Notre Dame Journal of Formal Logic
Volume VIII, Number 4, October 1967

DECISION FOR K4

IVO THOMAS

It was asked in [1] whether K4 contained K5. We show that it does, and give a decision procedure for the system, which has the third degree of completeness. To this end we establish a system SR which turns out to be an alternative version of K 4 . As a basis we take propositional calculus, PC, with substitution and C-detachment, and the axioms:

1. $R C p R p$
2. CRNpNRp
3. CNRpRNp
4. $C R C p q C R p R q$
with the rule to infer $R \alpha$ from $\alpha(R)$.
Having PC, 2-4, we obviously have the meta-rule:
To infer $\phi \beta$ from $E \alpha \beta$ and $\phi \alpha$ (EXT).
5. ENRpRNp
6. CRpRRp
7. $C R R p R p$
8. ERpRRp
9. CNRCpqNCRpRq

Dem. (1) CNRCpqRNCpq
(2) $C R N C p q R p$
(3) CRNCpqRNq
(4) CRNCpqNRq
(5) CRNCpqNCRpRq Prop.
10. $E R C p q C R p R q$

With $5,8,10$ and EXT we can reduce every expression to an inferentially equivalent set of forms

$$
\text { (I) } C \alpha_{1}, \ldots . C \alpha_{n} \beta
$$

with each α_{i} an elementary variable or such negated, or either of those preceded by R, and β a variable not appearing as a component in any α_{i}.

Forms (I) are provable if there are antecedents π and $N \pi$ or $R \pi$ and $R N \pi$. Otherwise they are inferentially equivalent to one of $C R p C N p q, C R p C p q$. If the latter was provable $S R$ would be inconsistent; if the former was provable SR would be two-valued. The following theorem shows that neither is provable.
Definition. $W \alpha$: α is reducible to a substitution in a tautology by finite replacements of

$R C \beta \gamma$	by	$C R \beta R \gamma$
$R N \beta$	by	$N R \beta$
$R R \beta$	by	$R \beta$

Theorem. All theses have the property W.
Proof. All tautologies and 1-4 have W, and W is hereditary under the rules.
Now CRpCNpq and CRpCpq do not have W, for they are not substitutions in tautologies and the replacements are inapplicable. Thus we see that W is a defining property of theses. In future proofs we shall often simply state the proposition to be proved and the tautology in which its reduction is a substitution.
Def. $L \quad L \alpha=K \alpha R \alpha$
Def. $M \quad M \alpha=A \alpha R \alpha$
11. $c L p p$
12. $C L C p q C L p L q$
13. $C L p L L p$
14. CpCMLpLp
15. CLMpMLp
16. From α we can infer $K \alpha R \alpha$ by PC and Re, and so $L \alpha$
17. $A L p A L C p q L C p N q$
[CKpqp, $q / R p$, Def. L
[CKCpqCrsCKprKqs, $r / R p, s / R q$
[CKpqKKpqKqq, $q / R p$
[CpCAKpqKqqKpq, $q / R p$
[CKApqAqqAKpqKqq, $q / R p$
[by Def. L.
[AKprAKCpqCrsKCpNqCrNs, $r / R p, s / R q$

With $11-16$ we have K4, and with $11-17$ we have K5. But if we define $R \alpha$ as $L M \alpha$ in K4, then 1-4 and $\not \subset$ are provable, as are ELpKpRp, EMpApRp. Thus K4 contains K5 and SR \longleftrightarrow K4.

REFERENCE

[1] Sobociński, B.: Family \mathcal{K} of the non-Lewis modal systems. Notre Dame Journal of Formal Logic, vol. 5 (1964), pp. 313-318.

