FURTHER AXIOMATIZATIONS OF THE £UKASIEWICZ THREE-VALUED CALCULUS

FEDERICO M. SIOSON

A propositional calculus for three-valued logic was first constructed by J. Łukasiewicz (1920) and subsequently communicated in a lecture before the Polish Philosophical Society. His results were published later [2]. In 1931 M . Wajsberg [4] formalized the three-valued logic of Łukasiewicz by means of two primitive connectives, implication (denoted by C) and negation (denoted by N), and the following axioms stated in the Łukasiewicz convention:
$W_{1} . \quad C p C q p$
$W_{2} \cdot C^{\prime} \cdot p q C C q r C p r$
$W_{3} . \quad C C N p N q C q p$
$W_{4} . \quad C C C p N p p p$.
Wajsberg also assumed the following rules of inference:
S. Any well-formed formula may be substituted for a propositional variable in all its occurrences in a theorem or axiom.
MP. If P and $C P Q$ are theorems, then Q is also a theorem.
The truth tables for C and N of the Łukasiewicz three-valued logic is given by

$c p q$	\mathbf{F}	\mathbf{U}	\mathbf{T}	$N p$
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{U}	\mathbf{U}	\mathbf{T}	\mathbf{T}	\mathbf{U}
\mathbf{T}	\mathbf{F}	\mathbf{U}	\mathbf{T}	\mathbf{F}

In 1951 Alan Rose [3] introduced several new other axiomatizations of the same propositional logic by taking disjunction (denoted by A) and negation as primitives and substitution and the following as rules of inference:
MP_{1}. If P and $A N P Q$ are theorems, then Q is also a theorem.

The truth table for A is the same as that proposed by Dienes [1]:

$A p q$	\mathbf{F}	\mathbf{U}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{U}	\mathbf{T}
\mathbf{U}	\mathbf{U}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

In Rose's systems the connective C of Wajsberg is defined by
(a) $C p q \equiv A N p q$
while the connective A of Rose is defined in the Wajsberg system by
(b) $A p q \equiv C N p q$.

Actually, A. Rose also utilized the abbreviation:
(c) $K p q \equiv N A N p N q$.

Thus, the truth table for K when computed would be given by

$K p q$	F	U	T
F	F	F	F
U	F	F	\mathbf{U}
T	F	U	T

We shall propose two formulations of three-valued logic each with conjunction (denoted by K) and negation (denoted by N) as primitive connectives and substitution and the following as rules of inference:
MP_{2}. If $N K P N Q$ and P are theorems, then Q is also a theorem.
Admitting as abbreviations
(d) $C p q \equiv N K p N q$,
and
(e) $A p q \equiv N K N p N q$
the rule MP_{2} then reduces to rule MP and our proposed axiomatizations become:

```
A1. NKNKApppp
A2. CKрqq
A3. CNKNqpCNKqrNKrp
B. CpKAppp
B2. CKpqq
B3. Cpp
B4. CCpqCNKqrNKrp
```

To show that these two axiom systems are adequate for the three-valued \log ic of £ukasiewicz, we shall first prove that the axiom system $B_{1}-B_{4}$
follow from $A_{1}-A_{3}$ and the axioms of Wajsberg $W_{1}-W_{4}$ follow from axioms $B_{1}-B_{4}$.

Rule 1.1. If $N K N Q P$ and $C Q R$ are theorems, then $N K N R P$ is a theorem.
Proof: CNKNqpCNKqrNKrp Axiom A_{3} CNKNQPCNKQNRNKNRP Rule S with $p / P, q / Q, r / N R$ $N K N Q P$ Given
CNKQNRNKNRP MP rule
CQR Given
NKQNR Definition (d)
CNKQNRNKNRP Line 4
NKNRP MP rule
Theorem 1.1. CKApppp
Proof. CKpqq
СKApppp
Axiom A_{2}
Rule \mathbf{S} with $p / A p p, q / p$
Theorem 1.2. NKNpp
Proof. NKNKApppp
СКАрррр
NKNpp
Axiom A_{1}
Theorem 1.1
Rule 1.1
Theorem 1.3. CNKpqNKqp
Proof. CNKNqpCNKqrNKrp Axiom A_{3} CNKNppCNKpqNKqp \quad Rule S with $q / p, r / q$
NKNpp
Theorem 1.2
CNKpqNKqp
MP rule
Rule 1.2. If $N K N P Q$ is a theorem, then $C Q P$ is also a theorem.
Proof. CNKpqNKqp
CNKNPQNKQNP
NKNPQ
NKQNP
CQP
Theorem 1.3
Rule \mathbf{S} with $p / N P, q / Q$
Given
MP rule
Definition (d)
Theorem 1.4. Cpp
Proof. NKNpp Theorem 1.2
Cpp Rule 1.2
Rule 1.3. If $C P Q$ is a theorem, then $N K N Q P$ is also a theorem.

Proof. $C P Q$
$N K P N Q$
CNKpqNKqp
CNKPNQNKNQP
NKPNQ
NKNQP

Given
Definition (d)
Theorem 1.3
Rule S with $p / P, q / N Q$
Line 2
MP rule

Rule 1.4. If $C P Q$ and $C Q R$ are theorems, then $C P R$ is a theorem.

Proof. $C P Q$
$N K N Q P$
$C Q R$
NKNRP
CNKpqNKqp
CNKNRPNKPNR
NKNRP
NKPNR
CPR

Given
Rule 1.3
Given
Rule 1.1 on line 2 and 3
Theorem 1.3
Rule S with $p / N R, q / P$
Line 4
MP rule
Definition (d)

Theorem 1.5. CCpqNKNqp
Proof. CNKpqNKqp
CNKpNqNKNqp
CCpqNKNqp

Theorem 1.3
Rule S with $q / N q$
Definicion (d)

Theorem 1.6. CCpqCNKqrNKrp
Proof. CNKNqpCNKqrNKrp
CCpqNKNqp
CCpqCNKqrNKrp
Axiom A_{3}
Theorem 1.5
Rule 1.4
Theorem 1.7. $C p K A p p p$
Proof. CNKpqNKqp
Theorem 1.3
CNKNKAppppNKpNKAppp
NKNKApppp
NKрNKAppp
CpKAppp
Rule S with $p / N K A p p p, q / p$
Axiom A_{1}
MP rule
Definition (d)
Theorems 1.7, 1.4, 1.6, and Axiom A_{2} are respectively Axioms B_{1}, B_{3}, B_{4}, and B_{2}. Whence, Axioms $A_{1}-A_{3}$ implies Axioms $B_{1}-B_{4}$.

From hereon, we shall assume Axioms $B_{1}-B_{4}$ together with the two rules of inference.

Theorem 2.1. CNKpqNKqp
Proof. CCpqCNKqrNKrp
CCppCNKpqNKqp
Cpp
CNKpqNKqp
Axiom B_{4}
Rule S with $q / p, r / q$
Axiom B_{3}
MP rule
Rule 2.1. If $C P Q$ is a theorem, then $C N K Q R N K R P$ is a theorem.

Proof. CCpqCNKqrNKrp
CCPQCNKQRNKRP
$C P Q$
CNKQRNKRP

Axiom B_{4}
Rule S with $p / P, q / Q, r / R$
Given
MP rule

Rule 2.2. If $N K Q P$ is a theorem, then so is $N K P Q$.

Proof. $C p p$	Axiom B_{3}
$C Q Q$	Rule S with p / Q
$C N K Q P N K P Q$	Rule 2.1
$N K Q P$	Given
$N K P Q$	MP rule

Rule 2.3. If $C P Q$ and $C Q R$ are theorems, then $C P R$ is also a theorem.

Proof. $C P Q$
CNKQNRNKNRP
CQR
NKQNR
CNKQNRNKNRP
NKNRP
NKPNR
CPR

Given
Rule 2.1 with $R / N R$

Given

Definition (d)
Line 2
MP rule
Rule 2.2
Definition (d)

Theorem 2.2. CCpqCNKrqNKrp

Proof. CNKpqNKqp
CNKrqNKqr
CNKNKqrNNKrpNKNNKrpNKrq
CNKpqNKqp
CNKNNKrpNKrqNKNKrqNNkrp
CNKNKqrNNKrpNKNNKrpNKrq
CNKNKqrNNKrpNKNKrqNNKrp
CCNKqrNKrpCNKrqNKrp
CCpqCNKqrNKrp
CCpqCNKrqNKrp

Theorem 2.1.
Rule S with p / r
Rule 2.1. with $P / N K r q$, $Q / N K q r, R / N N K r p$
Theorem 2.1.
Rule S with $p / N N K r p, q / N K r q$ Line 3
Rule 2.3. on line 5 and 6
Definition (d)
Axiom B_{4}
Rule 2.3. on line 8 and 9

Theorem 2.3. NKNpp
Proof. $C p p$
NKpNp
NKNpp
Axiom B_{3}
Definition (d)
Rule 2.2.
Theorem 2.4. CNNpp
Proof. NKNpp
NKNNpNp
CNNpp
Theorem 2.5. C $C p N N p$
Proof. CNNpp
CCpqCNKqrNKrp
CCNNNpNpCNKNppNKpNNNp

Theorem 2.3.
S rule with $p / N p$
Definition (d)

CNNNpNp

CNNNPNP

Theorem 2.4.
Rule 5 with $p / N p$
Axiom B_{4}
Rule S with $p / N N N p, q / N p, r / p$ Line 2
CNKNppNKpNNNp
NKNpp
NKpNNNp
CpNNp

Theorem 2.6. CCpqCNqNp
Proof. CCpqCNKqrNKrp CCNNppCNKpNqNKNqNNp CNNpp CNKpNqNKNqNNp CCpqCNqNp

Theorem 2.7. CCNNpqCpq
Proof. CCpqCNKrqNKrp
CCpNNpCNKNqNNpNKNqp
CpNNp
CNKNqNNpNKNqp
CCpqCNqNp
CCKpqKqpCNKqpNKpq
CNKqpNKpq
CNKNNpNqNKNqNNp
CNKNqNNpNKNqp
CNKNNpNqNKNqp
CNKpqNKqp
CNKNqpNKpNq
CNKNNpNqNKNqp
CNKNNpNqNKpNq
CCNNpqCpq
Theorem 2.8. CCNqNpCNNpq
Proof. CNKqpNKpq
CNKNqNNpNKNNpNq
CCNqNpCNNpq
Theorem 2.9. CCNqNpCpq
Proof. CCNqNpCNNpq
CCNNpqCpq
CCNqNpCpq
Theorem 2.10. CCqrCCpqCpr
Proof. CCpqCNKrqNKrp
CCNpNqCNKrNqNKrNp
CCNpNqCCrqCrp
CCqpCNpNq
ссqp CCrqCrp
cCqrCCpqCpr

MP rule
Theorem 2.3
MP rule
Definition (d)

Axiom B_{4}
Rule \mathbf{S} with $p / N N p, q / p, r / N q$
Theorem 2.4
MP rule
Definition (d)

Theorem 2.2
Rule S with $q / N N p, r / N q$
Theorem 2.5
MP rule
Theorem 2.6
Rule S with $p / K p q, q / K q p$
Theorem 2.1 with $p / q, q / p$
Rule S with $q / N N p, p / N q$
Line 4
Rule 2.3 on last two lines
Theorem 2.1
Rule \mathbf{S} with $p / N q, q / p$
Line 10
Rule 2.3 on last two lines
Definition (d)

Theorem 2.1 with $p / q, q / p$
Rule \mathbf{S} with $p / N N p, q / N q$
Definition (d)

Theorem 2.8
Theorem 2.7
Rule 2.3 on last two lines

Theorem 2.2
Rule S with $p / N p, q / N q$
Definition (d)
Theorem 2.6 with $p / q, q / p$
Rule 2.3 on last two lines
Rule S with $p / r, r / p$

Theorem 2.11. CCpqCCqrCpr

Proof. CNKpqNKqp
CNKNrpNKpNr
CNKNrpCpr
CCqrCCpqCpr
CCNKNrpCprCCCqrNKNrpCCqrCpr
Rule S with $q / N K N r p, r / C p r, p / C q r$
CNKNrpCpr
CCCqrNKNrpCCqrCpr
CCpqCNKqrNKrp
CCpqCNKqNrNKNrp
CCpqCCqrNKNrp
CCCqrNKNrpCCqrCpr
CCpqCCqrCpr
Theorem 2.12. $C p C q p$
Proof. CKpqq
CKqNpNp
CCpqCNqNp
CCKqNpNpCNNpNKqNp
CKqNpNp
CNNpNKqNp
CNNpCqp
CpNNp
CpCqp
Theorem 2.1
Rule S with $p / N r, q / p$
Definition (d)
Theorem 2.10

Line 3
MP rule
Axiom B_{4}
Rule $\mathrm{S}^{\text {with }} \mathrm{r} / \mathrm{Nr}$
Definition (d)
Line 7
Rule 2.3 on last two lines

Proof. $C K p q q$	Axiom B_{2}
$C K q N p N p$	Rule S with $p / q, q / N p$
$C C p q C N q N p$	Theorem 2.6.
$C C K q N p N p C N N p N K q N p$	Rule S with $p / K q N p, q / N p$
$C K q N p N p$	Line 2
$C N N p N K q N p$	MP rule
$C N N p C q p$	Definition (d)
$C p N N p$	Theorem 2.5
$C p C q p$	Rule 2.3 on last two lines

Theorem 2.13. CCNNpNpCpNp
Proof. CCpqCCqrCpr
CCpNNpCCNNpNpCpNp
CpNNp
CCNNpNpCpNp

Theorem 2.11
Rule \mathbf{S} with $q / N N p, r / N p$
Theorem 2.5
MP rule

Theorem 2.14. CCCpNppCCNNpNpp
Proof. CCpqCCqrCpr
Theorem 2.11
CCCNNpNpCpNpCCCpNppCCNNpNpp
Rule \mathbf{S} with $p / C N N p N p, q / C p N p, r / p$
CCNNpNpCpNp
Theorem 2.13
CCCpNppCCNNpNpp
MP rule
Theorem 2.15. CCC $p N p p p$

```
Proof. CpKAppp Axiom B1
    CpKNKNpNpp Definition (e)
    CCpqCNqNp Theorem 2.6
    CCpKNKNpNppCNKNKNpNppNp
        Rule S with q/KNKNpNpp
```

CpKNKNpNpp	Line 2
CNKNKNpNppNp	MP rule
CNKNKNNpNNpNpNNp	Rule S with $p / N p$
CNKCNNpNpNpNNp	Definition (d)
CCCNNpNppNNp	Definition (d)
CNNpp	Theorem 2.4
CCCNNpNppp	Rule 2.3 on last two lines
CCCpNppCCNNpNpp	Theorem 2.14
CCCpNppp	Rule 2.3 on last two lines

Theorems $2.12,2.11,2.9$ and 2.15 are precisely the four axioms of Wajsberg; hence, it follows that Axioms $B_{1}-B_{4}$ and therefore $A_{1}-A_{3}$ imply the axioms of Wajsberg. They are then adequate axiomatizations of the three-valued propositional calculus of Jan Łukasiewicz.

Note. A slight modification of the axiom system $B_{1}-B_{4}$ gives another axiom system of three-valued logic. This is the following:

```
C1. CpKAppp
C2. СKрqq
C3. CNKpqNKqp
C4. CCpqCNKqrNKrp
```

To show that this is a good axiomatization, it suffices to prove $C p p$.
Rule 3.1. If $C P Q$ and $C Q R$ are theorems, $C P R$ is also a theorem.

Proof. CCpqCNKqrNKrp	Axiom C_{4}
$C C P Q C N K Q N R N K N R P$	S rule with $p / P, q / Q, r / N R$
$C P Q$	Hypothesis
$C N K Q N R N K N R P$	MP rule
$C C Q R N K N R P$	Definition (d)
$C Q R$	Hypothesis
$N K N R P$	MP rule
$C N K p q N K q p$	Axiom C_{3}
$C N K N R P N K P N R$	S rule with $p / N R, q / P$
$N K N R P$	Line 7
$N K P N R$	MP rule
$C P R$	Definition (d)

Theorem 3.1. Cpp
Proof. $C K p q q \quad$ Axiom C_{2}
CKApppp \quad S rule with $p / A p p, q / p$
CpKAppp \quad Axiom C_{1}
Cpp Rule 3.1
The equivalence of Axiom systems $B_{1}-B_{4}$ and $C_{1}-C_{4}$ is now clear.

REFERENCES

[1] Paul Dienes, "On ternary logic," Journal of Symbolic Logic 14 (1949) 85-94;
[2] Jan Łukasiewicz, 'O logice trójwartościowej" (On three-valued logic), Ruch Filozoficzny 5 (1920) 169-171;
[3] Alan Rose, "Axiom systems for three-valued logic." Proceedings of the London Mathematical Society 26 (1951) 50-58;
[4] M. Wajsberg, "Aksjomatyzacja trójwartościowego rachunku zdań" (An axiomatization of the three-valued propositional calculus), Comptes Rendus (Warsaw), Class III, 24 (1931) 126-148.

University of Hawaii
Honolulu, Hawaii

