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A DETAILED ARGUMENT FOR THE POST-LINIAL THEOREMS1

MARY KATHERINE YNTEMA

In 1946 at the Princeton Bicentennial, Tarski proposed problems about
fragments of the propositional calculus. In 1948 Post and Linial gave the
solutions to these problems. They showed that there exists a partial prop-
ositional calculus with an unsolvable decision problem, and that the prob-
lems of determining, of an arbitrary propositional calculus, whether or not
it is complete and whether or not its axioms are independent are recursively
unsolvable.2 Only an abstract of their work has been published. Davis, in
his book,3 uses the methods of Post and Linial to demonstrate their results.
In his brief argument, however, he reaches conclusions which are not im-
mediately obvious.

This paper deals with the first two problems, the decision problem and
that of completeness. It uses Davis' construction with a modified axiom
set. The axioms were chosen to parallel a possible definition of proof in a
semi-Thue system. The definition is not the usual one and will be given
later. Perhaps the most crucial points in the paper are the technical defi-
nitions of validity. For a proof by mathematical induction to be successful
these definitions had to have just the right degree of restrictiveness. The
attempt to find such definitions was started by a suggestion of Professor
William W. Boone that a validity argument might be fruitful.

Some introductory definitions should be given.
A partial propositional calculus is a system having ~ , D , [, and ] as

primitive symbols along with the propositional variables pl9 Ql9rl9 p2, q2,
r2,p3, . . . . Its well formed formulas are (1) a propositional variable,
(2) [A D B], where A and B are well formed formulas, and (3) ~A9 where A
is a well formed formula. (In this paper the abbreviations and grouping
conventions of Church4 will be used). It has a finite set of axioms, all of
which are tautologies, and its two rules of inference are modus ponens and
substitution.

Since the axioms of a partial propositional calculus are tautologies, and
the rules of inference preserve tautologies, it follows that all theorems of a
partial propositional calculus are tautologies. A partial propositional cal-
culus P is complete if every tautology is a theorem of P. Hence in a com-
plete partial propositional calculus the set of theorems is identical to the
set of tautologies. There is a mechanical way of determining whether a
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given well formed formula is a tautology or not. So the decision problem
for a complete partial propositional calculus is recursively solvable.

Since all complete partial propositional calculi have the same theorems,
it is reasonable to talk about the complete propositional calculus and its
different formulations. One such formulation is given by the following three
axioms.

Pi => k i => px]

[Pi => [<li => r i ] ]D. [/h D qx] D [/>! D r j

A definition of a semi-Thue system can be found in a paper by Boone.5

Using his notation, a semi-Thue system is specified by a finite alphabets,
and a finite set of word pairs U.

Z: al9 a2 , . . . , an

U: Aλ-+ Bl9 A2 — B2 , . . . , Am, — £ w

A word is a finite string of symbols of Z, with possible repetitions, which
may be empty. Boone defines C I- D, where C and D are words on Z, as the
assertion that there exists a finite sequence of words, Cl9 C 2, . . . , C£ ,
such that Cx is C, C* is Z), and for each pair (CiyCz + 1 ) d is XAΊ Y and
C z + 1 is XB/Γ for some words X and Fand for somej , l^j ^ m.

In this paper a different, but equivalent, concept of C I- Dis used. C\-D
if and only if there exists a finite sequence of statements Cx h Du

C2 \- D2, . . . , CJL \- Djt such that C* is C and Z>£ is D, and such that each
statement d h A is justified by one of the following rules.

1. Cx is ACj, Di is AD;- for some j9 1 ^ j < i, and for some word A.
2. Ci is C A, Z)z is D7-A for some.;, l^j<i, and for some word A.
3. C* is Di.
4. Cz is A/ and Di is JB/ for some j , 1 ^ j ^ m.
5. d is C7, Di is D^, and D7 is Ck for some j and k, 1^ j <i, l^k <i.

A less explicit, but possibly clearer, summary of these rules follows:

1. If G h A then ACί-AD.
2. If C\-D, then CAVDA.
3. Cl-C.
4. If C -> D, then ChZ>.
5. KChE and E\-D, then ChD. 6

It has been shown that there exists a semi-Thue system σo such that
Zσo contains exactly two letters, all the words in the word pairs of ϋσo are
non-empty, and σo has a recursively unsolvable word problem.7

Theorem 1. There exists a partial propositional calculus with a re-
cursively unsolvable decision problem.

This theorem is proved by constructing a partial propositional calculus
Pσ from a semi-Thue system σ on two letters. Pσ and σ are related by a
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one-to-one mapping from the non-empty words of σ onto a subset of the well
formed formulas of Pσ such that C \-σD if and only if it is a theorem of Pσ
that the well formed formula associated with C implies the well formed
formula associated with D. If σ is a semi-Thue system on two letters such
that Uσ contains no empty words and σ has a recursively unsolvable word
problem, then Pσ must have a recursively unsolvable decision problem.
The proof consists of constructing Pσ and showing that there is a mapping
with the desired properties.

Let σ be defined by:

Zσ: 1, b

Uσ: Gi — Gi9 ί = i, 2, . . . , m.

Gi and Gi, ί = 1, 2, . . . , m, are non-empty words on Zσ. Gi —* Gz is
used, instead of A{ ~* Bi, to conform to Davis' notation.

If W is a non-empty word of σ, then define Wr to be the well formed
formula of the partial propositional calculi, as follows:

r i s - ~ [~/>2 3~/>J,

6 i s [~p2 D~/>J,
(VI)' i s [V & F], and
(Vb)τ is [Vf & bτ], where [A & B] is an abbreviation for ~[A D ~ B],

For example, (lbl)τ is [[Γ & b'] & Γ] or [ [~~H> 2

 D ~P*] &
~[~/>2 D -/)2]]& — [-/>2 D -/>2]].

For any non-empty word T̂ of σ, TΓT is well defined. W is also a tauto-
logy, since i f and δ τ are tautologies and the conjunction of tautologies is a
tautology.

Now Pσ can be defined by the following set of axioms.

1. [Pi &[QX & rj\ D [[/>! & <?J & r j
2. [[/>! & ̂ J & r j D [/>! & [<?! & r j ]
3. [/>i D tfij D • [n & p j D [rx & ^J
4. [/>i D ^ ] D .[/>! & r j 3 k i & r j
5. />! D ^
6. Gi'^> Gi1 i = 1, 2, . . . , m
7. [px D qΛ ^ . k i D r j o [/>! D r j

Notice that axiom 6 is actually m axioms, one for each pair of Uσ.
These axioms seem reasonable in a system which is to be closely re-

lated to σ. Axioms 1 and 2 have no counterparts in σ, but this is to be ex-
pected, since the letters of a word of σ are not grouped. Axioms 3-7, on
the other hand, correspond respectively to rules 1-5 for deriving a state-
ment C V σD. By including these axioms, the rules of σ are built into P σ .

It will be convenient to have some notation and terminology defined
before going on. If X is a well formed formula of P σ , then X is regular if
and only if (1) Z i s i f , or X isb\ or (2) X is of the form [Xx &X2], where
Xλ andX2 are regular well formed formulas. It should be noticed that the
only propositional variable occurring in a regular well formed formula is

If X is regular, then <X> is the unique word of σ obtained by the fol-
lowing procedure:
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(1) abbreviatingX so that it contains only [,] &, 2T, andδ% (2) removing all
occurrences of [,], and &, (3) replacing 2t by 2, and 6T by b. Use induction
on the number n of occurrences of D in Xto show that <X> is unique. If
w = J , then, since it is regular, X must be either ~~[~p2 => ~/>2 ] or
~~r^~[~p2 D ~ / > 2 ] . That is, X is l τ or δ\ In either case it is well de-
fined. For the induction step, assume that < F> is a unique word of σ for
all regular well formed formulas F containing less thanrc D f s. Since X is
regular, X is \XX &X2], where Xx and X2 are regular. By the induction
hypothesis <XX> and <X 2 > a r e unique words of σ. By an argument origi-
nally due to Kleene, the arrangement of [,], D , and ~ τ s is unique.8 Hence
there is only one way in which X can be written, as a conjunction. So Xι
and Xz are well defined, and hence <X> is well defined, also. <X> is
<Xj> <X2>.

Two regular well formed formulas, X and F, of Pσ are associates if
and only if <X> is < F > .

LEMMA 1. If X and Y are associates, then YpσX ^ Y and Vpσ Y o X.

The proof is by strong induction on the number n of occurrences of V
and δτ in X.

K n = I, then X is 2f or X is 5 \ Hence <X> is 2 and < F> is 2, or
<X> is b and < F > is b. In either case, X is F. [/>x D />X] is an axiom of
Pσ . Hence, by substitution, h P,σ X D F and h pσ F D X.

For the induction step, call the number of occurrences of V and b* in
X the length of X and let &x = length of X. Since X and F a r e associates
ίx = ίγ . Assume that, if PPi and W2 are associates such that ϋ ψλ < ix>

then l-p/σWί 3 W2.

H ί x > J , then X is IX &X2] and F is [Y± & F2] for some regular
formulas Xl9 X2, Yl9 and F2 of Pσ. There are two cases to consider, either

Assume £ y = £Y . Then £ γ = ί y . <Xi> must be the f irst ly
1 1 2 J

2

 Λ l

letters of <X>, and <Z 2 > the last £χ2 letters. Similarly for <Y>9<YX> ,

and < F 2 > . Since <X> and < F > are the same, it follows that Xγ and Yx

are associates andX2 and F2 are associates. The rest of the proof for this
case can be outlined:

\-Pσ Xx D F x by ind. hyp.

f-Pσ [Xx &X2]=) [Fx &X2] by axiom 4

^p σ ^2=^ Y* by ind. hyp.

Vpσ [Yx & X2 ] 3 [ Fx & F2 ] by axiom 3

^>σ [XΊ & X2 ] D [Fx & F 2 ] by axiom 7

i.e. h p σ χ D F.
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By the symmetry of this case we also have hpσ Y^> X. Next, assume

SLX ^ίYι, and without loss of generality assume lXi = lγ +k. Let

[Xn & X12 ] be an associate of X1 such that i X i i = i Y l and I Xi2 = k. Let

[ F 2 1 & F 2 2 ] be an associate of F 2 such that JLY = k and ί y 2 2 = 4 χ 2 - Then

α u > is <YX>9 <X12> is < ^ 2 i > , and <X2> is < F 2 2 > . This can be

diagramed as follows.

-^11 I -^12

X\ X2

F 2 t I ^22

~~γχ I %

The proof can now be completed.

V P [XX&L X2]
 D [ [^u & ̂ i 2 ] & ̂ 2] by previous case

h p [ l n & X1 2] => [F x & F2 1] by previous case

I- p σ [t-^ii & * i 2 ] & ̂ 2] D [[Yi& Y2Δ & ̂ 2] by axiom 4

I- p σ X2 => F 2 2 by ind. hyp.

μ Pσ [[ ζ & F2 1] & X2] D [[F x & F2 1] & F2 2] by axiom 3

Vpσ [[Yi & Ϊ21Γ& ^22] => [ F X & [ F 2 1 & F2 2]] by axiom 2

f-pσ [^i & [Γ21 & ̂ 22]] D [^l & F

2 ] by previous case

h Pσ [Xλ & X2] D [Fi & F 2 ] by axiom 7

i.e. hp σ X D F.

For the implication in the other direction:

h Pσ [ FL & F2] 3 [FL & [ F 2 1 & F22]] by previous case

μ P σ [ F 2 1 & F2 2] D [X12 & X2] by previous case

h Pσ [ ̂ i & [^21 & F

2 2 ]] => [^1 & [̂ 12 & * a ] l by axiom 3

μ pσ YΊ D X n by ind. hyp.

μ p σ [F x & [AΓ12 &X2]] D [X n & [X12 &X2]] by axiom 4

μ pσ [XΊi & U12 &^ 2 ] ] => [[^11 & ̂ 12] & ^ 2 ] by axiom 1

μ pσ [[Xn & X12] &X 2 ] D [Xx &X 2] by previous case
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k Pσ [ Fj. & Y2] D [xλ &X2] by axiom 7

i.e. VP(J YΏ X.

LEMMA 2. Z/X Vσ W, then VP(J X1 z> W\

The proof is by strong induction on the number of steps in the proof of
XVσW. If there is only one step in that proof, thenX is W, o r I - * Ψ i s a
pair of Uσ. In either case, Vpσ X1 ^ W1 by axiom 5 or axiom 6.

For the induction step, assume that X\V σWl9 X2\- σW2, . . .,
Xn-i \-σ Wn_l9 Xh σW is a proof in σ. Then, by the induction hypothesis,
h p Xιy D Wi\ i = 1, 2, . . . ,n - 1. For each rule of the semi-Thue

system which might justify X\-σW, there is a corresponding axiom in P σ .
Therefore V P(j X1 D F , by that axiom, lemma 1, and axiom 7. Lemma 1
is needed when axiom 3 or 4 is applied.

Before continuing, another definition should be given. This is the cru-
cial definition in the proof of theorem 1.

If W is a well formed formula of Pσ, then W is valid if and only if W is
of the form Wx D W2 and (1) Wx is regular, W2 is regular, and
<Wι>\-σ<W2 >, or (2) Wx is not regular, W2 is not regular, and if W\ is
valid then W2 is valid.

LEMMA 3. If W is a regular well formed formula of Pσ, and if A is a
well formed formula of Pσ such that A is not p2, then the result V of sub-
stituting A for p2 in W is not regular and is not valid.

The proof is by strong induction on the number of occurrences of D in
W. If there is only one D, then either W is ~~[~p2

 D ~p2\or W is
~ [~P2

 D ~p2]> since W is regular. Therefore, V is ~~[~A D ~A]
or V is ~~~~[~^4 ^ ~A], A is notp2. So in either case V is not I1 or b\
and V is not of the form ~[Aχ 3 ~A2]. Therefore V is not regular. Since
V is not of the form VΊ 3 V2, V is not valid.

For the induction step assume that W is [w1 & W2] where Wx and W2

are regular. Let VΊ and V2 be the results of substituting A for p2 in Wx

and W2, respectively. Then V is [Vλ & F 2]. By the induction hypothesis Vγ

and V2 are not regular. So V is not regular. [vx & V2] is ~[Vχ z> ^ V2]
which is not of the form U^U 2. So V is not valid.

LEMMA 4. The results of substituting well formed formulas for the
propositional variables in the axioms are valid, (in particular, axiom 6 is
valid without substitution).

Let P, Q, and R be the well formed formulas substituted for px, q x , and
ri, respectively, and consider the axioms individually.

Axiom 1: [P & [Q & R]] => [[P & Q] & R].

If P & [Q & R] is regular, then so is [P & Q] & Λ, and < P & [Q & R]>
ϊs<[P &Q]&R>. S O < P & [Q &R]> \-σ <[P& Q] &R>. KP&[Q&i?]
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is not regular, then neither is [P & Q] & R. P.&[Q & R]is ~[P^>~[Q &R]],
and is not of the form Wι z> W2. So P & [Q & R] is not valid. In either case
[P & [Q & i?]] D [[P & Q] & Λ] is valid.

Axiom 2: [[p & Q] & R] => [P & [Q &#]].

The proof is similar to that of axiom 1.

Axiom 3: [P D Q ] D • [R & P] z> [R & ρ].

It is necessary to show that if P D Q is valid, then [R & P] D [R & Q] is
valid. So assume thatP D Q is valid. That is, assume (1) P is regular, Q
is regular, and <P> hσ <Q>, or (2) P is not regular, Q is not regular, and
if P is valid then Q is valid.

There are two possibilities. Either [R &P] is regular, or it is not
regular. First assume that [R & P] is regular. Then R is regular and P is
regular. Since P is regular and P D Q is valid, Q must be regular and
<P> hσ <Q>. Therefore [R &Q] is regular and <R & P> f-σ <i? & Q>.
So [R & P] 3 [fl & Q] is valid.

If [R & P] is not regular, then i? is not regular, or R is regular and P
is not regular. If R is not regular, then [R & Q] is not regular. If P is not
regular, then, since P D (? is valid, Q is not regular, and [R & Q ] is not
regular, [R & P ] is ~Lft >̂ ~P], which is not of the form W^ W2. Hence
[R & P] is not valid. Therefore [R & P ] D [Λ & Q] is valid.

Aviom 4: [P D Q ] D « [ P & Λ ] => [Q & Λ ] .

The proof is similar to that of axiom 3.

Axiom 5: P z> P.

If P is regular, then P is regular and <P> h σ <P> . If P is not regu-
lar, and if P is valid, then P is valid. So, whether or not P is regular,
P D P is valid.

Avzom 6: Gz

f D Gz

f.

There are two cases to consider. In the case of no substitution Gz

τ and
Gz

τ are both regular and <GZ

T> V σ <<V>. Therefore, axiom 6 is valid.
The other case is that in which there is substitution. By lemma 3, the

results of substituting a well formed formula, not p2y in the regular formu-
las Gj1 and Gz

f are not regular. By the same lemma the result of substitut-
ing into Gz

f is not valid. Therefore, the result of substituting into Gz

f D G^
is valid.

Axiom 7: [P D Q]=>. [Q D β] z> [P z> β].

It is necessary to show that, if P D Q is valid, then [Q D β] D [ P D β]
is valid. To show this, it must be shown that, if Q ~) i? is valid, then so is
P ^ R. So, assume P D Q is valid and Q z> R is valid, and prove that P z> i?
is valid.

First consider the case in which P is regular. Since P D Q is valid, it
follows that Q is regular and <P> h σ <Q>. Since Q is regular and Q D R
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is valid, R must be regular and <Q> Vσ <R>. Therefore, R is regular and
<P> \-σ <R> . So P => i? is valid.

Next consider the possibility that P is not regular. In this case, since
P ^ Q is valid, Q is not regular. Since Q 3 R is valid, it follows that R is
not regular. If P is valid, then Q is valid. If Q is valid, then R is valid.
Hence, if P is valid, then R is valid. Therefore, P => .R is valid.

LEMMA 5. //" Wi αnd W2 α^£ weZZ formed formulas of Pσ such that Wγ
is valid and Wλ D W2 is valid, then W2 is valid,

Wγ is not regular, since, if it were, it would not be of the form F : 3 F2,
and hence not valid. Since Wx => W2 is valid and Wx is not regular, it follows
that if Wx is valid then W2 is valid. By hypothesis, Wx is valid. Therefore,
W2 is valid.

LEMMA 6. ifX and W are regular and \-P(J X => W, then<X> \-σ <W>.

The proof of \-P X^>W can be rearranged so that all of the substitu-
tions precede all of the uses of modus ponens. The result of substituting
into the result of a substitution can be achieved by a single substitution.
Hence the only substitutions necessary are direct substitution into the ax-
ioms.9 By lemma 4, the results of such substitutions are valid. By lemma
5, modus ponens preserves validity. Therefore i D Ψ i s valid. Since X is
regular, it must follow that <X> \-σ <W> .

LEMMA 7. Wi Vσ W2 if and only if V Pσ Wt

r D W2

r.

This lemma is a restatement of the combination of lemmas 2 and 6.

Lemma 7 shows that the decision problem for a certain class of well
formed formulas of Pσ is equivalent to the word problem for σ. Since there
exists a semi-Thue system on two letters for which the word problem is
recursively unsolvable, this completes the proof of theorem 1.

THEOREM 2. The problem of determining of an arbitrary partial
propositional calculus whether or not it is complete is recursively unsolv-
able.

To prove this theorem let σo be a semi-Thue system on two letters
such that Uσo contains no empty words and σo has a recursively unsolvable
word problem, and let Pσ be the corresponding partial propositional calcu-
lus constructed as in theorem 1. Let Wx and W2 be arbitrary regular well
formed formulas of Pσo. Then construct a partial propositional calculus
R(Wl9W2) such th3i R I Wl9W2) is complete if and only if VpσQ W^ W2 .
Actually R(Wl9W2) represents a class of partial propositional calculi, one
for each pair of regular well formed formulas Wx and W2, for which the
problem of determining, for an arbitrary member of the class, if it is com-
plete is recursively unsolvable.

As in theorem 1, this proof consists of a construction and proofs that
the construction satisfies the necessary requirements.

After fixing Wx and W2, it is only necessary to give the axioms to de-
fine R(Wί9W2). There are 10 axioms. Axioms 1-7 are the axioms of Pσo,
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as defined in the proof of theorem 1. The other axioms are listed
below.

8. [W, ΏW2]ΏUP1 D ^ D ί J

9. [Wt Ώ W2JΏm[pl D [q, => rj]=> .[/>! D ? J 3 [^ D r j

10. [Wx => W2]z>u[^q1 D - ί j ^ ^ D tfj

LEMMA 1. If Vpσ Wx => T72, Jftew i^fl^Wa) zs complete.

Since the axioms of -Pσo are also axioms of R{Wl9 W2)9 if h P σ o ΐ̂ _ D W2)

then I- R(W w 2 )^i D ^2 Hence, by modus ponens and axioms 8, 9, and 10

h R ( W l f w 2 ) P ^ : D ^ Ώ p ^

and

I"'R(V1,W2) [~^i D ~ / > J D [/>i ^ ^J.

These three theorems are the axioms of the complete propositional calculus.
Therefore, all tautologies are theorems of R(WlfW2)9 and R(W1,W2) is com-
plete.

To prove the converse of lemma 1 a technical validity concept is used,
as in theorem 1. So this definition is given next, and lemmas proved about
it.

A well formed formula X of PGQ is

A-regular if and only if there is a regular well formed formula W such that
X is the result of substituting the well formed formula A for p2 in W. This
will be symbolized by X = WA .

A well formed formula X of P is A-valid if and only if X is of the form
Xι D X2 and (1) there are regular well formed formulas VΊ and V2 such
thatXx = ViA, X2 = V2

A , and \- POQ VX D V2, or (2) Xx is not A-regular,
X2 is not A-regular, and if X\ is A-valid, then X2 is A-valid.

LEMMA 2. If X is A-regular, then there is one and only one regular
well formed formula W such that X = WA.

The proof is by strong induction on the numbers of z>*s which occur in
X, but do not appear in an occurrence of A. If there is only one such D ,
then Wis i τ or b\ In either case it is well defined.

Jin > 1, then WA is VX

A & V2

A for some Vx and V2. By the uniqueness
of the principal D , the & is uniquely determined. By the hypothesis of in-
duction Vλ and V2 are well defined. Hence W is well defined, and W is
[Vi & V2].

LEMMA 3. The axioms of Pσo are A-valid under substitution.

As one would expect from the similarity of the definitions of validity in
theorem 1 and A-validity in theorem 2, the proof of this lemma parallels
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the proof of lemma 4, theorem 1. It procedes by consideration of each ax-
iom. As before, let P, Q, and R be the well formed formulas substituted
for/)!, ql9 and rx.

Axiom 1: [P & [Q & R]] 3 [[P & Q] & i?].

If P & [Q & Λ] = VX

A , then [P & Q] & Λ = V2

A , and < F x > is < F 2 > .
Hence VPσo Vx 3 F 2 , and F / D F 2

A is A-valid. If P & [Q & R] is not
A-regular, °then [P & Q] & i? is not A-regular. Since P &[Q & R] is
~ [ P 3 ~[Q & Λ]], which is not A-valid, [p &[Q & R]]z>[[p & Q ] &#] isA-
valid.

Λ̂Γzom ^: [[P & Q] & Λ] => [P & [Q & Λ]].

The proof is similar to that of axiom 1.

Axiom 3: [P => Q ] D • [Λ & P] D [R & <?].

Assume that P 3 Q is A-valid, and show that [R & P] => [i? & Q] is A -
valid. Consider first the case in which [R & P] is A-regular. Then [R & P]
= Yλ

A for some regular well formed formula F x , such that Yγ is [ Vγ & F2 ],
Λ =.VkA., and P = 7 2

Λ . Since P ^ is A-valid, Q = F 3

A and [JR & Q] =
[ViA &V3

Λ]. Hence [R & Q] = F 2

Λ , where F2 is [7X & F 3 ] . Since P D Q is
A-valid, V~P(Jo V2 3 V3. Therefore, VPσo [V1 & F 2 ]=) [F x & F 3 ] b y axiom
3. That is, I-P(7o Yx 3 F 2 . Hence [i? &°P]=> [iί & Q] is A-valid.

Next consider the case in which [R &-P] is not A-regular. In this case
either R is not A-regular, or P is not A-regular. If R is not A-regular,
then [R & Q] is not A-regular. If P is not A-regular, then, since P=>Q is
A-valid, Q is not A-regular, and [R & Q] is not A-regular. [R & P] is
~[R 3 ~ p ] . So [# & P] is not A-valid. Therefore, [R & P ] 3 [# & Q]is
A -valid.

Axiom4. [P Ό Q]i>u[P &R]^>[Q &R],

The proof is similar to that of axiom 3.

Axiom 5. P^ P.

The proof follows immediately from the definitions.

Axiom 6. Gi' D GΛ

Substitution yields Gz

 t Λ => G z

t Λ . Since G z

f and Gz

τ are regular and
VPσo GS => G/S this is A-valid.

Axiom 7. [P 3 Q]=> m[Q DR]^[p-D R].

Assume that P 3 Q and Q z) R are both A-valid, and show that P D i? is
A-valid. First suppose that P is A-regular and P = 7X

Λ . Then ζ> = Fj/
and R= V3

A . Since hP(7o Tί 3 F2 and I-Pσo F2 3 F 3 , it follows by axiom 7
that VP(Jo Vι 3 F 3 , and°P 3 R is A-valid. °

Next, suppose that P is not A-regular. Then Q is not A-regular, and
hence R is not A-regular. If P is A-valid, then Q is A-valid. If Q is A-
valid, then R is A-valid. Therefore, if P is A-valid so is R. Hence P 3 R
is A-valid.
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LEMMA 4. If V-L and V2 are well formed formulas of Pσo such that Vx

is A-valid and V1 D V2 is A-valid, then V2 is A-valίd.

Vι is not A-regular, since, if it were, it would not be of the form
Y\ D Y29 a n d hence would not be A-valid. Since V1 z> V2 is A-valid, if V1 is
A -valid then V2 is A-valid. By hypothesis, Vι is A-valid. Therefore, V2 is
A -valid.

LEMMA 5. All theorems of Pσo are A-valid.

The proof of a theorem of Pσo can be rearranged so that the substitu-
tions precede the uses of modus ponens, and so that substitutions are made
only into axioms.10 By lemma 3, the results of such substitutions are A-
valid, and by lemma 4, the subsequent results of modus ponens are also A -
valid.

LEMMA 6. If Vι, V2, and A are regular well formed formulas of Pσo .
then VPσo FX

Λ D V2

A if and only if \-P(Jo VX^V2.

If h P(7o Vι D V2, then substitution yields I-P Vλ

A => V2

A. If

VP(Jo VX

A D V2

A , then, by lemma 5, Vλ

A o V2

A is A-valid. V? and V2

A are

both A-regular. Therefore, by the definition of A-validity, VPσ Vx D V2 .

The remainder of this paper was revised in proof March 7, 1964. In
the original version it was claimed that axioms 8, 9, and 10 could not be
used as modus ponens antecedents for axioms 1-7 to yield Wλ D W2.
Wilson E. Singletary pointed out that although the claim was correct it was
not sufficient. He produced a substitution instance of axiom 7 which might
lead to Wx D W2 by modus ponens. It is [ ? D Φ , [ Q D J ? ] D [ ? D R],

where P, Q, and R as follows:

Pi ^D^D.i 'D.^o^Di'

R: W, D W2.

It has not been shown that P D Q and Q D R are not theorems of Pσo. P is
a substitution instance of axiom 8. This criticism in no way affects the
proof of theorem 1 or the first six lemmas of theorem 2.

Singletary proposed systems Pho with seven axioms and R'(WX ,W2) with
ten axioms to demonstrate theorem 2. These systems are defined as fol-
lows: Axioms Γ, 2\ 5 f, 6\ and 7f of Pr

θQ are identical to axioms 1, 2, 5, 6,
and 7 of Pσo. The axioms of R'(Wl9W2) are the axioms of Plo with 8\ 9 f,
and 10f added. Axioms 8 f, 9 f, and 10T are the same as axioms 8, 9, and 10
of R(Wλ ,W2). Axioms 3T, 4T, and V of P j o and R'(WX ,W2) are as follows:

3 f . [pi &/>3=> a ? i &^2] =). [ r i& [/>i&/>3]] =5[rχ& k i & ^ 2 ] ]

4 f . [/>i&/>3=^ a ^ i &tf2]z> •[[/>!&/>s]& n ] 3 [ k i & ^ 2 ] & r i ]

7T. [/>i &/>ŝ > • ̂ 1 &^2]=> •ki&4r2^> ri& ^2 ]=>[/>i& Ps^mrib r 2 ]
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Use of these axioms requires that <Wλ> and <W2> each have at least
two letters, and that Uσo contain no words of less than two letters. Such
semi-Thue systems with recursively unsolvable word problems do exist.11

It should be noted that the axioms of P'σo are substitution instances of
the axioms of Pσo. Hence the theorems of P\,o are theorems of PGo.

LEMMA la. If f-P̂  Wι D W2, then R1 (Wl9W2) is complete.

The proof is exactly the same as for lemma 1, with P\jQ in place of Pσo

and R'{Wι ,W2) in place of R(W1 ,W2).

LEMMA 7. < W!> Vσo <W2> if and only if hp^ Wx^ W2.

If \-piσo Wx^> W29 then VP(Jo W1^ W2, and hence <P7 1 > f-,σo <W2> by

lemma 7, theorem 1.

The proof of lemma 2, theorem 1 can be paralleled to show that if
<Wλ> Vσo <W2> then VP'σ Wγ^ W2, since for each rule of the semi-Thue
system using words of two or more letters in its defining relations, there is
a corresponding axiom in P'σo.

LEMMA 8. A theorem of PΌO is a substitution instance of an axiom or
has one of the following forms :

Form I: [ P & Q] D [R & S]

Form Π: [Pi& Qi] => [Λi& S I ] ^ « | > 2 & Q2] => [#2 & S2].

The proof is by induction on the number of steps in a proof in Pσo. If
there is only one step, then the theorem must be an axiom.

For the induction hypothesis, assume that f-P̂  Aί9 \-P£ A2, . . . . ,

VpΛ

σ Ak, l-pr Ak+ι is a proof, and that the lemma holds for AΊ•, l^i^k.
If Ak+i is the result of substitution, or if it is an axiom, it has the desired
form. Modus ponens cannot be used with substitition instances of axioms
l τ, 2 f, 6T or Form I, since their antecedents are conjunctions and Ai,
l<i<k, are all implications. Modus ponens on a substitution instance of
axiom 5T yields nothing new. Modus ponens on substitution instances of
axioms 3\ 4 f, or Form II give results of Form I. Modus ponens on a sub-
stitution instance of axiom Ψ yields a formula of Form II. Hence Ak+1 has
the desired form.

LEMMA 9. TfR'(Wl9W2) is complete, then <Wλ> \-P^ <W2>.

Wx and W2 are regular words, and therefore tautologies. Hence

Wx 3 W2 is a tautology. If R\WUW2) is complete, then μ R\ψuψ2y
wi D W2-

Examination of axioms 8*, 9 f, and 10f shows that substitution into them
will not yield a regular word implying a regular word. Neither are substi-
tution instances of axioms 8T, 9T, and 10f of value as modus ponens antece-
dents. They obviously cannot be used with each other, and since they are
not conjunctions they cannot be antecedents for substitution instances of
axioms V, 2 f, 6f or Form I. Axiom 5f would yield nothing new. Since
Wi >̂ W2 is not a conjunction, they cannot be used as antecedents for sub-
stitution instances of axioms 3% 4 f, 7' or Form II.
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Axioms 8', 9 !, and 10! can be used to obtain theorems shorter than
themselves only if Wλ D W2, or a substitution instance of it, is already
available as a theorem. Therefore, by using only axioms lτ - V it must be
possible to prove hpf Wλ ^ W2, or f-pj WAo>W2

A for some well formed

formula A. Hence YP(J Wλ D W2 or \"pσo WA^> W2

A. By lemma 6, the

latter case also yields \-pσ WXZ) W2. By lemma 7, theorem 1, this gives
the desired result, <W1>\-pσo<W2>.

LEMMA 10. R'(Wι,W2) is complete if and only if<Wx> hσ o <W2>.

The implication in one direction is lemma 9. For the other implication
assume <WY> VUo <W2>. Then by lemma 7, h P'σ W1^>W2. Hence by
lemma la, TV(Wl9W2) is complete.

By lemma 10, the problem of determining, of an arbitrary partial
propositional calculus of the class represented by R'(WιW2), whether or not
it is complete is equivalent to the word problem of σo. Since σo has a re-
cursively unsolvable word problem, the problem of determining, of an
arbitrary partial propositional calculus, whether or not it is complete is
recursively unsolvable. This completes the proof of theorem 2.

The system P^o and the kind of analysis made of that system are
closely related to the question of specifying a partial propositional calculus
whose decision problem is of an arbitrarily assigned recursively enumer-
able degree of unsolvability. M. D. Gladstone and Ann H. Ihrig had inde-
pendently of each other specified such constructions prior to Singletary's
suggestion that P^o ^ e used in proving theorem 2.
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