Notre Dame Journal of Formal Logic Volume 48, Number 1, 2007

A Note on Counterexamples to the Vaught Conjecture

Greg Hjorth

Abstract If some infinitary sentence provides a counterexample to Vaught's Conjecture, then there is an infinitary sentence which also provides a counterexample but has no model of cardinality bigger than \aleph_1 .

1 Introduction

The following theorem was shown in [2].

Theorem 1.1 There is a countable structure \mathcal{M} with S_{∞} dividing Aut(\mathcal{M}) and whose Scott sentence has models of size \aleph_1 but no higher.

This note makes the following corollary of that theorem explicit.

Corollary 1.2 If there is some $\sigma \in \mathcal{L}_{\omega_1\omega}$ providing a counterexample to Vaught's Conjecture for $\mathcal{L}_{\omega_1\omega}$, then there is some $\sigma' \in \mathcal{L}_{\omega_1\omega}$ which again provides a counterexample and has no model of cardinality bigger than \aleph_1 .

Harrington has shown that any counterexample to Vaught's Conjecture will have, necessarily uncountable, models with arbitrarily high Scott ranks below ω_2 .

2 Proof

For convenience, we work under \neg CH. A similar argument works for the version of the Vaught Conjecture which asks for uncountably many nonisomorphic countable models without a perfect set of nonisomorphic countable models.

Received August 15, 2005; accepted November 8, 2005; printed February 26, 2007 2000 Mathematics Subject Classification: Primary, 03E15 Keywords: Vaught's conjecture, infinitary logic, Polish group ©2007 University of Notre Dame Greg Hjorth

Definition 2.1 S_{∞} is said to *divide* a Polish group *G* if there is a closed subgroup H < G and a continuous, onto, homomorphism

$$\pi: H \twoheadrightarrow S_{\infty}.$$

Notation 2.2 For \mathcal{L} a countable language we let $X_{\mathcal{L}}$ be the space of all \mathcal{L} -structures with underlying set \mathbb{N} and with the topology having basic open sets

$$\{\mathcal{N}:\mathcal{N}\models\psi(\vec{a})\}$$

for ψ quantifier free and \vec{a} a finite sequence from \mathbb{N} .

It is well known and easily checked that $X_{\mathcal{L}}$ is a Polish space in the indicated topology. Compare [1], §2.7.

Let \mathcal{M} be as in the statement of the theorem and let $\sigma \in \mathcal{L}_{\omega_1\omega}$ have exactly \aleph_1 many nonisomorphic models. For convenience I will assume that \mathcal{M} has \mathbb{N} as its underlying set. Fix H a closed subgroup of Aut(\mathcal{M}) which maps continuously and homomorphically onto S_{∞} .

In particular, we have a continuous action of S_{∞} on a Polish space X with exactly \aleph_1 many orbits. This obviously can be lifted up to a continuous action of the Polish group H with the same orbit structure, and then following [1], 2.3.5, we may lift the action of H on X up to an action of Aut(\mathcal{M}) on a Polish space $Y \supset X$ such that, among other things, Y has the same number of orbits under Aut(\mathcal{M}) as X does under H. That is to say, $Y/\text{Aut}(\mathcal{M})$ has size \aleph_1 .

Then by [1], 2.7.4, we can find a richer countable language $\mathcal{L}' \supset \mathcal{L}$ such that the expansions of \mathcal{M} to \mathcal{L}' , $Y_{\mathcal{L}'}^{\mathcal{M}}$, form a universal Polish Aut(\mathcal{M}) space. In particular, there will be an injective and Borel Aut(\mathcal{M})-map,

$$\rho: Y \to Y_{L'}^{\mathcal{M}}.$$

Since the injective images of Borel sets are Borel, there will be an invariant Borel set

$$B \subset Y_{I'}^{\mathcal{M}}$$

which contains exactly \aleph_1 many orbits under the action of Aut(\mathcal{M}).

Now let *C* be the set of all $\mathcal{N} \in X_{\mathcal{L}'}$ such that there exists $\mathcal{N}' \cong \mathcal{N}$ with $\mathcal{N}' \in B$. Note that *C* is then Δ_1^1 , and hence Borel, since, by invariance of *B*, we can equivalently describe *C* as the set of $\mathcal{N} \in X_{\mathcal{L}'}$ which satisfy $\varphi_{\mathcal{M}}$, the Scott sentence of \mathcal{M} , and for which any $\mathcal{N}' \in Y_{\mathcal{L}'}^{\mathcal{M}}$ isomorphic to \mathcal{N} is in *B*.

Thus by [3], there is some $\sigma' \in \mathcal{L}'_{\omega_1\omega}$ whose models with underlying set \mathbb{N} are exactly the elements of *C*. Since $\sigma' \Rightarrow \varphi_{\mathcal{M}}, \sigma'$ has no model of size \aleph_2 . By construction, σ' has exactly \aleph_1 many nonisomorphic models.

References

- Becker, H., and A. S. Kechris, *The Descriptive Set Theory of Polish Group Actions*, vol. 232 of *London Mathematical Society Lecture Note Series*, Cambridge University Press, Cambridge, 1996. Zbl 0949.54052. MR 1425877. 50
- Hjorth, G., "Knight's model, its automorphism group, and characterizing the uncountable cardinals," *Journal of Mathematical Logic*, vol. 2 (2002), pp. 113–44. Zbl 1010.03036. MR 1900550. 49

50

 [3] Lopez-Escobar, E. G. K., "An interpolation theorem for denumerably long formulas," *Fundamenta Mathematicae*, vol. 57 (1965), pp. 253–72. Zbl 0137.00701. MR 0188059. 50

MSB 6363 UCLA Los Angeles CA 90095-1555 greg@math.ucla.edu