Notre Dame Journal of Formal Logic Volume VIII, Number 4, October 1967

DECISION FOR K4

IVO THOMAS

It was asked in [1] whether K4 contained K5. We show that it does, and give a decision procedure for the system, which has the third degree of completeness. To this end we establish a system SR which turns out to be an alternative version of K4. As a basis we take propositional calculus, **PC**, with substitution and C-detachment, and the axioms:

- 1. *RCpRp*
- 2. CRNpNRp
- 3. CNRpRNp
- 4. CRCpqCRpRq

with the rule to infer $R\alpha$ from α (\mathcal{R}). Having PC, 2-4, we obviously have the meta-rule: To infer $\phi\beta$ from $E\alpha\beta$ and $\phi\alpha$ (EXT).

5.	ENRpRNp	[2, 3
6.	CRpRRp	[4 q/Rp, 1]
7.	CRRpRp	[6 <i>p/Np</i> , 5, EXT, PC
8.	ERpRRp	[6, 7
9.	CNRCpqNCRpRq	
	Dem. (1) CNRCpqRNCpq	[PC, 5
	(2) CRNCpqRp	[PC, <i>ℝ</i> , 4
	(3) CRNCpqRNq	[PC, 𝒫, 4
	(4) CRNCpqNRq	[(3), 5]
	(5) CRNCpqNCRpRq	[(2), (4)]
	Prop.	[(1), (5)
10.	ERCpqCRpRq	[4, 9

With 5, 8, 10 and EXT we can reduce every expression to an inferentially equivalent set of forms

(I) $C\alpha_1, \ldots, C\alpha_n\beta$

with each α_i an elementary variable or such negated, or either of those preceded by R, and β a variable not appearing as a component in any α_i .

Received August 19, 1965

IVO THOMAS

Forms (I) are provable if there are antecedents π and $N\pi$ or $R\pi$ and $RN\pi$. Otherwise they are inferentially equivalent to one of CRpCNpq, CRpCpq. If the latter was provable SR would be inconsistent; if the former was provable SR would be two-valued. The following theorem shows that neither is provable.

Definition. Wa: α is reducible to a substitution in a tautology by finite replacements of

$RC\beta\gamma$	by	$CR\beta R\gamma$
$RN\beta$	by	$NR\beta$
$RR\beta$	by	$R\beta$

Theorem. All theses have the property W.

Proof. All tautologies and 1-4 have W, and W is hereditary under the rules.

Now CRpCNpq and CRpCpq do not have W, for they are not substitutions in tautologies and the replacements are inapplicable. Thus we see that W is a defining property of theses. In future proofs we shall often simply state the proposition to be proved and the tautology in which its reduction is a substitution.

Def. L $L\alpha = K\alpha R\alpha$	
Def. M $M\alpha = A\alpha R\alpha$	
11. CLpp	[CKpqp, q/Rp, Def. L]
12. CLCpqCLpLq	[CKCpqCrsCKprKqs, r/Rp, s/Rq
13. <i>CLpLLp</i>	[CKpqKKpqKqq,q/Rp
14. CpCMLpLp	[CpCAKpqKqqKpq,q/Rp
15. CLMpMLp	[CKApqAqqAKpqKqq,q/Rp
16. From a we can infer KaRa	
by PC and \mathcal{R} , and so $L\alpha$	[by Def. L.
17. ALpALCpqLCpNq	[AKprAKCpqCrsKCpNqCrNs, r/Rp, s/Rq

With 11-16 we have K4, and with 11-17 we have K5. But if we define $R\alpha$ as $LM\alpha$ in K4, then 1-4 and \mathscr{R} are provable, as are ELpKpRp, EMpApRp. Thus K4 contains K5 and SR \leftrightarrow K4.

REFERENCE

 Sobociński, B.: Family % of the non-Lewis modal systems. Notre Dame Journal of Formal Logic, vol. 5 (1964), pp. 313-318.

The Ohio State University Columbus, Ohio