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PRIMITIVE RECURSIVE COMPUTATIONS

STEPHEN H. McCLEARY

1. Definition of a computation.* Using the definition of primitive r e -
cursive function found in Kleene, p. 219 [1], we shall define a (primitive-
recursive) computation, investigate the mechanics of executing such a
computation, and derive upper bounds for the value of the function and for
the number of steps required for the computation.

Kleene's definition is: "Each of the following equations and systems of
equations (I)-(V) defines a number-theoretic function </>, when n andw are
positive integers, i is an integer such that 1 ̂  i ^ n, q is a natural number,
and ψ, Xi, . . . , XmX are given number-theoretic functions of the indicated
numbers of variables.

(I) φ(*) = * .
(II) 0(*i, . . . , xn) = Q.
(III) φ(χlf . . . , xn) = Xi.

(IV) φ(Xl, . . . , Xn) =ψ(Xl(Xl, . . . , X»), . . . , Xm(Xl, . . . , Xή)).

(Va) f</>(0) = 4,
(0(3>f)= X(y, 0(3θ).

( V b ) { Φ(°9X*> - , X n ) = Ψfa, . . . , Xn) ,
(0(3>f,*2, . . . , Xn) = X(y9φ(y,χ2, > χn), #2, . . . , Xn\

((Va) constitutes the case of (V) for n = 1, and (Vb) for n > 1.) A function is
primitive recursive if it is definable by a series of applications of these
five operations of definition."

Modifying this definition to permit zero arguments in (II) so that (Va)
and (Vb) can be combined, we proceed in the obvious way to give a
recursive definition of function word, giving in the process a definition of
the rank of a function word:

(1) S is a function word of rank 1.
(2) Cm is a function word of rank n (n s*0).
(3) Um is a function word of rank n (n ^ 1; 1 < m < ή).
(4) If Am is a function word of rank m and if B", . . . , B% are function

words of rank n, then SmAmBΪ. . . BZ is a function word of rank n
(m> 1, n > 1).
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(5) If A"1"1 is a function word of rank n-1 and if Bn+1 is a function word of
rank n+1, then RW^M"1J5W+1 is a function word of rank n (n ^ 1).

(6) No expression is a function word unless required to be by (1), . . . , (5).

A computation expression is defined by

(1) A numeral is a computation expression.
(2) If W is a function word of rank n (n ^0) and if Eh . . . , En are

computation expressions, then W(Eh . . . , En) is a computation expres-
sion.1

(3) No expression is a computation expression unless required to be by (1)
and (2).

Let Ni be the numeral for the number i. Let Ei be any numeral. Let
A's and B's be function words. The replacement rules for computation
expressions are

(1) S(Ni) can be replaced by Ni+i.
(2) Cm(Ei, . . . , En) can be replaced by Nm.2

(3) UiζEh . . . , En) can be replaced by E{.
(4) SίAm'BΪ. . . Bg(Eu . . . , £«)can be replaced by Am(BΪ(Eh . . . , En\

. . . , (BZ{EU . . . , En)).
(5a) RwAw-\Bw+1(j\Γo,£2, . . . , En) can be replaced by An~\E2, . . . , En).
(5b) R ^ " 1 ^ 1 ^ , ^ , . . . , En) can be replaced by B*¥1Wj-i9R

nAn~1BtH'1{Fί-h

E* . . . , En), E2, . . . , En) if j > 0 .

A computation is a sequence {Ci, . . . , Q>}of computation expressions
such that Ci is of the form W(Ei, . . . , En), where Ψ i s a function word and
Ei, . . . , En are numerals, Ck is a numeral, and C/+1 follows from Cy by an
application of one of the replacement rules to some subexpression of Q,
j = 1, . . . , &-1.3 Each computation expression (other than a numeral) must
contain at least one replaceable subexpression. (If the entire expression is
not replaceable, one of its arguments must be a computation expression
which is not a numeral. If this in turn is not replaceable, one of its argu-
ments must .be a non-numeral, and so on. We finally reach a computation
expression which has only numerals as arguments and thus is replaceable.)
So that a given computation expression will yield a unique computation, we
shall adopt the convention that if the current computation expression con-
tains more than one replaceable subexpression, the one beginning farthest
to the left will be replaced. The number of steps in a computation is the
number of applications of the replacement rules. To no one's surprise, we
shall find that any computation must terminate after finitely many steps.

2. A description of the computation. The length of a computation ex-
pression is the number of letters (S,C,U,R) in it. A computation is
completed when an expression of length zero is obtained. An application of
any one of the first four replacement rules reduces the length of the
expression by precisely one since the rules are applied only when the
arguments are numerals and thus contain no letters. An application of (5a)
reduces the length by more than one. Now suppose that computation has
proceeded until the next step will be the first application of (5b). LetM
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denote the computation expression about to be replaced. (M may of course
be a subexpression of the current computation expression.) M is
p ^ w - i g w + i ^ ^ . . . , En), where all of the arguments are numerals
and j > 0. Apply (5b). The expression M(1) which replaces M (and is to be
thought of as having "descended" from M) is Bn+1(Nj-uR

nAn~1Bn+1(Nj-i9

E2, . . . , En\ E2, . . . , En), where the second argument is just M with Nj
replaced by Ni.1. Since the leftmost replaceable expression was previously
M, it is now the second argument of Mκ -, so the next step is an application
of (5a) or (5b) to that argument. Indeed, starting with the replacing of M,
we get j consecutive applications of (5b) followed by an application of (5a).
Letting M (o) be M and letting M{k+1) be the descendant of M(k\ k = 0, . . . , j ,
we obtain through these j+ 1 steps an expression M(/+1) which is a descendant
of M. For k = 0, . . . , j - 1 , M(k+1) is M(k) with the occurrence of RnAn'L

Bn+1(Nhk,E2,. . ,,En) replaced by B*¥1iJtj-k-i9R
nAn~1B'*1{tij-k-i9E29. . . , En),

E2, . . . , En). M (/+1) is M(>} with the occurrence of R^^B"*1®^*,
. . . , En) replaced by An~1(E2, . . . , En). We obtain a nesting. For example,
let j = 2. Then M ( ' + 1 ) = M ( 3 ) = Bn+1(l9B

n+1(09A
n'\E29 . . . , En), E2, . . . ,En)).

The R with which M began has disappeared.

(i) An'λ has at least one less R than did M; so does each Bn+1.

Since E2> . . . , En are numerals, the computation next deals with
An~\E2, . . . , En) as with the initial expression, leaving the rest of the
current expression undisturbed. A12'1 may contain further R's. However, it
is clear by induction that An~1(E2, . . . , En) will ultimately be reduced to a
numeral N (by (i)). We postpone a description of this reduction.

The computation next deals with the rightmost copy of Bn+1. Again by
induction, Bn+1(0,E,E2, . . . , En) will eventually be reduced to a numeral
and again we postpone a description. The computation proceeds leftwards
through the remaining copies of Bn+1 which have descended from M. When
the leftmost of these has been reduced to a numeral, M itself has been
reduced to a numeral. Each of the reductions whose description was post-
poned proceeded just as did the reduction of M itself.

The reduction of M to a numeral does not complete the computation.
However, the part prior to the first application of (5b) created no copies of
any letters and the reduction of M to a numeral did not disturb the rest of
the expression. Hence no R in the initial expression / which had a
descendant in M has any descendant still remaining. Furthermore, each of
the other R's in / has precisely one descendant. Hence the reduction of M
to a numeral has reduced the number of R's by the number of R's in M
(which is at least one). Therefore, although further M's may need to be
computed, the number of R's must finally reach zero, after which the
computation is easily completed.

3. Bounds. We have seen that when a subexpression R ^ " " ^ ^ 1 ^ . ,
E2, . . . , En) is encountered, the next j+1 steps replace it by an expression
containing j copies of Bn+1 and one copy of A12"1. Thus the size of Nj is
crucial. Let H denote at any point during the computation the largest
numeral appearing in the current line. We shall investigate how # varies
through the computation.
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In /, pick any two R's. The one on the right may occur in the A of the
one on the left, in the B, or in neither, but not in both. We assume that

(ii) For any two R's in /, the one on the right appears in the B of the one on
the left.

This assumption will later be discharged. (We shall see that it results in
the highest values of the bounds.) We define several characteristics of /:

Y = largest subscript on any C (= 0 if there are no C9s).
Z = largest argument4.
N = number of occurrences of 5 with no superscript, i.e., number of oc-

currences of the successor function.
P = max fcZJ+N except that if this is 0, P = 1.
T = number of occurrences of R.
L = length minus Γ.

The lack of distinction between numbers and numerals will not cause any
confusion. The bounds for the value of the function and the number of steps
will be in terms of N,P, and L. The initial size of H is Z. Since we really
need only an upper bound for the size of H, we shall assume that initially
H = max {Y,Z}. This makes it unnecessary to keep track of the introduction
of numerals by replacement rule (2). Hence H can be increased only by the
elimination of an S according to replacement rule (1). At the first applica-
tion of (5b), H ^ max {Y,Z} + N ^ P. Assume H = P. We process M =
R»A»-1Bn+1(μP9E2, . . . , En) getting P copies of Bn+1 and one of An~\ Since
P > 0, we do get copies. By (ii), An'x contains no R's. We still have H = P
after An~x{E2y . . . , En) has been replaced by a numeral because each S in
A"'1 has as ancestor an S none of whose descendants has yet been
eliminated; and the ancestors are included in the value of N. Assuming the
worst, we suppose that each copy of Bn+1 is a copy of all of / except that it
does not contain the R which has just been eliminated. Each of the P copies
contains precisely T-l R's and N S's. The rightmost of the P copies is now
"spread out" into P more copies with another R eliminated, leaving Γ-2
R's. The A is computed. Still H = P. This process is repeated until
finally P copies are obtained with no R's. There, are now P-l nested copies
with T-l R's each, nested within which are P-l nested copies with T-2 R's
each, . . . , nested within which are P-l nested copies with one R each,
nested within which are P nested copies with no R's. Still H = P. We call
the set of copies with k R's the k-leυel, k = 0, . . . , Γ-l. The situation is
suggested by

Figure I

^ ^ ^ ^ 7 5ΘζX (Γ-1)-level

P-l copies

Γ - ^ i ^ ^ g y (Γ-2)-level

P-l copies

r^i;Lς—.lB&t 1-level

P-l copies

^Z-^-^=^^> ° l e v e l

P copies
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The 0-level is computed. In each of the P copies at the 0-level are
NS'a, so H increases by PN to give H = P + PN = P(N+1). Any S's en-
countered after reaching the 1-level, but before the next application of (5b)
need not be considered because N S's were allowed in each copy on the
0-level. The rightmost copy on the 1-level is spread out into P(N+l) copies
which constitute a new 0-level. This 0-level is computed. Now H =
P(N+1) + (P(N+1))N = P(N+lf. This process is repeated until the 2-level is
reached. By induction we see that now H = P(N+1)P. The last copy on the
2-level is spread out into P(iV+l)p copies which constitute anew 1-level.
By the result just obtained for 1-levels, computation of the new 1-level
yields

H = [P(N+1)P] (N+lίPlN+l)Pϊ .

Thus motivated, we define

fo(P,N) = P ,

fi(P,N) = P(N+l),

h2fl(P,N) = P(N+l)p,

hj,k(P,N) = hj,i{frj.k-ι{P,N),N), j *2, k >2,

hj.i(P,N) = hj-ltP(P,N), j>2,

fj(P,N) = hjfl(P,N), j>2.

We have seen that when the k -level is reached, H = fk{P,N), k = 0,1,2.
Proceeding by induction, we assume that when the &-level is reached
H = fk(P,N) = hk,i(P>N)> k ^ 2 . Thus reducing the P l t h (rightmost) copy on
the k -level to a numeral, which is what has been done when the k-level has
been reached, has raised H from P to hk,i{P,N). By the same argument,
computing one more copy on the &-level raises hk,ιto /z£,i(/z/u(P,iV),i\0 =
hk,2(P,N). By a subinduction it is clear that upon reaching the (k+1)-level,
i.e., after computing all copies on the &-level, H = hk>P(P,N) = hk+i,ι{P,N) =
fk+i(P,N).

When we reach the T -level, H = fτ(P,N) and we have finished computing
M. By assumption (ii), no R's remain in the current expression. Each
remaining S was assumed to be in each of the copies; hence its effect on H
can be neglected. We have proved

Theorem 1: The value of a primitive recursive function does not exceed

Assume N > 0. To find a bound for the number of steps in the
computation, we first find how many copies of / have been made. Assume
for the moment that only copies on the various 0-levels need be counted.
Let Hi be the value of H as we begin to spread out a 0-level and Hz the
value as we begin to spread out the next 0-level. Then Hz = Hi + HiN =
Hi(N+l). Since N > 0, Hi ^ \Hz. At the end of the computation H = fΎ{P,N).
At the last creation of a 0-level, H ^ifτ(P,N). We see that the total number
of copies on the various 0-levels does not exceed fτ(P,N)(j> + \ + . . . ) =
fτ(P,N). Since each copy on the 0-level contains no R's, we have (under the
assumption that only copies on the 0-levels need be counted)
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Theorem 2: The number of steps in a primitive recursive computation
does not exceed fτ(P,N) L (provided N > 0).

If N = 0, we may obtain a bound by assuming N = 1. A sharper bound is
obtainable by leaving AT at 0, but its derivation is too tedious to be worth the
while. Also, it is clear that if T = 0, the bound of P L given by the theorem
can be replaced by L.

It remains to show that only copies on the 0-levels need be counted in
obtaining the bound of theorem 2. For T = 0, there is nothing to show. Let
us look at T = 1. M i s of the form RnAn"xBn+ι(El9 . . , , En) and contains no
R's other than the one exhibited. Any steps taken before applying (5b) ((5b)
rather than (5a) because P > 0) to M will be assumed to occur during the
computation of each copy on the 0-level (of which there is at least one
because P > 0) and thus need not be counted. The steps used to reduce
An"1(E2, . . . , En) to a numeral are executed before the computation of the
0-level begins, but need not be counted since A""1 is assumed to be included
in each copy on the 0-level. The 0-level actually contains (no more than) P
copies, but the theorem allows for P(N+1) ̂ 2P copies, so we have allowed
for P extra copies. This takes care of the steps used to spread out the
0-level. Applying a similar argument at higher levels, it is clear that also
for T > 1, only copies on the 0-level need be counted.

We shall now justify assumption (ii). The subexpression RnAn~ 1Bn+\H9

E2, . . . , En) is converted into H copies of Bn+1(H >0) and one of An~\ An
R contained in Bn+1 is copied H times; an R in An~\ but once. Since more
occurrences of R cause a higher function value and more steps in the
computation, it may be assumed that no R in / lies in the A of another R. It
may likewise be assumed that for any two R's in /, it is not the case that
the one on the right lies in neither the A nor the B of the one on the left.
Hence we may assume (ii).

Tabulating the results for small T and recalling that the number of
steps does not exceed L if T = 0, we get the bounds5

Figure II

T Function Value Steps

O P L
1 P(N+1) P(N+1) L
2 P(N+lf P(N+1)P-L

We conclude with an example. An expression for adding 3 and 2 is
SiR2Z7ΪSiSZ7|Z7|ί7?(3,2). T = 1, N = 1, P = 4, L = 7. The function value cannot
exceed 8; the actual value is 5. The number of steps cannot exceed 56; the
computation actually requires 14 steps.
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NOTES

1. We have n = 0 only for the words C^. Affixing zero arguments to C^ to get a com-
putation expression is understood to yield simple C^.

2. We interpret replacement rule (2) to mean thatC^ can be replaced by Nm.
3. The replacement rules and the definition of computation were developed by Dr.

Alan Robinson of Rice University.
4. There will be at least one argument unless / is precisely C°m. Since it turns out

that the bounds hold for this case, it will be assumed that there are arguments.
Hence Z is defined.

5. We recall that if N = 0, N must be set to 1 to use the table.
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