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A THEOREM OF SIERPINSKI ON TRIADS AND
THE AXIOM OF CHOICE

BOLEStiAW SOBOCINSKI

In [4] Sierpinski has proved with the aid of the axiom of choice the fol-
lowing1

Theorem S. If E is an arbitrary set which is not finite, then there
exists a family F of such subsets of the set E that 1) each set belonging to
F contains three and only three elements of the set E, and 2) each subset of
E constructed from two and only two elements of the set E is a part of one
and only one set of the family F.

Sierpinski points out ([4], p. 15) that even for the set of all real numbers
he was unable to prove this theorem without the aid of the axiom of choice.

In this note I shall show that in the field of general set theory2 this
particular theorem of Sierpinski is equivalent to the axiom of choice. Let
us accept theorem S and let us assume that

(1) m is an arbitrary cardinal number which is not finite

It is well known3 that without the aid of the axiom of choice we can
associate with ra a certain so-called Hartogs' aleph, viz. tf (m), which pos-
sesses the following property:

(2) N(m) is the least aleph such that tf(m) is not ^ m.

Since N(m) is an aleph, we also know that

(3) there exists an ordinal number λ such that tf(m) = #χ

and, therefore,

(4) ωχ is an initial number of the class of ordinal numbers Z(ttλ)
4

Hence, by (1) and (2), there is a cardinal number

(5) ra + tf(m)

which, obviously, is not finite, and which together with (3) and (4) allows us
to conclude that there are sets E, M, and N such that each of them is not
finite and such that
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(6) N= ti(m) = Kλ

(7) N is a set of all ordinal numbers < ω\

(8) M = m

(9) M Π N = 05

(10) E =M U N

(11) f =M + JV = m + tf(ra)6

Since, by (1) and (10), set E is not finite, in virtue of theorem S we obtain

(12) There exists a family F of such subsets of the set E that
a) each set belonging to Fcontains three and only three elements of the

set E and
b) each subset of E constructed from two and only two elements of the

set E is a part of one and only one set of the family F.

We define now a family of sets Fm as follows

Dl For any x and m, x eFm if and only if
a) xeF
b) me M
c) there is such ot that cte N and {m, a} c x7

Obviously, Dl implies that

(13) for any m, Fm c F

We shall now prove the following lemmas:

Lemma 1. For any m, if me M, then there is such x thatxe Fm

Proof: Assume that meM. Hence, by (10), meE, and if aeN, then aeE.
Therefore, by (9) and (10), because set N is unempty, we know that for any
a, if aeN, then m Φ a, { m, a} exists and {m, a} c E. Hence, by (12), there
is such x that xeF and {m, a] c x. Whence, by Dl, xeFm . Thus, lemma 1
is proved.

Lemma 2. For any m, x, y, a, b, c, and d, ifmeM,aeE,beE,ceE,
deE, xe Fm , ye Fm , x = {m,a,b}, y = {m,c9d}, x * y , then a φ c, a φ d,
b 4 c, b 4= d and at least one element of x and at least one element of y
belong to N.

Proof. Lemma 2 follows immediately from Dl, (13), (12) and (10).

Lemma 3. For any m, a, β, x and z,ifmeM,aeN,'β eN, xe Fm , z e F,
x - {m,a ,β} and {oι,β} c z, then x = z.

Proof: The assumptions of lemma 3, (9) and (10) imply that meE,
aeE, βeE, and that m φ α, and m Φ β. Moreover, by (13), xeF. Hence, in
virtue of (12) we know that {m,a} c E , {m,β} c E and {a,β} c E. Therefore,
there is one and only one set belonging to JP such that [m,a] 9 {ra,/3}and
{a,β } are included as its subsets. Whence, it follows from the assump-
tions of lemma 3 that x = z. Thus, lemma 3 is proved.
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Lemma 4. For any m, ifmeM, then there exist such x, a and β that

xe Fm , x = {m, a, β}, ae N and βe N.

Proof: For this end, first, we define a set Mr as follows

D2 For any n and r, ne Mr if and only if

a) ne M

b) r e M

c) n φ r

d) there is such x that xe Fr and nex.

and, second, we assume that:

For any m,

( a) meM

and

( b ) f o r a n y x , a a n d n , if x e Fm , x = { m , a , n } , a e N , t h e n n e M

It will be shown that a conjunction of the assumptions (a) and (b) leads

to a contradiction. Namely, we can deduce without any difficulty that:

i) it follows from (a), (b), (9), (10), (13), Dl and lemma 1 that

(14) for any a, if aeN, then there exists one and only one such x that x e Fm ,

and ae x.

and that

(15) for any x, if xeFm , then there exists one and only one such a that

aeN and a ex.

and, moreover, that

ii) it follows from (a), (b), (12), Dl and D2 that

(16) for any n, if neMm , then there exists one and only one such x that

xe Fm and nex.

and that

(11) for any x, if x e Fm , then there exists one and only one such n that

ne Mm and nex.

It is clear that points (14), (15), (16) and (17) allow us to establish that

(18) the sets N, Fm and Mm possess the same number of elements,

i.e. that

(19) N = Fm =Mm

But, D2, for r = m, implies that

(20) Mm CM

which, in virtue of an elementary consequence of the Schroder—Bernstein

theorem, immediately gives
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(21) Mm < M

Hence, by (19), (21), (6) and (8), we obtain

(22) κ(m) =N = Mm < M = r a

i.e. that

(23) K (ra) <ra

Since (23) contradicts (2) and since (23) is a consequence of (a) and (b),
the conjunction of these two assumptions is not true. Therefore, we have:

(24) For any m, if meM, then there exist such x, a and β that x e Fm , x =
{m,a,β}, aeN and ~(βeM)

Since in (24) xeFm , by (13), xeF. Therefore, due to (24) and (12),
βeE. Since βeE and ~{βeM), by (10), βeN. Thus, the proof of lemma4
is complete.

Then, it follows from lemma 3, (13) and (12) at once that

(25) for any m, n, a, β, γ, δ, x and y, if me M, neM, m φ n, a eN, βeN,
γeN, δeN,xeFm , x ={m,α,β}, ye Fn,y = {n,δ,γ}, then {a,β} 4 {y,δ } 8

We now define a family of sets JP* as follows

D3 For any x and m, xeF% if and only if
a) x e Fm

b) there are such a and β that aeN, β e N and x = {m,oι,β}

Hence, by D3,

(26) for any m, F% c Fm

and, due to D3, Dl, (26) and lemma 4 we know that

(27) for any m, if me M, then there is such x that x e F%

and

(28) for any m, x and y, if x e Fm , y e Fm , x Φ y, then there are such a,β,γ
and δ that

aeN, βeN,γ e N, δeN,x ={m,a,β},y ={m,γ, δ} and {a,β} φ{y,δ}

We now introduce the following two definitions of the sets P and Pm

respectively:

D4 For any x, xeP if and only if
a) x is an element of the set of all subsets of the set N
b) there are such a and β that a eN, β e N and x = {a,β}

a n d

D5 For any x and m, x e Pm if and only if
a) xeP
b) there are such a,β and y that aeN, βeN, x = {a,β}, y e F* and{a,β}<zy
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Hence, by D5.

(29) for any m, Pm a P

by (27), D3, Dl, D4 and Z>5,

(30) for any m, ifme M, then there is such x that x e Pm

and, by D5 and (28),

(31) for any x and m, if xe Pm , then there exists one and only one such y
that y e F* and x c y.

Since, in virtue of (7), every element of the set JVis an ordinal number
< ωχ, we can accept that

(32) every pair {#,β}, for ote N and βe N, is an ordered pair of two ordinal
numbers ordered according their magnitude.

(Thus, e.g., if a <β< ωχ, then {a,β}= <a,β>. And, due to (7), D4, D5 and
(32), the sets P and Pm (defined above) can be considered respectively as
the set of all and as the set of some ordered pairs of ordinal numbers <ωχ.

We introduce now the following ordering of the elements belonging to
the setP:9

For any a,β,γ , δ, if a < β < ωχ and γ< δ < ωχ, then<a,β> -^ <γ,δ>if
and only if either α + β < y +δora+β = γ+δ and a < γ

and, due to this ordering, we can, obviously, consider the set P as a well-
ordered set of the type ωχ, i.e.:

(33) P= {<«*,*** >}*<« λ

Therefore, in virtue of (29), (30), (32) and (33), we obtain:

(34) for any m, if meM, then the unempty set Pm is a well-ordered set

which yields at once that

(35) for any m, if me M, then there exists a first element of the unempty
well-ordered set Pm

Hence, (35), D5, D3, Dl and (10) imply that

(36) for any m, meM if and only if there are two and only two ordinal num-
bers ot and β and one and only one x such that:
a) a < β < ωχ
b) < a,β> is the first element of the unempty well-ordered set Pm

c) xeF*
d) x = {m,a,β}

which together with (25) allows us to conclude that

(37) there exists a function such that
a) it associates with each element m of the set M a certain ordered

pair and only one such pair of ordinal numbers <α,β> such that
a< β< ωλ
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b) for any m, n, a, β,γ, δ, ifmeM,neM,mJrn9a<β< ωχ, γ < δ <ω λ

and the ordered pairs <α,β> and <α,/3> are associated by this
function with m and n respectively, then <α,β> Φ <y,δ>

Therefore, in virtue of two known theorems about the properties of
ordinal numbers10, which say that

T1 There exists a function of two variables φ(ζ,η) satisfying the following
conditions:
a) for any two ordinal numbers ζand η,ζ = φ(ξ,η) is a well-defined

ordinal number
b) for every ordinal number ζ there exists one and only one ordered

pair of ordinal numbers ξ and η such that ζ = φ(ξ,7?)
c) for every ordinal number a the inequality φ(ξ,η)<C ωa is equivalent

to the system of inequalities K ω α and η < ωa .

and

T2 Every initial number is a power of number ω

and which are, obviously, provable without the aid of the axiom of choice,
point (37) allows us to establish without any difficulty that

(38) there exists a function such that

a) it associates with each element m of the set M one and only one
ordinal number

b) for any m, n7 φ, and ψ, if m e M, ne M, m + n, φ< ω λ , ψ < ωχ and the
ordinal numbers φand ψ are associated by this function with m and
n respectively, then φφ ψ

Now, we define a set of ordinal numbers N* as follows

D6 For any a, ae N* if and only if
a) aeN
b) there exists such m that me M and the ordinal number a. is asso-

ciated by the function given in (38) with m.

Hence, by D6,

(39) AT* c N

and, therefore, in an elementary way we obtain

(40) N* =£ N

On the other hand, it follows clearly from (38) and D6 that

(41) M=N*

which, by (8), (41), (40) and (6), implies at once

(42) m =M =N* < N = N(m)

Hence, in virtue of (42) and (2), we conclude that

(43) m< tf(m)
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which together with (1) says that an arbitrary cardinal number m which is
not finite is an aleph. Hence, theorem S implies the axiom of choice. Thus,
since Sierpiήski has shown that the said axiom yields theorem S, we have a
proof that this theorem is equivalent to the axiom of choice.

NOTES

1. Sierpiήski mentions in [4], p. 13, that theorem S is related to the fol-
lowing combinatorial problem put by J. Steiner in 1852 {Jour.f. r. u. a.
Math., v. 45 (1853), p. 181), viz.: Let E be a finite set containing n
elements. What number n must be so that a family F, defined exactly
as in theorem S, could exist. An answer (given e.g. in E. Netto:
Lehrbuch der Combinatorik, Leipzig, 1901, pp. 206-211) is: either 6k
+ 1 or 6k + 3, for any k.

2. It means that the proofs which are given below are established within
the general set theory, i.e. the set theory from which the axiom of
choice and all its consequences otherwise unprovable have been re-
moved. It is well-known that if we base so defined a general set theory
on an axiomatic system in which the notions of the cardinal and ordinal
numbers cannot be defined, we have to introduce these concepts into
the system, by means of special axioms. It has to be noted that a proof
presented below can be carried out without the use of the notion of
cardinal numbers, but in such a case the deductions would be longer.

3. Cf, [l], and, e.g., [3], pp. 407-409

4. Symbol "Z{#a)" was introduced by Hausdorff, Cf., e.g., [3], p. 389.

5. I.e. that the sets M and N do not have the common elements.

6. Point (11) will not be used below. It is given here in order to present
the addition of two cardinal numbers completely.

7. In this paper {a,b,c,. ..} means a set composed from the distinct ele-
ments a, b, c, . . ., and <α, δ> symbolizes an ordered pair. Thus, if a
formula has {a, b} as its part, we know that the elements a and b are
not identical.

8. We have to notice that if the conditions of (25) are satisfied, then
Fm Π Fn = 0. But, without these assumptions the families of sets Fm

2LndFn, for meM, neM and m φ n, can possess the common elements.
E.g.: x - {m, α,?z}, for any aeN.

9. An ordering of the ordered pairs of ordinal numbers used here is the
same as in Sierpiήski's [4], p. 14.

10. The theorems T1 and T2 are announced without proofs by Tarski in [2],
pp. 308-309. The proofs are given by Sierpiήski in [3],. p. 330 and p.
394 for T1 and T2 respectively. It is worth while to notice that function
given in T1 can be defined effectively, cf. [3J, 330.
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