A DETAILED ARGUMENT FOR THE POST-LINIAL THEOREMS ${ }^{1}$

MARY KATHERINE YNTEMA

In 1946 at the Princeton Bicentennial, Tarski proposed problems about fragments of the propositional calculus. In 1948 Post and Linial gave the solutions to these problems. They showed that there exists a partial propositional calculus with an unsolvable decision problem, and that the problems of determining, of an arbitrary propositional calculus, whether or not it is complete and whether or not its axioms are independent are recursively unsolvable. ${ }^{2}$ Only an abstract of their work has been published. Davis, in his book, ${ }^{3}$ uses the methods of Post and Linial to demonstrate their results. In his brief argument, however, he reaches conclusions which are not immediately obvious.

This paper deals with the first two problems, the decision problem and that of completeness. It uses Davis' construction with a modified axiom set. The axioms were chosen to parallel a possible definition of proof in a semi-Thue system. The definition is not the usual one and will be given later. Perhaps the most crucial points in the paper are the technical definitions of validity. For a proof by mathematical induction to be successful these definitions had to have just the right degree of restrictiveness. The attempt to find such definitions was started by a suggestion of Professor William W. Boone that a validity argument might be fruitful.

Some introductory definitions should be given.
A partial propositional calculus is a system having $\sim, \supset,[$, and $]$ as primitive symbols along with the propositional variables $p_{1}, q_{1}, r_{1}, p_{2}, q_{2}$, r_{2}, p_{3}, \ldots Its well formed formulas are (1) a propositional variable, (2) $[A \supset B]$, where A and B are well formed formulas, and (3) $\sim A$, where A is a well formed formula. (In this paper the abbreviations and grouping conventions of Church ${ }^{4}$ will be used). It has a finite set of axioms, all of which are tautologies, and its two rules of inference are modus ponens and substitution.

Since the axioms of a partial propositional calculus are tautologies, and the rules of inference preserve tautologies, it follows that all theorems of a partial propositional calculus are tautologies. A partial propositional calculus P is complete if every tautology is a theorem of P. Hence in a complete partial propositional calculus the set of theorems is identical to the set of tautologies. There is a mechanical way of determining whether a
given well formed formula is a tautology or not. So the decision problem for a complete partial propositional calculus is recursively solvable.

Since all complete partial propositional calculi have the same theorems, it is reasonable to talk about the complete propositional calculus and its different formulations. One such formulation is given by the following three axioms.

$$
\begin{aligned}
& p_{1} \supset\left[q_{1} \supset p_{1}\right] \\
& {\left[p_{1} \supset\left[q_{1} \supset r_{1}\right]\right] \supset\left[p_{1} \supset q_{1}\right] \supset\left[p_{1} \supset r_{1}\right]} \\
& {\left[\sim q_{1} \supset \sim p_{1}\right] \supset\left[p_{1} \supset q_{1}\right]}
\end{aligned}
$$

A definition of a semi-Thue system can be found in a paper by Boone. ${ }^{5}$ Using his notation, a semi-Thue system is specified by a finite alphabet Z, and a finite set of word pairs U.

$$
\begin{aligned}
& Z: a_{1}, a_{2}, \ldots, a_{n} \\
& U: A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}, \ldots, A_{m} \rightarrow B_{m}
\end{aligned}
$$

A word is a finite string of symbols of Z, with possible repetitions, which may be empty. Boone defines $C \vdash D$, where C and D are words on Z, as the assertion that there exists a finite sequence of words, $C_{1}, C_{2}, \ldots, C_{\ell}$, such that C_{1} is C, C_{l} is D, and for each pair (C_{i}, C_{i+1}) C_{i} is $X A_{j} Y$ and C_{i+1} is $X B_{j} Y$ for some words X and Y and for some $j, 1 \leqslant j \leqslant m$.

In this paper a different, but equivalent, concept of $C \vdash D$ is used. $C \vdash D$ if and only if there exists a finite sequence of statements $C_{1} \vdash D_{1}$, $C_{2} \vdash D_{2}, \ldots, C_{\ell} \vdash D_{\ell}$ such that C_{ℓ} is C and D_{ℓ} is D, and such that each statement $C_{i} \vdash D_{i}$ is justified by one of the following rules.

1. C_{i} is $A C_{j}, D_{i}$ is $A D_{j}$ for some $j, 1 \leqslant j<i$, and for some word A.
2. C_{i} is $C_{j} A, D_{i}$ is $D_{i} A$ for some $j, 1 \leqslant j<i$, and for some word A.
3. C_{i} is D_{i}.
4. C_{i} is A_{j}^{-}and D_{i} is B_{j} for some $j, 1 \leqslant j \leqslant m$.
5. C_{i} is C_{j}, D_{i} is D_{k}, and D_{j} is C_{k} for some j and $k, 1 \leqslant j<i, 1 \leqslant k<i$.

A less explicit, but possibly clearer, summary of these rules follows:

1. If $G \vdash D$, then $A C \vdash A D$.
2. If $C \vdash D$, then $C A \vdash D A$.
3. $C \vdash C$.
4. If $C \rightarrow D$, then $C \vdash D$.
5. If $C \vdash E$ and $E \vdash D$, then $C \vdash D .{ }^{6}$

It has been shown that there exists a semi-Thue system σ_{o} such that $Z_{\sigma_{o}}$ contains exactly two letters, all the words in the word pairs of $\dot{U}_{\sigma_{o}}$ are non-empty, and σ_{o} has a recursively unsolvable word problem. ${ }^{7}$

Theorem 1. There exists a partial propositional calculus with a recursively unsolvable decision problem.

This theorem is proved by constructing a partial propositional calculus P_{σ} from a semi-Thue system σ on two letters. P_{σ} and σ are related by a
one-to-one mapping from the non-empty words of σ ontoa subset of the well formed formulas of P_{σ} such that $C \vdash_{\sigma} D$ if and only if it is a theorem of P_{σ} that the well formed formula associated with C implies the well formed formula associated with D. If σ is a semi-Thue system on two letters such that U_{σ} contains no empty words and σ has a recursively unsolvable word problem, then P_{σ} must have a recursively unsolvable decision problem. The proof consists of constructing P_{σ} and showing that there is a mapping with the desired properties.

Let σ be defined by:

$$
\begin{aligned}
& Z_{\sigma}: 1, b \\
& U_{\sigma}: G_{i} \rightarrow \bar{G}_{i}, i=1,2, \ldots, m
\end{aligned}
$$

G_{i} and $\bar{G}_{i}, i=1,2, \ldots, m$, are non-empty words on $Z_{\sigma} . G_{i} \rightarrow \bar{G}_{i}$ is used, instead of $A_{i} \rightarrow B_{i}$, to conform to Davis' notation.

If W is a non-empty word of σ, then define W^{\prime} to be the well formed formula of the partial propositional calculi, as follows:
1^{\prime} is $\sim \sim\left[\sim p_{2} \supset \sim p_{2}\right]$,
b^{\prime} is $\sim \sim \sim \sim\left[\sim p_{2} \supset \sim p_{2}\right]$,
(V1)' is [$\mathrm{V}^{\prime} \& 1^{\prime}$], and
(Vb)' is [$\left.\mathrm{V}^{\prime} \& \mathrm{~b}^{\mathrm{r}}\right]$, where $[A \& B]$ is an abbreviation for $\sim[A \supset \sim B]$.
For example, (1b1)' is [[1' \& $\left.\left.b^{\prime}\right] \& 1^{\prime}\right]$ or $\left[\left[\sim \sim\left[\sim p_{2} \supset \sim p_{2}\right] \& \sim \sim \sim\right.\right.$ $\left.\left.\sim\left[\sim p_{2} \supset \sim p_{2}\right]\right] \& \sim \sim\left[\sim p_{2} \supset \sim p_{2}\right]\right]$.

For any non-empty word W of $\sigma, W^{\text {' }}$ is well defined. $W^{\text {' }}$ is also a tautology, since 1^{\prime} and b^{\prime} are tautologies and the conjunction of tautologies is a tautology.

Now P_{σ} can be defined by the following set of axioms.

1. $\left[p_{1} \&\left[q_{1} \& r_{1}\right]\right] \supset\left[\left[p_{1} \& q_{1}\right] \& r_{1}\right]$
2. $\left[\left[p_{1} \& q_{1}\right] \& r_{1}\right] \supset\left[p_{1} \&\left[\begin{array}{lll}q_{1} & \& & r_{1}\end{array}\right]\right]$
3. $\left[p_{1} \supset q_{1}\right] \supset _\left[r_{1} \& p_{1}\right] \supset\left[\begin{array}{ll}r_{1} \& q_{1}\end{array}\right]$
4. $\left[p_{1} \supset q_{1}\right] \supset _\left[p_{1} \& r_{1}\right] \supset\left[\begin{array}{ll}\left.q_{1} \& r_{1}\right]\end{array}\right.$
5. $p_{1} \supset p_{1}$
6. $G_{i}{ }^{\prime} \supset \bar{G}_{i}{ }^{\prime} \quad i=1,2, \ldots, m$
7. $\left[p_{1} \supset q_{1}\right] \supset _\left[q_{1} \supset r_{1}\right] \supset\left[p_{1} \supset r_{1}\right]$

Notice that axiom 6 is actually m axioms, one for each pair of U_{σ}.
These axioms seem reasonable in a system which is to be closely related to σ. Axioms 1 and 2 have no counterparts in σ, but this is to be expected, since the letters of a word of σ are not grouped. Axioms 3-7, on the other hand, correspond respectively to rules 1-5 for deriving a statement $C \vdash_{\sigma} D$. By including these axioms, the rules of σ are built into P_{σ}.

It will be convenient to have some notation and terminology defined before going on. If X is a well formed formula of P_{σ}, then X is regular if and only if (1) X is 1^{\prime}, or X is b^{\prime}, or (2) X is of the form [$X_{1} \& X_{2}$], where X_{1} and X_{2} are regular well formed formulas. It should be noticed that the only propositional variable occurring in a regular well formed formula is p_{2}.

If X is regular, then $\langle X\rangle$ is the unique word of σ obtained by the following procedure:
(1) abbreviating X so that it contains only [,] \& , 1 , and b^{\prime}, (2) removing all occurrences of [,], and $\&,(3)$ replacing I^{\prime} by 1 , and b^{\prime} by b. Use induction on the number n of occurrences of \supset in X to show that $\langle X\rangle$ is unique. If $n=1$, then, since it is regular, X must be either $\sim \sim\left[\sim p_{2} \supset \sim p_{2}\right]$ or $\sim \sim \sim \sim\left[\sim p_{2} \supset \sim p_{2}\right]$. That is, X is 1^{\prime} or b^{\prime}. In either case it is well defined. For the induction step, assume that $\langle Y\rangle$ is a unique word of σ for all regular well formed formulas Y containing less than $n \supset$'s. Since X is regular, X is $\left[X_{1} \& X_{2}\right]$, where X_{1} and X_{2} are regular. By the induction hypothesis $\left\langle X_{1}\right\rangle$ and $\left\langle X_{2}\right\rangle$ are unique words of σ. By an argument originally due to Kleene, the arrangement of [,], \supset, and \sim 's is unique. ${ }^{8}$ Hence there is only one way in which X can be written, as a conjunction. So X_{1} and X_{2} are well defined, and hence $\langle X\rangle$ is well defined, also. $\langle X\rangle$ is $<X_{1}><X_{2}>$.

Two regular well formed formulas, X and Y, of P_{σ} are associates if and only if $\langle X\rangle$ is $\langle Y\rangle$.

LEMMA 1. If X and Y are associates, then $\vdash_{P_{\sigma}} X \supset Y$ and $\vdash_{P_{\sigma}} Y \supset X$.
The proof is by strong induction on the number n of occurrences of 1^{1} and b^{\prime} in X.

If $n=1$, then X is 1^{\prime} or X is b^{\prime}. Hence $\langle X\rangle$ is 1 and $\langle Y\rangle$ is 1 , or $\langle X\rangle$ is b and $\langle Y\rangle$ is b. In either case, X is Y. [$p_{1} \supset p_{1}$] is an axiom of P_{σ}. Hence, by substitution, $\vdash_{P_{\sigma}} X \supset Y$ and $\vdash^{P_{\sigma}} Y \supset X$.

For the induction step, call the number of occurrences of 1^{\prime} and b^{\prime} in X the length of X and let $\ell_{X}=$ length of X. Since X and Y are associates $\ell_{X}=\ell_{Y}$. Assume that, if W_{1} and W_{2} are associates such that $\ell_{W_{1}}<\ell_{X}$, then $\vdash_{P_{\sigma}^{\prime}} W_{1} \supset W_{2}$.

If $\ell_{X}>1$, then X is $\left[X_{1} \& X_{2}\right]$ and Y is $\left[\begin{array}{lll}Y_{1} \& Y_{2}\end{array}\right]$ for some regular formulas X_{1}, X_{2}, Y_{1}, and Y_{2} of P_{σ}. There are two cases to consider, either $\ell_{X_{1}}=\ell_{Y_{1}}$ or $\ell_{X_{1}} \neq \ell_{Y_{1}}$.

Assume $\ell_{X_{1}}=\ell_{Y_{1}}$. Then $\ell_{X_{2}}=\ell_{Y_{2}} .<X_{1}>$ must be the first $\ell_{X_{1}}$ letters of $\langle X\rangle$, and $\left\langle X_{2}\right\rangle$ the last $\ell_{X_{2}}$ letters. Similarly for $\langle Y\rangle,\left\langle Y_{1}\right\rangle$, and $\left\langle Y_{2}\right\rangle$. Since $\langle X\rangle$ and $\langle Y\rangle$ are the same, it follows that X_{1} and Y_{1} are associates and X_{2} and Y_{2} are associates. The rest of the proof for this case can be outlined:

$$
\begin{aligned}
& \vdash_{P_{\sigma}} X_{1} \supset Y_{1} \\
& \vdash_{P_{\sigma}}\left[X_{1} \& X_{2}\right] \supset\left[Y_{1} \& X_{2}\right] \\
& \vdash_{P_{\sigma}} X_{2} \supset Y_{2} \\
& \vdash_{P_{\sigma}}\left[Y_{1} \& X_{2}\right] \supset\left[\begin{array}{ll}
Y_{1} \& Y_{2}
\end{array}\right] \\
& \vdash_{P_{\sigma}^{\prime}}\left[X_{1} \& X_{2}\right] \supset\left[\begin{array}{l}
Y_{1} \& Y_{2}
\end{array}\right] \\
& \text { i.e. } \vdash_{P_{\sigma}} X \supset Y .
\end{aligned}
$$

by ind. hyp.
by axiom 4
by ind. hyp.
by axiom 3
by axiom 7

By the symmetry of this case we also have $\vdash_{P_{\sigma}} Y \supset X$. Next, assume $\ell_{X_{1}} \neq \ell_{Y_{1}}$, and without loss of generality assume $\ell_{X_{1}}=\ell_{Y_{1}}+k$. Let $\left[X_{11} \& X_{12}\right]$ be an associate of X_{1} such that $\ell_{X_{11}}=\ell_{Y_{1}}$ and $\ell_{X_{12}}=k$. Let [$Y_{21} \& Y_{22}$] be an associate of Y_{2} such that $\ell_{Y_{21}}=k$ and $\ell_{Y_{22}}=\ell_{X_{2}}$. Then $\left\langle X_{11}\right\rangle$ is $\left\langle Y_{1}\right\rangle,\left\langle X_{12}\right\rangle$ is $\left\langle Y_{21}\right\rangle$, and $\left\langle X_{2}\right\rangle$ is $\left\langle Y_{22}\right\rangle$. This can be diagramed as follows.

The proof can now be completed.

$\vdash_{P_{\sigma}}\left[X_{1} \& X_{2}\right] \supset\left[\left[X_{11} \& X_{12}\right] \& X_{2}\right]$	by previous case
$\vdash_{P_{\sigma}}\left[X_{11} \& X_{12}\right] \supset\left[Y_{1} \& Y_{21}\right]$	by previous case
$\vdash_{P_{\sigma}}\left[\left[X_{11} \& X_{12}\right] \& X_{2}\right] \supset\left[\left[Y_{1} \& Y_{21}\right] \& X_{2}\right]$	by axiom 4
$\vdash_{P_{\sigma}} X_{2} \supset Y_{22}$	by ind. hyp.
$\vdash_{P_{\sigma}}\left[\left[Y_{1} \& Y_{21}\right] \& X_{2}\right] \supset\left[\left[Y_{1} \& Y_{21}\right] \& Y_{22}\right]$	by axiom 3
$\vdash_{P_{\sigma}}\left[\left[Y_{1} \& Y_{21}\right] \& Y_{22}\right] \supset\left[Y_{1} \&\left[Y_{21} \& Y_{22}\right]\right]$	by axiom 2
$\vdash_{P_{\sigma}}\left[Y_{1} \&\left[Y_{21} \& Y_{22}\right]\right] \supset\left[Y_{1} \& Y_{2}\right]$	by previous case
$\vdash_{P_{\sigma}}\left[X_{1} \& X_{2}\right] \supset\left[Y_{1} \& Y_{2}\right]$	by axiom 7
i.e. $\vdash_{P_{\sigma}} X \supset Y$.	

For the implication in the other direction:
$\vdash_{P_{\sigma}}\left[\begin{array}{ll}\left.Y_{1} \& Y_{2}\right] \supset\left[\begin{array}{l}Y_{1} \&\left[\begin{array}{lll}Y_{21} \& Y_{22}\end{array}\right] \\ \vdash_{P_{\sigma}}\left[Y_{21} \& Y_{22}\right] \supset\left[X_{12} \& X_{2}\right]\end{array}\right. & \text { by previous case } \\ \vdash_{P_{\sigma}}\left[Y_{1} \&\left[Y_{21} \& Y_{22}\right]\right] \supset\left[Y_{1} \&\left[X_{12} \& X_{2}\right]\right] & \text { by previous case } \\ \vdash_{P_{\sigma}} Y_{1} \supset X_{11} & \text { by axiom } 3 \\ \vdash_{P_{\sigma}}\left[Y_{1} \&\left[X_{12} \& X_{2}\right]\right] \supset\left[X_{11} \&\left[X_{12} \& X_{2}\right]\right] & \text { by ind. hyp. } \\ \vdash_{P_{\sigma}}\left[X_{11} \&\left[X_{12} \& X_{2}\right]\right] \supset\left[\left[X_{11} \& X_{12}\right] \& X_{2}\right] & \text { by axiom 4 } \\ \vdash_{P_{\sigma}}\left[\left[X_{11} \& X_{12}\right] \& X_{2}\right] \supset\left[X_{1} \& X_{2}\right] & \text { by axiom 1 }\end{array} \quad \begin{array}{ll}\text { by previous case }\end{array}\right.$
$\vdash_{P_{\sigma}}\left[Y_{1} \& Y_{2}\right] \supset\left[X_{1} \& X_{2}\right]$
by axiom 7
i.e. $\vdash_{P_{\sigma}} Y \supset X$.

LEMMA 2. If $X \vdash_{\sigma} W$, then $\vdash_{P_{\sigma}} X^{\prime} \supset W^{\prime}$.
The proof is by strong induction on the number of steps in the proof of $X \vdash_{\sigma} W$. If there is only one step in that proof, then X is W, or $X \rightarrow W$ is a pair of U_{σ}. In either case, $\vdash_{P_{\sigma}} X^{\prime} \supset W^{\prime}$ by axiom 5 or axiom 6.

For the induction step, assume that $X_{1} \vdash_{\sigma} W_{1}, X_{2} \vdash_{\sigma} W_{2}, \ldots$, $X_{n-1} \vdash_{\sigma} W_{n-1}, X \vdash_{\sigma} W$ is a proof in σ. Then, by the induction hypothesis, $\vdash_{P_{\sigma}} X_{i}^{\prime} \supset W_{i}^{\prime}, i=1,2, \ldots, n-1$. For each rule of the semi-Thue system which might justify $X \vdash_{\sigma} W$, there is a corresponding axiom in P_{σ}. Therefore $\vdash_{P_{\sigma}} X^{\prime} \supset W^{\prime}$, by that axiom, lemma 1, and axiom 7. Lemma 1 is needed when axiom 3 or 4 is applied.

Before continuing, another definition should be given. This is the crucial definition in the proof of theorem 1.

If W is a well formed formula of P_{σ}, then W is valid if and only if W is of the form $W_{1} \supset W_{2}$ and (1) W_{1} is regular, W_{2} is regular, and $<W_{1}>\vdash_{\sigma}\left\langle W_{2}>\right.$, or (2) W_{1} is not regular, W_{2} is not regular, and if W_{1} is valid then W_{2} is valid.

LEMMA 3. If W is a regular well formed formula of P_{σ}, and if A is a well formed formula of P_{σ} such that A is not p_{2}, then the result V of substituting A for p_{2} in W is not regular and is not valid.

The proof is by strong induction on the number of occurrences of \supset in W. If there is only one \supset, then either W is $\sim \sim\left[\sim p_{2} \supset \sim p_{2}\right]$, or W is $\sim \sim \sim \sim\left[\sim p_{2} \supset \sim p_{2}\right]$, since W is regular. Therefore, V is $\sim \sim[\sim A \supset \sim A]$ or V is $\sim \sim \sim \sim[\sim A \supset \sim A]$. A is not p_{2}. So in either case V is not l^{\prime} or b^{\prime}, and V is not of the form $\sim\left[A_{1} \supset \sim A_{2}\right]$. Therefore V is not regular. Since V is not of the form $V_{1} \supset V_{2}, V$ is not valid.

For the induction step assume that W is $\left[W_{1} \& W_{2}\right.$] where W_{1} and W_{2} are regular. Let V_{1} and V_{2} be the results of substituting A for p_{2} in W_{1} and W_{2}, respectively. Then V is $\left[V_{1} \& V_{2}\right]$. By the induction hypothesis V_{1} and V_{2} are not regular. So V is not regular. [$\left.V_{1} \& V_{2}\right]$ is $\sim\left[V_{1} \supset \sim V_{2}\right]$ which is not of the form $U_{1} \supset U_{2}$. So V is not valid.

LEMMA 4. The results of substituting well formed formulas for the propositional variables in the axioms are valid. (In particular, axiom 6 is valid without substitution).

Let P, Q, and R be the well formed formulas substituted for p_{1}, q_{1}, and r_{1}, respectively, and consider the axioms individually.

Axiom 1: $[P \&[Q \& R]] \supset[[P \& Q] \& R]$.
If $P \&[Q \& R]$ is regular, then so is $[P \& Q] \& R$, and $<P \&[Q \& R]>$ is $<[P \& Q] \& R>$. So $<P \&[Q \& R]>\vdash_{\sigma}<[P \& Q] \& R>$. If $P \&[Q \& R]$
is not regular, then neither is $[P \& Q] \& R . P \&[Q \& R]$ is $\sim[P \supset \sim[Q \& R]]$, and is not of the form $W_{1} \supset W_{2}$. So $P \&[Q \& R]$ is not valid. In either case $[P \&[Q \& R]] \supset[[P \& Q] \& R]$ is valid.

Axiom 2: $[[P \& Q] \& R] \supset[P \&[Q \& R]]$.
The proof is similar to that of axiom 1.
Axiom 3: $[P \supset Q] \supset _[R \& P] \supset[R \& Q]$.
It is necessary to show that if $P \supset Q$ is valid, then $[R \& P] \supset[R \& Q]$ is valid. So assume that $P \supset Q$ is valid. That is, assume (1) P is regular, Q is regular, and $\langle P\rangle \vdash_{\sigma}\langle Q\rangle$, or (2) P is not regular, Q is not regular, and if P is valid then Q is valid.

There are two possibilities. Either $[R \& P]$ is regular, or it is not regular. First assume that $[R \& P]$ is regular. Then R is regular and P is regular. Since P is regular and $P \supset Q$ is valid, Q must be regular and $\langle P\rangle \vdash_{\sigma}\langle Q\rangle$. Therefore [$R \& Q$] is regular and $<R \& P>\vdash_{\sigma}<R \& Q>$. So $[R \& P] \supset[R \& Q]$ is valid.

If $[R \& P$] is not regular, then R is not regular, or R is regular and P is not regular. If R is not regular, then $[R \& Q]$ is not regular. If P is not regular, then, since $P \supset Q$ is valid, Q is not regular, and $[R \& Q$] is not regular. [$R \& P$] is $\sim\left[R \supset \sim P\right.$], which is not of the form $W_{1} \supset W_{2}$. Hence $[R \& P]$ is not valid. Therefore $[R \& P] \supset[R \& Q]$ is valid.

Axiom 4: $[P \supset Q] \supset[P \& R] \supset[Q \& R]$.
The proof is similar to that of axiom 3.
Axiom 5: $P \supset P$.
If P is regular, then P is regular and $\langle P\rangle \vdash_{\sigma}\langle P\rangle$. If P is not regular, and if P is valid, then P is valid. So, whether or not P is regular, $P \supset P$ is valid.

Axiom 6: $G_{i}{ }^{\prime} \supset \bar{G}_{i}{ }^{\prime}$.
There are two cases to consider. In the case of no substitution $G_{i}{ }^{\prime}$ and $\bar{G}_{i}{ }^{\prime}$ are both regular and $\left\langle G_{i}{ }^{\prime}\right\rangle \vdash_{\sigma}\left\langle\bar{G}_{i}{ }^{\prime}\right\rangle$. Therefore, axiom 6 is valid.

The other case is that in which there is substitution. By lemma 3, the results of substituting a well formed formula, not p_{2}, in the regular formulas $G_{i}{ }^{\prime}$ and $G_{i}{ }^{\prime}$ are not regular. By the same lemma the result of substituting into $G_{i}{ }^{\prime}$ is not valid. Therefore, the result of substituting into $G_{i}{ }^{\prime} \supset \bar{G}_{i}{ }^{\prime}$ is valid.

Axiom 7: $[P \supset Q] \supset _[Q \supset R] \supset[P \supset R]$.
It is necessary to show that, if $P \supset Q$ is valid, then $[Q \supset R] \supset[P \supset R]$ is valid. To show this, it must be shown that, if $Q \supset R$ is valid, then so is $P \supset R$. So, assume $P \supset Q$ is valid and $Q \supset R$ is valid, and prove that $P \supset R$ is valid.

First consider the case in which P is regular. Since $P \supset Q$ is valid, it follows that Q is regular and $\langle P\rangle \vdash_{\sigma}\langle Q\rangle$. Since Q is regular and $Q \supset R$
is valid, R must be regular and $\langle Q\rangle \vdash_{\sigma}\langle R\rangle$. Therefore, R is regular and $\langle P\rangle \vdash_{\sigma}\langle R\rangle$. So $P \supset R$ is valid.

Next consider the possibility that P is not regular. In this case, since $P \supset Q$ is valid, Q is not regular. Since $Q \supset R$ is valid, it follows that R is not regular. If P is valid, then Q is valid. If Q is valid, then R is valid. Hence, if P is valid, then R is valid. Therefore, $P \supset R$ is valid.

LEMMA 5. If W_{1} and W_{2} are well formed formulas of P_{σ} such that W_{1} is valid and $W_{1} \supset W_{2}$ is valid, then W_{2} is valid.
W_{1} is not regular, since, if it were, it would not be of the form $V_{1} \supset V_{2}$, and hence not valid. Since $W_{1} \supset W_{2}$ is valid and W_{1} is not regular, it follows that if W_{1} is valid then W_{2} is valid. By hypothesis, W_{1} is valid. Therefore, W_{2} is valid.

LEMMA 6. If X and W are regular and $\vdash_{P_{\sigma}} X \supset W$, then $\langle X\rangle \vdash_{\sigma}\langle W\rangle$.
The proof of $\vdash_{P_{\sigma}} X \supset W$ can be rearranged so that all of the substitutions precede all of the uses of modus ponens. The result of substituting into the result of a substitution can be achieved by a single substitution. Hence the only substitutions necessary are direct substitution into the axioms. ${ }^{9}$ By lemma 4, the results of such substitutions are valid. By lemma 5 , modus ponens preserves validity. Therefore $X \supset W$ is valid. Since X is regular, it must follow that $\langle X\rangle \vdash_{\sigma}\langle W\rangle$.

LEMMA 7. $W_{1} \vdash_{\sigma} W_{2}$ if and only if $\vdash_{P_{\sigma}} W_{1}{ }^{\prime} \supset W_{2}{ }^{\prime}$.
This lemma is a restatement of the combination of lemmas 2 and 6.
Lemma 7 shows that the decision problem for a certain class of well formed formulas of P_{σ} is equivalent to the word problem for σ. Since there exists a semi-Thue system on two letters for which the word problem is recursively unsolvable, this completes the proof of theorem 1.

THEOREM 2. The problem of determining of an arbitrary partial propositional calculus whether or not it is complete is recursively unsolvable.

To prove this theorem let σ_{o} be a semi-Thue system on two letters such that $U_{\sigma_{o}}$ contains no empty words and σ_{o} has a recursively unsolvable word problem, and let $P_{\sigma_{o}}$ be the corresponding partial propositional calculus constructed as in theorem 1. Let W_{1} and W_{2} be arbitrary regular well formed formulas of $P_{\sigma_{o}}$. Then construct a partial propositional calculus $R\left(W_{1}, W_{2}\right)$ such that $R\left(W_{1}, W_{2}\right)$ is complete if and only if $\vdash^{-} \bar{P}_{\sigma_{o}} W_{1} \supset W_{2}$. Actually $R\left(W_{1}, W_{2}\right)$ represents a class of partial propositional calculi, one for each pair of regular well formed formulas W_{1} and W_{2}, for which the problem of determining, for an arbitrary member of the class, if it is complete is recursively unsolvable.

As in theorem 1, this proof consists of a construction and proofs that the construction satisfies the necessary requirements.

After fixing W_{1} and W_{2}, it is only necessary to give the axioms to define $R\left(W_{1}, W_{2}\right)$. There are 10 axioms. Axioms 1-7 are the axioms of $P_{\sigma_{o}}$,
as defined in the proof of theorem 1. The other axioms are listed below.
8. $\left[W_{1} \supset W_{2}\right] \supset p_{1} \supset\left[q_{1} \supset p_{1}\right]$
9. $\left[W_{1} \supset W_{2}\right] \supset _\left[p_{1} \supset\left[q_{1} \supset r_{1}\right]\right] \supset\left[p_{1} \supset q_{1}\right] \supset\left[p_{1} \supset r_{1}\right]$
10. $\left[W_{1} \supset W_{2}\right] \supset\left[\sim q_{1} \supset \sim p_{1}\right] \supset\left[p_{1} \supset q_{1}\right]$

LEMMA 1. If $\vdash_{P_{\sigma_{o}}} W_{1} \supset W_{2}$, then $R\left(W_{1}, W_{2}\right)$ is complete.
Since the axioms of $P_{\sigma_{o}}$ are also axioms of $R\left(W_{1}, W_{2}\right)$, if $\vdash_{P \sigma_{o}} W_{1} \supset W_{2}$, then $\vdash_{R\left(W_{1}, W_{2}\right)} W_{1} \supset W_{2}$. Hence, by modus ponens and axioms 8, 9, and 10

$$
\begin{aligned}
& \vdash_{R\left(W_{1}, w_{2}\right)} p_{1} \supset\left[q_{1} \supset p_{1}\right], \\
& \vdash_{R\left(W_{1}, w_{2}\right)}\left[p_{1} \supset\left[q_{1} \supset r_{1}\right]\right] \supset\left[p_{1} \supset q_{1}\right] \supset\left[p_{1} \supset r_{1}\right],
\end{aligned}
$$

and

$$
\vdash_{\left.1_{R\left(W_{1}\right.}, w_{2}\right)}\left[\sim q_{1} \supset \sim p_{1}\right] \supset\left[p_{1} \supset q_{1}\right] .
$$

These three theorems are the axioms of the complete propositional calculus. Therefore, all tautologies are theorems of $R\left(W_{1}, W_{2}\right)$, and $R\left(W_{1}, W_{2}\right)$ is complete.

To prove the converse of lemma 1 a technical validity concept is used, as in theorem 1. So this definition is given next, and lemmas proved about it.

A well formed formula X of $P_{\sigma_{o}}$ is
A-regular if and only if there is a regular well formed formula W such that X is the result of substituting the well formed formula A for p_{2} in W. This will be symbolized by $X=W^{A}$.

A well formed formula X of P is A-valid if and only if X is of the form $X_{1} \supset X_{2}$ and (1) there are regular well formed formulas V_{1} and V_{2} such that $X_{1}=V_{1}{ }^{A}, X_{2}=V_{2}^{A}$, and $\vdash_{P_{\sigma_{O}}} V_{1} \supset V_{2}$, or (2) X_{1} is not A-regular, X_{2} is not A-regular, and if X_{1} is A-valid, then X_{2} is A-valid.

LEMMA 2. If X is A-regular, then there is one and only one regular well formed formula W such that $X=W^{A}$.

The proof is by strong induction on the number n of \supset 's which occur in X, but do not appear in an occurrence of A. If there is only one such \supset, then W is 1^{\prime} or b^{\prime}. In either case it is well defined.

If $n>1$, then W^{A} is $V_{1}{ }^{A} \& V_{2}{ }^{A}$ for some V_{1} and V_{2}. By the uniqueness of the principal \supset, the $\&$ is uniquely determined. By the hypothesis of induction V_{1} and V_{2} are well defined. Hence W is well defined, and W is $\left[\begin{array}{lll}V_{1} & \& & V_{2}\end{array}\right]$.

LEMMA 3. The axioms of $P_{\sigma_{o}}$ are A-valid under substitution.
As one would expect from the similarity of the definitions of validity in theorem 1 and A-validity in theorem 2, the proof of this lemma parallels
the proof of lemma 4, theorem 1. It procedes by consideration of each axiom. As before, let P, Q, and R be the well formed formulas substituted for p_{1}, q_{1}, and r_{1}.

Axiom 1: $[P \&[Q \& R]] \supset[[P \& Q] \& R]$.
If $P \&[Q \& R]=V_{1}{ }^{A}$, then $[P \& Q] \& R=V_{2}{ }^{A}$, and $\left\langle V_{1}\right\rangle$ is $\left\langle V_{2}\right\rangle$. Hence $\vdash_{P_{o_{o}}} V_{1} \supset V_{2}$, and $V_{1}{ }^{A} \supset V_{2}{ }^{A}$ is A-valid. If $P \&[Q \& R]$ is not A-regular, then $[P \& Q] \& R$ is not A-regular. Since $P \&[Q \& R]$ is $\sim[P \supset \sim[Q \& R]]$, which is not A-valid, $[P \&[Q \& R]] \supset[[P \& Q] \& R]$ is $A-$ valid.

Axiom 2: $[[P \& Q] \& R] \supset[P \&[Q \& R]]$.
The proof is similar to that of axiom 1.
Axiom 3: $[P \supset Q] \supset[R \& P] \supset[R \& Q]$.
Assume that $P \supset Q$ is A-valid, and show that $[R \& P] \supset[R \& Q]$ is $A-$ valid. Consider first the case in which $[R \& P]$ is A-regular. Then $[R \& P]$ $=Y_{1}{ }^{A}$ for some regular well formed formula Y_{1}, such that Y_{1} is [$V_{1} \& V_{2}$], $R=V_{1}{ }^{A}$, and $P=V_{2}{ }^{A}$. Since $P \supset Q$ is A-valid, $Q=V_{3}{ }^{A}$ and $[R \& Q]=$ $\left[\mathrm{V}_{1}^{A} \& \mathrm{~V}_{3}^{A}\right]$. Hence $[R \& Q]=Y_{2}{ }^{A}$, where Y_{2} is $\left[V_{1} \& V_{3}\right]$. Since $P \supset Q$ is A-valid, $\vdash^{-} \bar{P}_{\sigma_{O}} V_{2} \supset V_{3}$. Therefore, $\vdash_{P_{\sigma_{0}}}\left[V_{1} \& V_{2}\right] \supset\left[V_{1} \& V_{3}\right]$ by axiom 3. That is, $\vdash_{P_{\sigma_{O}}} Y_{1} \supset Y_{2}$. Hence $[R \& P] \supset[R \& Q]$ is A-valid.

Next consider the case in which $[R \& P]$ is not A-regular. In this case either R is not A-regular, or P is not A-regular. If R is not A-regular, then $[R \& Q]$ is not A-regular. If P is not A-regular, then, since $P \supset Q$ is A-valid, Q is not A-regular, and $[R \& Q]$ is not A-regular. [$R \& P$] is $\sim[R \supset \sim P]$. So $[R \& P]$ is not A-valid. Therefore, $[R \& P] \supset[R \& Q]$ is A-valid.

Axiom 4. $[P \supset Q] \supset[P \& R] \supset[Q \& R]$.
The proof is similar to that of axiom 3.
Axiom 5. $P \supset P$.
The proof follows immediately from the definitions.
Axiom 6. $G_{i}{ }^{\prime} \supset \bar{G}_{i}{ }^{\prime}$.
Substitution yields $G_{i}{ }^{\wedge} \supset \bar{G}_{i}{ }^{\wedge}$. Since $G_{i}{ }^{\prime}$ and $\bar{G}_{i}{ }^{\prime}$ are regular and $\vdash_{P_{\sigma_{0}}} G_{i}{ }^{\prime} \supset \bar{G}_{i}{ }^{\prime}$, this is A-valid.

Axiom 7. $[P \supset Q] \supset[Q \supset R] \supset[P \supset R]$.
Assume that $P \supset Q$ and $Q \supset R$ are both A-valid, and show that $P \supset R$ is A-valid. First suppose that P is A-regular and $P=V_{1}{ }^{A}$. Then $Q=V_{2}{ }^{A}$ and $R=V_{3} A$. Since $\vdash_{P_{\sigma_{O}}} V_{1} \supset V_{2}$ and $\vdash_{P_{\sigma_{O}}} V_{2} \supset V_{3}$, it follows by axiom 7 that $\vdash_{P_{\sigma_{o}}} V_{1} \supset V_{3}$, and $P \supset R$ is \dot{A}-valid.

Next, suppose that P is not A-regular. Then Q is not A-regular, and hence R is not A-regular. If P is A-valid, then Q is A-valid. If Q is A valid, then R is A-valid. Therefore, if P is A-valid so is R. Hence $P \supset R$ is A-valid.

LEMMA 4. If V_{1} and V_{2} are well formed formulas of $P_{\sigma_{0}}$ such that V_{1} is A-valid and $V_{1} \supset V_{2}$ is A-valid, then V_{2} is A-valid.
V_{1} is not A-regular, since, if it were, it would not be of the form $Y_{1} \supset Y_{2}$, and hence would not be A-valid. Since $V_{1} \supset V_{2}$ is A-valid, if V_{1} is A-valid then V_{2} is A-valid. By hypothesis, V_{1} is A-valid. Therefore, V_{2} is A-valid.

LEMMA 5. All theorems of $P_{\sigma_{o}}$ are A-valid.
The proof of a theorem of $P_{\sigma_{o}}$ can be rearranged so that the substitutions precede the uses of modus ponens, and so that substitutions are made only into axioms. ${ }^{10}$ By lemma 3, the results of such substitutions are A valid, and by lemma 4, the subsequent results of modus ponens are also A valid.

LEMMA 6. If V_{1}, V_{2}, and A are regular well formed formulas of $P_{\sigma_{0}}$. then $\vdash_{P_{\sigma_{o}}} V_{1}^{A} \supset V_{2}{ }^{A}$ if and only if $\vdash_{P_{\sigma_{o}}} V_{1} \supset V_{2}$.

If $\vdash_{P_{\sigma_{0}}} V_{1} \supset V_{2}$, then substitution yields $\vdash_{P_{\sigma_{0}}} V_{1}{ }^{A} \supset V_{2}{ }^{A}$. If $\vdash_{P_{\sigma_{0}}} V_{1}{ }^{A} \supset V_{2}{ }^{A}$, then, by lemma $5, V_{1}{ }^{A} \supset V_{2}{ }^{A}$ is A-valid. V_{1}^{A} and $V_{2}{ }^{A}$ are both A-regular. Therefore, by the definition of A-validity, $\vdash_{P_{\sigma_{o}}} V_{1} \supset V_{2}$.

The remainder of this paper was revised in proof March 7, 1964. In the original version it was claimed that axioms 8,9 , and 10 could not be used as modus ponens antecedents for axioms $1-7$ to yield $W_{1} \supset W_{2}$. Wilson E. Singletary pointed out that although the claim was correct it was not sufficient. He produced a substitution instance of axiom 7 which might lead to $W_{1} \supset W_{2}$ by modus ponens. It is $[P \supset Q] \supset _[Q \supset R] \supset[P \supset R]$, where P, Q, and R as follows:

$$
\begin{aligned}
& P: W_{1}^{A} \supset W_{2}^{A} \supset 1^{\prime} \supset q_{2} \supset q_{2} \supset 1^{\prime} \\
& Q: 1^{\prime} \supset q_{2} \supset q_{2} \supset 1^{\prime} \\
& R: W_{1} \supset W_{2} .
\end{aligned}
$$

It has not been shown that $P \supset Q$ and $Q \supset R$ are not theorems of $P_{\sigma_{0}} . P$ is a substitution instance of axiom 8 . This criticism in no way affects the proof of theorem 1 or the first six lemmas of theorem 2.

Singletary proposed systems $P_{\sigma_{o}}^{\mathrm{t}}$ with seven axioms and $R^{\prime}\left(W_{1}, W_{2}\right)$ with ten axioms to demonstrate theorem 2. These systems are defined as follows: Axioms $1^{\prime}, 2^{\prime}, 5^{\prime}, 6^{\prime}$, and 7^{\prime} of $P_{\sigma_{o}}^{\prime}$ are identical to axioms $1,2,5,6$, and 7 of $P_{\sigma_{o}}$. The axioms of $R^{\prime}\left(W_{1}, W_{2}\right)$ are the axioms of $P_{\sigma_{o}}^{\dagger}$ with $8^{\prime}, 9^{\prime}$, and 10^{\prime} added. Axioms $8^{\prime}, 9^{\prime}$, and 10^{\prime} are the same as axioms 8,9 , and 10 of $R\left(W_{1}, W_{2}\right)$. Axioms $3^{\prime}, 4^{\prime}$, and 7^{\prime} of $P_{\sigma_{o}}^{\prime}$ and $R^{\prime}\left(W_{1}, W_{2}\right)$ are as follows:

$$
\begin{aligned}
& 3^{\prime} .\left[p_{1} \& p_{3} \supset q_{1} \& q_{2}\right] \supset\left[r_{1} \&\left[p_{1} \& p_{3}\right]\right] \supset\left[r_{1} \&\left[q_{1} \& q_{2}\right]\right] \\
& 4^{\prime} .\left[p_{1} \& p_{3} \supset q_{1} \& q_{2}\right] \supset\left[\left[p_{1} \& p_{3}\right] \& r_{1}\right] \supset\left[\left[q_{1} \& q_{2}\right] \& r_{1}\right] \\
& 7^{\prime} .\left[p_{1} \& p_{3} \supset q_{1} \& q_{2}\right] \supset\left[q_{1} \& q_{2} \supset r_{1} \& r_{2}\right] \supset\left[p_{1} \& p_{3} \supset r_{1} \& r_{2}\right]
\end{aligned}
$$

Use of these axioms requires that $\left\langle W_{1}\right\rangle$ and $\left\langle W_{2}\right\rangle$ each have at least two letters, and that $U_{\sigma_{o}}$ contain no words of less than two letters. Such semi-Thue systems with recursively unsolvable word problems do exist. ${ }^{11}$

It should be noted that the axioms of $P_{\sigma_{O}}^{t_{O}}$ are substitution instances of the axioms of $P_{\sigma_{o}}$. Hence the theorems of $P_{\sigma_{o}}^{\dagger}$ are theorems of $P_{\tilde{\sigma}_{o}}$.

LEMMA 1a. If $\vdash_{P_{\sigma_{O}}^{\prime}} W_{1} \supset W_{2}$, then $R^{\prime}\left(W_{1}, W_{2}\right)$ is complete.
The proof is exactly the same as for lemma 1, with $P_{\sigma_{o}}^{\mathbf{~}}$ in place of $P_{\sigma_{o}}$ and $R^{\prime}\left(W_{1}, W_{2}\right)$ in place of $R\left(W_{1}, W_{2}\right)$.

LEMMA 7. $\left\langle W_{1}\right\rangle \vdash_{\sigma_{o}}<W_{2}>$ if and only if $\vdash_{P_{\sigma_{O}}^{\prime}} W_{1} \supset W_{2}$.
If $\vdash_{P_{\sigma_{o}}^{\prime}} W_{1} \supset W_{2}$, then $\vdash_{P_{\sigma_{0}}} W_{1} \supset W_{2}$, and hence $\left.\left\langle W_{1}\right\rangle \vdash_{\sigma_{o}}<W_{2}\right\rangle$ by lemma 7, theorem 1.

The proof of lemma 2, theorem 1 can be paralleled to show that if $<W_{1}>\vdash_{\sigma_{o}}<W_{2}>$ then $\vdash_{P_{\sigma_{0}}^{\prime}} W_{1} \supset W_{2}$, since for each rule of the semi-Thue system using words of two or more letters in its defining relations, there is a corresponding axiom in $P_{\sigma_{0}}^{\dagger}$.

LEMMA 8. A theorem of $P_{\sigma_{o}}$ is a substitution instance of an axiom or has one of the following forms:

Form I: $[P \& Q] \supset[R \& S]$
Form II: $\left[P_{1} \& Q_{1}\right] \supset\left[R_{1} \& S_{1}\right] \supset\left[P_{2} \& Q_{2}\right] \supset\left[R_{2} \& S_{2}\right]$.
The proof is by induction on the number of steps in a proof in $P_{\sigma_{0}}^{\dagger}$. If there is only one step, then the theorem must be an axiom.

For the induction hypothesis, assume that $f_{P_{\sigma_{0}}^{\prime}} A_{1}, \vdash_{P_{\sigma_{0}}^{\prime}} A_{2}, \ldots$, $\vdash_{P_{\sigma_{o}}^{\prime}}^{\prime} A_{k}, \vdash_{P_{\sigma_{O}}^{\prime}} A_{k+1}$ is a proof, and that the lemma holds for $A_{i}, 1 \leq i \leq k$. If A_{k+1} is the result of substitution, or if it is an axiom, it has the desired form. Modus ponens cannot be used with substitition instances of axioms $1^{\prime}, 2^{\prime}, 6^{\prime}$ or Form I, since their antecedents are conjunctions and A_{i}, $1 \leq i \leq k$, are all implications. Modus ponens on a substitution instance of axiom 5^{\prime} yields nothing new. Modus ponens on substitution instances of axioms $3^{\prime}, 4^{\prime}$, or Form II give results of Form I. Modus ponens on a substitution instance of axiom 7' yields a formula of Form II. Hence A_{k+1} has the desired form.

LEMMA 9. If $R^{\prime}\left(W_{1}, W_{2}\right)$ is complete, then $\left\langle W_{1}\right\rangle \vdash_{P_{\sigma_{o}}^{\prime}}\left\langle W_{2}\right\rangle$.
W_{1} and W_{2} are regular words, and therefore tautologies. Hence $W_{1} \supset W_{2}$ is a tautology. If $R^{\prime}\left(W_{1}, W_{2}\right)$ is complete, then $\vdash_{R^{\prime}\left(W_{1}, W_{2}\right)} W_{1} \supset W_{2}$.

Examination of axioms $8^{\prime}, 9^{\prime}$, and 10^{\prime} shows that substitution into them will not yield a regular word implying a regular word. Neither are substitution instances of axioms $8^{\prime}, 9^{\prime}$, and 10^{\prime} of value as modus ponens antecedents. They obviously cannot be used with each other, and since they are not conjunctions they cannot be antecedents for substitution instances of axioms $1^{\prime}, 2^{\prime}, 6^{\prime}$ or Form I. Axiom 5^{\prime} would yield nothing new. Since $W_{1} \supset W_{2}$ is not a conjunction, they cannot be used as antecedents for substitution instances of axioms $3^{\prime}, 4^{\prime}, 7^{\prime}$ or Form II.

Axioms $8^{\prime}, 9^{\prime}$, and 10^{\prime} can be used to obtain theorems shorter than themselves only if $W_{1} \supset W_{2}$, or a substitution instance of it, is already available as a theorem. Therefore, by using only axioms 1' - 7^{\prime} it must be possible to prove $\vdash_{P_{\sigma_{0}}^{\prime}} W_{1} \supset W_{2}$, or $\vdash_{P_{\sigma_{0}}^{\prime}}^{\prime} W_{1}^{A} \supset W_{2}^{A}$ for some well formed formula A. Hence $\vdash_{P_{\sigma_{O}}} W_{1} \supset W_{2}$ or $\vdash_{P_{\sigma_{o}}} W_{1}{ }^{A} \supset W_{2}^{A}$. By lemma 6, the latter case also yields $\vdash_{P_{\sigma_{0}}} W_{1} \supset W_{2}$. By lemma 7, theorem 1, this gives the desired result, $\left\langle W_{1}\right\rangle \vdash_{P_{\sigma_{O}}}\left\langle W_{2}\right\rangle$.

LEMMA 10. $R^{\prime}\left(W_{1}, W_{2}\right)$ is complete if and only if $\left\langle W_{1}\right\rangle \vdash_{\sigma_{o}}\left\langle W_{2}\right\rangle$.
The implication in one direction is lemma 9. For the other implication assume $\left\langle W_{1}\right\rangle \vdash_{\sigma_{\circ}}\left\langle W_{2}\right\rangle$. Then by lemma 7, $\vdash_{p_{\sigma_{o}}^{\prime}}^{\prime} W_{1} \supset W_{2}$. Hence by lemma 1a, $R^{\prime}\left(W_{1}, \bar{W}_{2}\right)$ is complete.

By lemma 10, the problem of determining, of an arbitrary partial propositional calculus of the class represented by $R^{\prime}\left(W_{1} W_{2}\right)$, whether or not it is complete is equivalent to the word problem of σ_{o}. Since σ_{o} has a recursively unsolvable word problem, the problem of determining, of an arbitrary partial propositional calculus, whether or not it is complete is recursively unsolvable. This completes the proof of theorem 2.

The system $P_{\sigma_{O}}^{\prime}$ and the kind of analysis made of that system are closely related to the question of specifying a partial propositional calculus whose decision problem is of an arbitrarily assigned recursively enumerable degree of unsolvability. M. D. Gladstone and Ann H. Ihrig had independently of each other specified such constructions prior to Singletary's suggestion that $P_{\sigma_{O}}^{\prime}$ be used in proving theorem 2.

NOTES

1. Presented in the University of Illinois Logic Seminar in October, 1962.
2. Linial, Samuel, and Post, Emil L., Recursive Unsolvability of the Deducibility, Tarski's Completeness and Independence of Axioms Problems of the Propositional Calculus (Abstract), Bulletin of the American Mathematical Society, vol. 55, p. 50, 1949.
3. Davis, Martin, Computability and Unsolvability, McGraw-Hill Book Co., pp. 137-142, 1958.
4. Church, Alonzo, Introduction to Mathematical Logic, vol. 1, Princeton University Press, pp. 74-75, 1956.
5. Boone, William W., The Word Problem, Annals of Mathematics, vol. 70, no. 2, p. 207, 1959. A semi-Thue system is defined on page 213.
6. The addition of the rule, if $C \vdash D$ then $D \vdash C$, would make the system a Thue system.
7. Davis, Martin, op. cit., p. 93.

Hermes, H., Aufzählbarkeit, Entscheidbarkeit, Berechenbarkeit, Springer-Verlag, p. 147-156, 1961.
Kleene, S. C., Introduction to Metamathematics, Van Nostrand Co., pp. 382-386, 1952.

Post, Emil L., Recursive Unsolvability of a Problem of Thue, The Journal of Symbolic Logic, vol. 12, pp. 1-11, 1947.
8. Church, Alonzo, op. cit., pp. 122-123.
9. Church, Alonzo, op. cit., pp. 149-150.
10. See note 9 .
11. Boone, William W., op. cit., p. 210, footnote 7.

University of Illinois
Urbana, Illinois

