh∈ I such that‖h‖∞ ≤ 1 and|h| ≥ σ onA.

The main theorem of this paper is the following.

Theorem 2.2. Let I be an ideal inH∞ satisfying condition(α). Then Ī =
I(Z(I )).

In order to prove our theorem, we need the following lemma due to Bourgain [2,
pp. 165–166]. We denote byH1 the usual Hardy space on∂D.
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Lemma 2.3. Letf ∈H∞ with ‖f ‖∞ ≤ 1. Then, forε > 0, there exists an open
subsetR of D such that∂R is a system of rectifiable curves and

(i) |f | < ε onR,
(ii) |f | ≥ δ(ε) onD \ R,

(iii)
∫
∂R∩D |F | |dz| ≤ C‖F‖1 for everyF ∈H∞,

whereδ(ε) is a fixed positive function ofε (independent off ), δ(ε) < ε, andC is
a universal constant.

Proof of Theorem 2.2.Let f ∈ I(Z(I )) and‖f ‖∞ = 1. We shall prove thatf ∈
Ī . Takeε as 0< ε < 1/2. Then, by Lemma 2.3, there existδ(ε) (0 < δ(ε) < ε)

and an open subsetR ofD such that∂R ∩D is a system of rectifiable curves, say
0 = ∂R ∩D, satisfying the following conditions:

|f(z)| < ε if z∈R, (2.11)

|f(z)| ≥ δ(ε) if z∈D \ R, (2.12)∫
0

|F | |dz| ≤ C‖F‖1 for F ∈H∞, (2.13)

whereC is a universal constant.
SinceZ(I ) ⊂ Z(f ) ⊂ {x ∈M(H∞); |f(x)| < δ(ε)} and sinceI satisfies con-

dition (α), there exists a functionh ∈ I such that‖h‖∞ = 1 and|h| ≥ 1− ε on
{z∈D; |f(z)| ≥ δ(ε)}. Then, by (2.12),

|h(z)| ≥ 1− ε for z∈D \ R. (2.14)

Put
E = {eiθ ∈ ∂D; |f(eiθ )| > ε}. (2.15)

For eiθ ∈ E, by (2.11) we havete iθ /∈ R̄ for t (0 < t < 1) sufficiently close to 1.
Hence, by (2.14),

|h| ≥ 1− ε on E. (2.16)

Applying Theorem 2.1 forσ = 1− ε, we have∣∣∣∣∫
0

fF

h
dz−

∫
∂D

fFh̄ dz

∣∣∣∣ ≤ 8ε‖F‖1 for F ∈H∞. (2.17)

By (2.11), (2.13), and (2.14), we have∣∣∣∣∫
0

fF

h
dz

∣∣∣∣ ≤ ε

1− ε
∫
0

|F | |dz| ≤ 2Cε‖F‖1 for F ∈H∞. (2.18)

Hence, by (2.17) and (2.18), we obtain∣∣∣∣∫
∂D

fFh̄ dz

∣∣∣∣ ≤ C1ε‖F‖1 for F ∈H∞,
whereC1 is another absolute constant. SinceL∞/H∞ is the dual space of the
Banach spacezH1, it follows by the preceding fact and in the same way as in [10,
pp. 177–178] that‖fh̄+H∞‖ ≤ C1ε. Hence‖f |h|2 + hH∞‖ ≤ C1ε. By (2.15)
and (2.16),‖f − f |h|2‖∞ ≤ 2ε. Thus we get‖f + hH∞‖ ≤ (2+ C1)ε. Since
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h ∈ I, it follows that hH∞ ⊂ I. Hence we havef ∈ Ī , which completes the
proof.

Generally, the converse assertion of Theorem 2.2 does not hold; a counterexam-
ple is I = zH∞. We shall prove that the converse of Theorem 2.2 is true under
some conditions onI ; see Corollary 2.7. To show this, we need some notation.
For pointsm1 andm2 inM(H∞), the pseudohyperbolic distance fromm1 tom2 is

ρ(m1, m2) = sup{|f(m2)|; ‖f ‖∞ ≤ 1, f(m1) = 0}.
Forϕ ∈M(H∞), let

P(ϕ) = {m∈M(H∞); ρ(ϕ,m) < 1},
which is called theGleason partcontainingϕ. Let G be the set of pointϕ in
M(H∞) such thatP(ϕ) 6= {ϕ}. By Hoffman’s work [12],G is an open subset of
M(H∞), and for eachϕ ∈G there exists an interpolating Blaschke productb such
thatϕ(b) = 0 as well as a continuous one-to-one mapLϕ fromD ontoP(ϕ) such
thatLϕ(0) = ϕ andf B Lϕ ∈H∞ for everyf ∈H∞.
Proposition 2.4. Let I be an ideal inH∞.

(i) If I = I(Z(I )) andP(ϕ) ⊂ Z(I ) for everyϕ ∈ Z(I ) ∩G, thenI satisfies
condition(α).

(ii) LetE be a closed subset ofM(H∞) \D such thatE ∩M(L∞) = ∅. Then
J(E) satisfies condition(α).

To prove Proposition 2.4, we need the following lemmas due to Suárez.

Lemma 2.5 [20, pp. 242–244]. Let I be an ideal inH∞. Then for every open
subsetU ofM(H∞) such thatZ(I ) ⊂ U, there existsf in I such thatZ(f ) ⊂ U.
For a functionf in H∞, put

Z∞(f ) = (Z(f ) \G) ∪ {m∈Z(f ) ∩G; f B Lm ≡ 0 onD}.
Lemma 2.6 [9, Thm.1.3; 21, Thm. 2.5]. Letb be a Blaschke product and letE be
a closed subset ofM(H∞) such that|b| > 0 onE. Let 0< σ < 1. Then there is
a factorizationb = b0b1 · · · bm such thatb0 is a product of finitely many interpo-
lating Blaschke products,|bj | ≥ σ onE, andZ∞(bj ) = Z∞(b) for 1≤ j ≤ m.
Proof of Proposition 2.4.(i) Let 0 < σ < 1 andA ⊂ D such thatZ(I ) ∩ Ā =
∅. SinceZ(I(Z(I ))) = Z(I ), by Lemma 2.5 there existsf ∈ I(Z(I )) such that
‖f ‖∞ = 1 and

inf{|f(z)|; z∈A} > 0. (2.19)

By Lemma 2.6, we can write

f = bh = b0b1 · · · bnh, (2.20)

whereb is a Blaschke factor off, h ∈ H∞ is zero-free onD, b0 is a product of
finitely many interpolating Blaschke products, andbj (1 ≤ j ≤ n) are Blaschke
products such that
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|bj | ≥ (1+ σ)/2 onA (2.21)

andZ∞(bj ) = Z∞(b). SinceP(ϕ) ⊂ Z(I ) for ϕ ∈Z(I )∩G, we havef BLϕ ≡
0 onD for everyϕ ∈Z(I ) ∩G. Hence

Z(I ) ⊂ Z∞(f ) = Z∞(b) ∪ Z∞(h) = Z∞(bjh).
Thus we getbjh ∈ I(Z(I )) for everyj, 1 ≤ j ≤ n. Thenbjh1/k ∈ I(Z(I )) for
every positive integerk. By (2.19) and (2.20), inf{|h(z)|; z ∈A} > 0. Therefore,
by (2.21), for a sufficiently largek we have

|bjh1/k| ≥ 1+ 3σ

4
≥ σ on A.

HenceI satisfies(α).
(ii) By Newman’s theorem [18] (see also [11, pp. 179]), for eachx ∈ E there

exists a Blaschke productbx such thatbx(x) = 0. Let {zn}n be the zeros ofbx in
D. Then there exists a sequence of positive integerspx = (p1, p2, . . . ) such that
pn →∞ asn→∞ and

∑∞
n=1pn(1− |zn|) <∞. Associated withpx, we have

the following Blaschke product:

bpxx (z) =
∞∏
n=1

(−z̄n
|zn|

z− zn
1− z̄nz

)pn
, z∈D.

Then

{ζ ∈M(H∞) \D; |bx(ζ)| < 1} ⊂ {ζ ∈M(H∞) \D; bpxx (ζ) = 0}.
Hence we may assume thatbx vanishes on a neighborhood ofx in M(H∞) \
D. SinceE is a compact set, there existxj ∈ E (j = 1,2, . . . , n) such that∏n

j=1bxj vanishes on an open subset ofM(H∞) \D that containsE. Thus we get
J(E) 6= {0}.

Next, we prove thatJ(E) satisfies condition(α). The proof is the same as
that for (i). ReplaceI = I(Z(I )) by J(E), and follow the proof of (i). In this
case, we havef ∈ J(E). Then there is an open subsetU of M(H∞) \ D such
thatE ⊂ U andf = 0 onU. Let f = bh = b0b1 · · · bnh be the factorization
in (2.20). We need to provebjh ∈ J(E). Sinceb0 is an interpolating Blaschke
product,b1b2 · · · bnh = 0 onU. For ζ ∈ U ∩ G, (b1b2 · · · bnh) B Lζ(z) van-
ishes on some open subset ofD. Hence(b1b2 · · · bnh) B Lζ ≡ 0 onD, so that
Z∞(b1b2 · · · bnh) ⊃ U. SinceZ∞(bj ) = Z∞(b), we haveZ∞(bjh) ⊃ U. Thus
bjh ∈ J(E) for everyj, 1 ≤ j ≤ n. Hence the proof of (i) works in this case,
too.

Corollary 2.7. Let I be an ideal inH∞ such thatP(ϕ) ⊂ Z(I ) for everyϕ ∈
Z(I ) ∩G. ThenĪ = I(Z(I )) if and only ifI satisfies condition(α).

Proof. Suppose that̄I = I(Z(I )). Let 0 < σ < 1 andA ⊂ D such that
Z(I )∩ Ā = ∅. By Proposition 2.4(i), there existsh∈ I(Z(I )) such that‖h‖∞ =
1 and|h| ≥ (1+ σ)/2 onA. SinceĪ = I(Z(I )), by the foregoing there exists a
g ∈ I such that‖g‖∞ = 1 and|g| ≥ σ onA. HenceI satisfies(α). The converse
is just Theorem 2.2.
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Corollary 2.8. Let I be an ideal inH∞ that is algebraically generated by
countably many functions. Suppose thatP(ϕ) ⊂ Z(I ) for everyϕ ∈ Z(I ) ∩ G.
ThenI(Z(I )) is the closure of an ideal generated by countably many functions.

Proof. Suppose thatI is an ideal generated by{fn}n in H∞. ThenZ(I ) =⋂∞
n=1Z(fn). SinceZ(fn) is aGδ-set, so isZ(I ). Let {Vk}k be a sequence of de-

creasing open subsets ofM(H∞) such thatZ(I ) =⋂∞k=1Vk. SinceV ck ∩Z(I ) =
∅, by the corona theorem [3] there is a subsetAk ⊂ D such thatAk ⊃ V ck and
Ak ∩Z(I ) = ∅. By Proposition 2.4(i) and ourassumption,I(Z(I )) satisfies con-
dition (α). Hence there existhk ∈ I(Z(I )) such that‖hk‖∞ = 1and|hk| > 1−1/k
onV ck . Let J be an ideal generated by{hk}k. ThenZ(J ) = Z(I ) andJ satisfies
condition(α). Thus, by Theorem 2.2,̄J = I(Z(J )) = I(Z(I )).
In Corollary 2.8, the conclusion does not mean thatĪ = I(Z(I )). For letI be an
ideal generated by a single functionψ = exp

(−1+z
1−z
)
. ThenI = ψH∞ is a closed

ideal ofH∞ and it is not difficult to see thatI satisfies the asssumption of Corol-
lary 2.8. Sinceψ1/2 /∈ I andψ1/2 ∈ I(Z(I )), it follows that Ī = I 6= I(Z(I )).

By Theorem 2.2 and Proposition 2.4(ii), we have the following.

Corollary 2.9 [8, Thm. 4.2]. LetE be a closed subset ofM(H∞) \ D such
thatE ∩M(L∞) = ∅. ThenJ(E) = I(Z(J(E))).
We give other examples of ideals satisfying condition(α).

Proposition 2.10. The following idealsI in H∞ satisfy condition(α).
(i) I is a prime ideal inH∞ that does not contain any interpolating Blaschke

products.
(ii) For a functionf inH∞ not vanishing onD, let I be the ideal inH∞ alge-

braically generated by functionsf 1/n, n = 1,2, . . . .
(iii) Let S be a set of nonnegative bounded singular measuresµ (µ 6= 0) on

∂D. Suppose thatS satisfies the following conditions:

(a) for µ, ν ∈ S, there exists aλ ∈ S such thatλ ≤ µ ∧ ν, whereµ ∧ ν is the
greatest lower bound ofµ andν;

(b) for everyµ ∈ S and every positive integern, there exists aλ ∈ S such that
nλ ≤ µ.

Let I be the ideal algebraically generated by singular functionsψµ,µ∈S.
Proof. (i) The proof is given in [7, pp. 187–188] essentially. For the sake of com-
pleteness, we run through the proof here. Suppose thatI is a prime ideal inH∞
and does not contain any interpolating Blaschke products. Let 0< σ < 1 and let
A be a subset ofD such thatZ(I ) ∩ Ā = ∅. Then, by Lemma 2.5, there exists
anf ∈ I such that‖f ‖∞ ≤ 1 and inf{|f(z)|; z ∈A} > 0. Putf = bF, whereb
is a Blaschke product andF is zero-free onD. SinceI is prime,b ∈ I or F ∈ I.
Suppose thatF ∈ I. ThenF 1/n ∈ I, ‖F 1/n‖∞ ≤ 1, and |F 1/n| > σ onA for a
sufficiently largen.

Suppose thatb ∈ I. Then inf{|b(z)|; z∈A} > 0. By Lemma 2.6, there is a fac-
torizationb = b0b1 · · · bk such thatb0 is a product of finitely many interpolating
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Blaschke products and|bj | ≥ σ onA for everyj, 1≤ j ≤ k. By our assumption,
bj ∈ I for somej, 1≤ j ≤ k. ThusI satisfies(α).

It is not difficult to prove that an idealI with (ii) satisfies(α).
(iii) Let µ1, µ2 ∈S. Then, by (a), there exists aµ3 ∈S such thatµ3 ≤ µ1∧µ2;

this yields|ψµ3| ≥ |ψµj | for j = 1,2. Thus we getZ(ψµ3) ⊂ Z(ψµ1) ∩ Z(ψµ2).

Therefore, by the finite intersection property,
⋂{Z(ψµ); µ∈ S} 6= ∅. HenceI is

a proper ideal.
Let 0 < σ < 1 and letA ⊂ D satisfyZ(I ) ∩ Ā = ∅. By Lemma 2.5, there

exists anf ∈ I such that inf{|f(z)|; z ∈ A} > 0. We may assume thatf = ψµ
for someµ ∈ S. For each positive integern, by (b) there existλn ∈ S such that
nλn ≤ µ. Hence|ψ1/n

µ | ≤ |ψλn | onD. For a sufficiently large integern, we have
σ ≤ |ψ1/n

µ | ≤ |ψλn | onA. Therefore, condition(α) holds.

By Theorem 2.2 and Proposition 2.10, we have the following corollary.

Corollary 2.11. Letf be a function inH∞ that does not vanish onD. LetI be
the ideal inH∞ that is algebraically generated by functionsf 1/n, n = 1,2, . . . .
ThenĪ = I(Z(I )).
We also have the following.

Corollary 2.12. Let I be a prime ideal inH∞. ThenĪ = I(Z(I )).
Proof. Suppose thatI is prime. IfI does not contain any interpolating Blaschke
product, then our assertion follows from Theorem 2.2 and Proposition 2.10.

Suppose thatI contains an interpolating Blaschke productb. Then, by [5,
Thm. 4.1; 16, Thm. 3.1], it is known that̄I = Kerϕ for someϕ ∈ M(H∞).
HenceZ(I ) = {ϕ} andĪ = Kerϕ = I({ϕ}) = I(Z(I )). We can also prove this
by using [6, Thm. 2.2].

3. Outer Functions

First, we recall Jensen’s equality. For a pointϕ ∈M(H∞), there is a probability
measureµϕ onM(L∞) such that

∫
M(L∞) f dµϕ = ϕ(f ) for everyf ∈ H∞. We

denote by suppµϕ the closed support set ofµϕ. Then

log|ϕ(f )| ≤
∫
M(L∞)

log|f | dµϕ, f ∈H∞;

this is calledJensen’s inequality.When

log|ϕ(f )| =
∫
M(L∞)

log|f | dµϕ,

we say thatf satisfies Jensen’s equality for a pointϕ ∈M(H∞); see [11, Chap.10].
It is well known that every invertible function inH∞ satisfies Jensen’s equality for
every point inM(H∞). If f is an outer function inH∞, thenf satisfies Jensen’s
equality for every pointz∈D.

Let f be a function inH∞ that is not invertible inH∞. ThenI = fH∞ is an
ideal generated byf. In this section, we study the problem whenĪ = I(Z(I ))
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holds for a singly generated idealI. If f has a nontrivial inner factor then̄I 6=
I(Z(I )) holds, so we are interested in the case thatf is outer.

Example 3.1. Letf(z) = (1− z)/2. Thenf is an outer function and is not in-
vertible inH∞. Let I = fH∞ be the ideal generated byf. Then it is not difficult
to see that, forh∈ I(Z(I )),∥∥∥∥h− hf( n−1∑

k=0

(
1+ z

2

)k)∥∥∥∥∞ =
∥∥∥∥h− h(1−

(
1+ z

2

)n)∥∥∥∥∞ → 0 asn→∞.

Thush∈ Ī and hencēI = I(Z(I )).
There is an outer functionf that is not invertible inH∞ such thatI = fH∞ and
Ī 6= I(Z(I )). We shall give such an example.

Example 3.2. Let

f(z) = exp

(∫ 1

0

eiθ + z
eiθ − z logθ

dθ

2π

)
, z∈D.

Thenf is an outer function inH∞ that is not invertible inH∞, and

|f(eiθ )| =
{
θ for 0< θ < 1,

1 for 1< θ < 2π.
(3.1)

Let I = fH∞. Sincef is outer, by [12, Lemma 2.2]P(ϕ) ⊂ Z(f ) for everyϕ ∈
Z(f ) ∩G. SinceZ(I ) = Z(f ), we haveP(ϕ) ⊂ Z(I ) for everyϕ ∈Z(I ) ∩G.
We shall show that̄I 6= I(Z(I )). By Corollary 2.7, it is sufficient to prove that the
idealI does not satisfy condition(α). We have

log|f(z)| =
∫ 1

0
Pz(e

iθ ) logθ
dθ

2π
, (3.2)

wherePz is the Poisson kernel forz ∈ D. By elementary properties of Poisson
kernels, there exists a sequence{zn}n in D such thatzn→ 1 and

−1

2
<

∫ 1

0
Pzn(e

iθ ) logθ
dθ

2π
< −1

3
. (3.3)

PutA = {zn}n. Then, by (3.2),Z(I )∩ Ā = ∅. Letg ∈ I and‖g‖∞ ≤ 1. Theng =
fh for someh∈H∞. Sincedµz = Pz dθ/2π, by Jensen’s inequality we have

log|g(z)| ≤
∫ 2π

0
Pz(e

iθ ) log|g(eiθ )| dθ
2π

≤
∫ 1

0
Pz(e

iθ ) log|g(eiθ )| dθ
2π

(because‖g‖∞ ≤ 1)

≤
∫ 1

0
Pz(e

iθ ) log(‖h‖∞θ) dθ
2π

(by (3.1)).

Here we have log(‖h‖∞θ)/ logθ → 1 asθ →+0. Then there existsK > 1 such
that
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log(‖h‖∞θ) < K logθ for 0< θ < 1.
Hence

log|g(zn)| ≤ K
∫ 1

0
Pzn(e

iθ ) logθ
dθ

2π
.

By (3.3), we have

lim sup
n→∞

log|g(zn)| ≤ K lim sup
n→∞

∫ 1

0
Pzn(e

iθ ) logθ
dθ

2π
≤ −K

3
.

It follows that
lim sup
n→∞

|g(zn)| ≤ e−K/3.

Consequently,I does not satisfy condition(α).

In order to understand our main theorem (Theorem 3.2) in this section, we show
that the functionf given in Example 3.2 does not satisfy Jensen’s equality for a
pointm such thatm(f ) 6= 0. We use the same notation as in Example 3.2. Letm

be a cluster point of{zn}n in M(H∞). Then, by (3.2) and (3.3),

−1/2 ≤ log|m(f )| ≤ −1/3. (3.4)
We shall prove that ∫

M(L∞)
log|f | dµm = 0. (3.5)

Sincezn → 1, it follows that suppµm ⊂ {ϕ ∈M(L∞); ϕ(z) = 1}, wherez is the
identity function onD.

LetE = {eiθ ; −1≤ θ < 0}. Then, by (3.1), we have|f | = χE on{ϕ ∈M(L∞);
ϕ(z) = 1}. Since log|m(f )| > −∞, by Jensen’s inequality

∫
M(L∞) log|f | dµm >

−∞. Since log|f | = 0 or−∞ on suppµm, we have

suppµm ⊂ {x ∈M(L∞); log|f(x)| = 0}.
Thus we obtain (3.5). By (3.4) and (3.5),f does not satisfy Jensen’s equality for
a pointm such thatm(f ) 6= 0.

Now our theorem is the following.

Theorem 3.2. Let f be an outer function inH∞ that is not invertible inH∞.
Let I = fH∞ be the ideal generated byf. ThenĪ = I(Z(I )) if and only iff
satisfies Jensen’s equality for every pointm in M(H∞) such thatm(f ) 6= 0.

Proof. We may assume that‖f ‖∞ = 1. Sincef is outer, we haveP(ϕ) ⊂ Z(I )
for everyϕ ∈Z(I ) ∩G; see [12, Lemma 2.2]. Hence, by Corollary 2.7, it is suf-
ficient to prove thatI satisfies condition(α) if and only if f satisfies Jensen’s
equality for every pointm in M(H∞) such thatm(f ) 6= 0.

First, suppose thatf does not satisfy Jensen’s equality for a pointm inM(H∞)
such thatm(f ) 6= 0. Then Jensen’s inequality yields

0< |m(f )| < exp

(∫
M(L∞)

log|f | dµm
)
.

By the corona theorem [3], there exists a net{zα}α in D such thatzα → m and
|f(zα)| > m(f )/2. PutA = {zα}α. ThenĀ ∩ Z(I ) = Ā ∩ Z(f ) = ∅.
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Let g ∈ I and‖g‖∞ ≤ 1. Theng = fh for someh∈H∞, and we have

exp

(∫
M(L∞)

log|f | dµm
)

exp

(∫
M(L∞)

log|h| dµm
)

= exp

(∫
M(L∞)

log|g| dµm
)
≤ 1.

Hence, by Jensen’s inequality,

|m(g)| = |m(f )||m(h)|

≤ |m(f )|exp

(∫
M(L∞)

log|h| dµm
)

≤ |m(f )|
exp

(∫
M(L∞) log|f | dµm

) < 1.

Sincem∈ Ā, these inequalities imply thatI does not satisfy condition(α).
Next, suppose that∫
M(L∞)

log|f | dµϕ = log|ϕ(f )| for every ϕ ∈M(H∞), ϕ(f ) 6= 0. (3.6)

Let 0< σ < 1 and letA ⊂ D satisfyZ(I )∩ Ā = ∅. Letm∈ Ā. Thenm(f ) 6= 0,
so that by (3.6) we have

∫
M(L∞) log|f | dµm > −∞. Hence there exists an open

and closed subsetVm of M(L∞) such thatZ(f ) ∩M(L∞) ⊂ Vm and

exp
∫
M(L∞) log|f | dµm

exp
∫
M(L∞)\Vm log|f | dµm > σ. (3.7)

Let Ṽm be a measurable subset of∂D such thatχ̂Ṽm = χVm, whereχ̂Ṽm is the
Gelfand transform ofχṼm ∈L∞. Let

hm(z) = exp
∫ 2π

0

eiθ + z
eiθ − zχṼm log|f | dθ

2π
, z∈D, (3.8)

and

gm(z) = exp
∫ 2π

0

eiθ + z
eiθ − zχ∂D\Ṽm log|f | dθ

2π
, z∈D. (3.9)

Thenhm andgm are outer functions inH∞, gm is invertible inH∞, and

f = hmgm. (3.10)
Hencehm ∈ I and∫

M(L∞)
log|gm| dµϕ = log|ϕ(gm)| for every ϕ ∈M(H∞). (3.11)

We have

|m(hm)| = |m(f )|exp

(
−
∫
M(L∞)

log|gm| dµm
)

(by (3.10) and (3.11))

= exp
∫
M(L∞) log|f | dµm

exp
∫
M(L∞)\Vm log|f | dµm (by (3.6) and (3.9))

> σ (by (3.7)).
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SinceĀ is compact, there existm1, m2, . . . , mk ∈ Ā such that

max{|hm1|, . . . , |hmk |} ≥ σ on Ā. (3.12)

Let V =⋂k
j=1Vmj, Ṽ =

⋂k
j=1Ṽmj , and

h(z) = exp
∫ 2π

0

eiθ + z
eiθ − zχṼ log|f | dθ

2π
, z∈D. (3.13)

Thenχ̂Ṽ = χV andZ(f ) ∩M(L∞) ⊂ V. Moreover, we haveh ∈ I by the same
reason as that used forhm ∈ I. SinceṼ ⊂ Ṽmj and‖f ‖∞ = 1, by (3.8) and (3.13)
we have|h(z)| ≥ |hmj (z)| for z∈D. Hence, by (3.12),|h| ≥ σ onU. ThusI sat-
isfies condition(α), which completes the proof.

We do not know of any function-theoretic characterization of an outer functionf

such thatf satisfies Jensen’s equality for every point inM(H∞) with m(f ) 6= 0.
Axler and Shields [1, Prop. 5] showed that a functionf in H∞ with Ref > 0 on
D satisfies Jensen’s equality for every point inM(H∞). For an inner functionq,
the functionq +1 satisfies this condition. PutQA = H∞ ∩H∞ + C, whereC is
the space of continuous functions on∂D andH∞ + C is the set of complex con-
jugates of functions inH∞ + C. Wolff [22] proved that, for everyf ∈L∞, there
exists an outer functionh ∈QA such thathf ∈ H∞ + C. If f /∈ H∞ + C, then
the functionh is not invertible inH∞. Thus there are many outer functions inQA
that are not invertible inH∞. Sarason [19] proved that, iff ∈H∞, thenf ∈QA
if and only if f |suppµϕ is constant for everyϕ ∈ M(H∞) \ D. HenceQA outer
functions satisfy Jensen’s equality for everyϕ ∈M(H∞). We have the following
corollaries as applications of Theorem 3.2.

Corollary 3.3. Let I = fH∞ be an ideal inH∞ generated by a functionf
that is not invertible inH∞, and letRef > 0 onD. ThenĪ = I(Z(I )).
Corollary 3.4. Let I = fH∞ be an ideal inH∞ generated by an outer func-
tion inQA that is not invertible inH∞. ThenĪ = I(Z(I )).
Acknowledgment. The author would like to thank the referee for pointing out
some errors in the original version of this paper.
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