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COMMUTATIVE RECURSIVE WORD ARITHMETIC IN THE
ALPHABET OF PRIME NUMBERS*

HENRY A. POGORZELSKI

In memory of Thoralf A. Skolem

Like the recursive arithmetic Σ(1) of Skolem7 '5 '6 over the familiar
Dedekind-Peano word system Δ(1.) in the one-sign alphabet {1} (an inter-
pretation of the formal Dedekind-Peano word system Δ(a) in the alphabet
{a}, the commutative recursive word arithmetic Π ( P ) over the commuta-
tive word system V ( P ) in the alphabet of prime numbers P (an interpre-
tation of the formal commutative word system V({;α1,β2v#.}) of Vuckovic)9

is a quantifier-free word arithmetic. As such, Π ( P ) constitutes a version
of the Skolem method Σ(1) of treating the foundations of elementary number
theory. In this paper, we outline a development of Π (P ) along the lines
established by Vuckovic.9 However, we take propositional calculus as
primitive in lieu of using the Vuckovic word version of the so-called logic-
free equation calculus of Goodstein.1 In general, Π ( P ) has at its disposal
aside from the methods of propositional calculus, substitution for free vari-
ables, elementary properties of equality, the usual initial word functions,
method of proof by stage induction, and two methods of introducing new word
functions, namely, by means of the composition and primitive recursive
word schemes. Our formalism follows that of Skolem.7 In particular, we
employ the following notation: non (negation); v (disjunction); Λ(conjunction);
<^> (equivalence); μ(minimalization). Finally, on occasion we employ the
following Skolem relation on finite sequences.7 Let the class of positive
integers 1, 2, 3, . . . be denoted by N. The prerequisite relation xf£
(v, ik, ke N) is defined as follows:

%ik = %ik f 0 Γ k < V,

= xik + i for h ^ v.

The Skolem relation I(ΛΓ, , X)\ m, n) (ra, ne N) is defined by the following
scheme:

*The author should like to acknowledge his thanks to Hartley Rogers Jr. and V.
Vuckovic for their counsel.
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\{xu AT/; i, l)<=>ΛΓ t i=Λry i,

I(ΛΓ/, ΛΓy; 1, n) false for n> 1,

\(xi, XJ; m, 1) false for m> i,

\{xiy Xj; m + 1, n + l)OVv^n{xim + 1= Xjv} A I(ΛΓ/, X" m, ra).

§1. Word systems V(A), V ( P ) . Firstly, we construct the formal
commutative word system V( A ) introduced by Vuckovic.9 We note that we
have parted with the Vuckovic notation Ω (A ) since in the literature this
notation is at the moment generally used to denote the formal non-commu-
tative word system in the alphabet A.

Let A = {au a2, . . .} denote a denumerable alphabet of signs and Λ the
empty word. Let there be given a denumerable class of generating functions

(1.1) 9 = {FAX), F2(X), . . .}

satisfying the following axioms (μ,î e N):

(1.2) Fμ(X) =aμX,

(1.3) aμavX^avaμY v X=Y,

(1.4) aμ ϊ av\t μ = v.

Next define

( #o= U K
(1.5) ]

{Hn + 1 = {Fμ(X) \XeHn * μett}.

In turn, the formal commutative word system V (A) in the alphabet A is
defined as follows:

oo

(1.6) V(A)= j J Hko

The following theorems are easy consequences of the construction:

(1.7) (Stage Induction Theorem)

Λe<£

XffS v aμXeS

S = V(A)

(1.8) (Regularity Theorem)

aίrair_1. . . aiχ= «7 s β/s-i . «;i<=>IU, λ r, s).

(1.9) (Unicity Theorem)

airairM1. . . ai^ aJsajs_1. . . α ; i v \(aiy OJ\ r, s).

Next, assuming the usual initial word functions, the primitive recursive
word scheme of V (A ) is defined as follows:
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(F(X,A) =A(X),
(1.10) <

{F(X,aμY) =Bμ(X, Y,F(X, Y)) (μeN),

where A(X) and Bμ(X,Y,Z) (μeN) are previously defined word functions.
Clearly, every new word function defined by scheme (1.10) must satisfy one
of the following conditions (μ,ve N):

(1.11) F{X, aμavY) = F{X, avaμY),

(1.12) Bμ{X,avY, Bp(XfY,F{X,Y))) = Bv{X,aμY, Bμ(X,Y,F(X,Y))).

Following the author's earlier paper,3 we now construct an arithmetical
interpretation of the word system V(A), which is exactly the class of all
possible Godel numbers of V (A ).

Let pu pz, p3, . . . denote the class of consecutive prime numbers with
Pi = 2. Make a one-to-one correspondence between the alphabets
A = {au a2, . . .} and P = {pu />2, . . .}, that is, let aμ correspond to
Pμ (μe N), and let Λ correspond to lo Next, define

(1.13) Fμ(X) =pμX = pμ X(μeN)9

with Fμ(l) = pμ. Clearly, axioms (1.3) and (1.4) are satisfied. Finally, we
define the word system V( P ) in the alphabet P as follows:

(1.14) V ( P ) = Q' Hk.
Jfe = I

In turn, we have the following theorems:

(1.15) (Stage Induction Theorem)

leϋ

Xfΰ v pμXeV

ϋ = V ( P )

(1.16) (Unicity Theorem)

PirPir-i- - - Pii ΪPisPis-i- Pn v KPhPίf r> s )

Note, by means of theorems (1.16), we have reproduced in V( P ) the prime-
number unique factorization theorem of Σ (1).

Clearly, the primitive recursive word scheme (1.10) carries over into

V(P).
Lastly, restricting ourselves to the alphabet {pλ }, it is not difficult to

see that we can also construct a word system V(/?1) in the one-sign alphabet
{pi } with the empty word 1 along the lines given in this section. Clearly,
the class of all words of the word system *\/(pι) is a subclass of the class of
the class of words of V (P ).

§2. Recursive word arithmetic Π(P). In this section, we commence
our development of the commutative recursive word arithmetic ΠV(P),
that is, the commutative recursive word arithmetic over the word system
V( P ), which we briefly denote as Π( P )• On occasion in this and the follow-
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ing section the notation Π V( P ) will be used to refer to both Π V( P ) and
V(P).

Following van Rootselaar8 and Vuckovic,9 we first define the basic
class of word operations of Π(P). The Vuckovic operations ®vX{ve N),
additive word operations X ®VY (v e N)> word addition X © J (v =\1) or
briefly X © F, multiplicative word operations X Qv Y (v e N), word multi-
plication X Q1Y (u = 1) or briefly X © Y, exponential word operations
X Δv Y {v € N ) and word exponentiation X Δ^Y (v = l) or briefly X AY are
defined by the following primitive recursive word schemes (μ, v e N) :

( ®vl =1,

(2.1) ]
( ®vPμX =Pμ v (®VX),
( X®yl =X,

(2.2) 1
( X®vpμY =Pμ.v{X®vY),

( X ® 1 = X,
(2.3) \

( X ®pμY=pμ(X®Y)9

( XQV 1 = 1,
(2.4) \

{ XQyPμY = (XQVY) ®(®μmVX),

( XQ 1 = 1,
(2.5) ]

([ X © pμ Y = (X® Y) ® (® μ X)9

( x&yi =pl9

(2.6) ]
( X Av pμ Y = (X Av Y) © (®.μmv X)

( * Δ 1 =/>i,

(2.7) 1
( X ΔpμY =(XΔY) Q (®μX)o

Obviously, ordinary multiplication of Σ(1) is reproduced in Π (P) as
word addition X ® Y.

We now list some properties of the above operations, the proofs of which
carry over easily from those given by van Rootselaar8 and Vuckovic.9'10

Firstly, we state the properties involving word addition, the Vuckovic oper-
ation and additive word operations (μ, v e N ):

(2.8) X®Y = XY (concatenation),

(2.9) X®1 = 1®X = X,

(2.10) X®(Y@Z) = (X®Y)®Z,

(2.11) X@Y=Y@X,

(2.12) (X®Y)®VZ =X®(Y®VZ)9



COMMUTATIVE RECURSIVE WORD ARITHMETIC 17

(2.13) 0 v ( 0 μ X ) =®VoμX,

(2.14) ©v(l0F)=(0vl)θ(0,7),

(2.15) ®VX =1 ®VX,

(2.16) X®VY =X®(®v Y),

(2.17) X0χ,(0μ7) = X0^7,

(2.18) X ®v {Y ®μ Z) = {X@v Y) ®v.μ Z.

The second lot of properties involving the above operations, word multi-

plicative word operations follow (μ, v e N):

(2.19) XQl = 1QX= 1,

(2.20) XQp1=p1QX=X,

(2.21) XQ(YQZ) = (XQY)Θ Z,

(2.22) 10 7=701,

(2.23) XQ(Y@Z) = (XQY)@(XQZ),

(2.24) {X®VY)QZ = {X®Z)®P{Y®Z),

(2.25) XQVY = 1 0 ( 0 , 7 ) ,

(2.26) 0 V (XQY) = ( 0 , 1 ) 0 7 = 1 0 ( 0 , 7),

(2.27) X GV (^Θμ Z) = ( I 0 V 7) θ μ (X0 vZ),

(2.28) X0,(7θμZ) =(XQvY)QμZ.

Before we list the last lot of properties, we define the length function

λ (X) by the following scheme:

( λ ( i ) =0,

(2.29) <

(λ(pμX) =λ(X) + i ( μ e N ) .

In the following, note that [ΛΓ,3>]= xy. We now give the properties in-

volving the exponential word operations and word exponentiation (μ e N):

(2o30) 1ΔX = 1,

(2.31) Xap!=X,

(2.32) XΔμY = XA(®μ 7),

(2.133) ®[μ,λ(y)] U Δ 7 ) = ( θ / i l ) Δ 7 = l A ( θ μ 7 ) ,

(2β34) ®[μ,λ(γ)] (XAY) = XΔμY,

(2.35) ( X Δ 7 ) O ( X Δ Z ) = XΔ(Y®Z),

(2.36) (XΔ7) Δ ( 0 [ μ 2 λ ( y ) ] Z) = I Δ ( 7 0 ( 0 [ μ ( y ) ] Z)).

Finally, following Vuckovic,9 we define in Π (P ) the notions of word

predecessors pv*X(y e N), restricted word subtraction x [ ~ ] 7 and the

word inequality relation X 4 7 as follows (μeN):
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pv*i = -?,

(2.37) Pv*pμX = X for v = μ,

= pμpv*X f o r i / j ί μ ,

(x[-]i=x,
(2.38) j

( x [ - ] p μ F = /) μ *(x[~]F),

(2.39) X4 Y<=>X = F [ - ] ( F [ ~ ] X ) .

The definition of X-^ F in Π(P ) is obvious. Note that restricted word
subtraction may be interpreted as a sign deletion operation, for example,

PirPjrPir^Pjr-i- ' ftlft'lW PjrPiτ-1- ' ' Pjl ^PirPir^ Λ'i > S° t h a t>
clearly the familiar divisibility relation x\ Y of Σ(1) is reproduced in Π ( P )
as X 4 F.

We conclude this section with the following notes with regard to a recur-
sive word arithmetic over the word system V(/)x) in the one-sign alphabet
{px }. It is not difficult to see that the definitions in this section given in
Π( P ) carry over in the obvious way to a recursive word arithmetic Tl(pι)
which has the following primitive recursive word scheme:

(f(x, 1) =a(x),
(2.40) J

( Ax, Pi y) = b(x, y, f(x, y)).

On the other hand, we have the following versions of the theorems of
Peter2 and Vuckovic10'11 respectively:

(2.41) Every primitive recursive function in Ufa) can be extended to a
primitive recursive function in Π( P ).

(2.42) The recursive word arithmetic Hip!) is contained in the recursive
word arithmetic Π ( P ).

It is not difficult to see that the familiar relation x *? y of Σ(1) is repro-
duced in U(pi) as x ^ y, however note that the familiar operations of addi-
tion and multiplication of Σ(Ί) are not reproduced in Ufa) by x@y and
x Θ y.

§3. Recursive word arithmetic Π(P) (continued). In this section, we
show in particular that the familiar inequality relation ^ and ordinary addi-
tion of Σ(1) are recursively word definable in Π(P). However, to show
this, we need the following development of the recursive word arithmetic
U(pι). First, we give the following pertinent definitions:

(3.1) y | U < = > V s ^ x{x=yQ z A Z f 1}

(this is the word-divisibility relation of Ufa));

(3.2) pw(x)Ox> px Λ V z < x{znon \\x v (z = x v z = px) }

(pw(#) means that x is a primitive word in Ufa));
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( « i = P i ,

(3.3) ]

( n n is the nth word in V(/>x));

( Pi =PiPi,

(3.4) ]
( p w + 1 = μ ^ n 2 Δ ( u 2 Δ nn + 1) {pμ <z A pwU)}

(pn is the nth primitive word of Π (pi)). For example, p\ = pχpx, JJ|2 = PiPiPi,

Ps = PiPiPiPi and so on. Note that λ(pμ) = pμ and npμ = pμ (μ e N ).

Secondly, we state several theorems of U(pi):

(3 .5) />*°* | | ( * Θ y ) v nonvw(p) v p l U v p l l y .

(3o6) (Primitive-word unique resolution theorem of Π(/>χ))

The proofs of these theorems are the same as for the parallel theorems
of Σ(1)o In turn, note that the words xe V ^ ) can be also uniquely repre-
sented in the following form:

(3.7) x = (Pir ^^jr)O(pir^ Δ n y r - 1 ) 0 . . .O(ph A n 7 l ) .

Finally, we define the following useful primitive recursive function of

nip,):
(3.8) e x p ( p v , * ) = μ z ̂  x { { p v * p l Z ) non \ \ x ] ,

that is, the greatest word-exponent function.
We now give the second array of definitions leading to the recursive

word definibility in Π (P ) of the inequality relation and the operation of
addition of Σ(1). First, we identify in Π (P ) the words of V ^ ) as follows:

(N(l)=l9

(3.9) <

{N(pμX) =pAN(X)) ( μ e N ) ,

(3olO) nwm{X)<=>X = N(X)

(num(X) means that X is a numeral word in Π ( P ) ) o Clearly, the class of
all numeral words in Π ( P ) constitutes the class of all words in ^(pi) with
the exception of the empty word.

Secondly, it is easy to see that the class of all primitive words in ϊl{pι)
is also recursively definable in Π ( P ) . We shall refer to the primitive
words of U(pι) defined in Π ( P ) as the prime-numeral words of Π ( ( P ) .
Further, note that we shall employ the same notation used in (3.3) and (3.4)
for these words in Π (P ).

We point out that the familiar factorization />f.
 Γ p{

 r"J-P . . pj^-in Σ(1> is

reproduced in Π ( P ) as (piγ © t u r ) Θ . „ . ®{piχQ nk )«,
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Lastly, we define the following basic word functions of Π ( P ):

(3.11) ]
{T(pμX) = pμ QT(X) (μ€ N ) ,

(3.12) (r*(X) = 1 if Xf num(X),

\r*(x) =(exp(pδ{x),X) Δ/) δ ( x ))θ o . .©(expf^X) Δ/>X)

if X = num(X),

where δ(X) denotes the index of the greatest prime-numeral word which
word-divides X, which is also primitive recursive in Π ( P ). Clearly T(X)
is a primitive recursive function in Π(P), and Γ*(χ) is also primitive
recursive in Π( P ).

At this point, we can give the recursive word-theoretical definition in
Π ( P ) of the relation ^ of Σ(1) as follows:

(3.13) X^ Y<=>Γ(X) 4 T(γ).

The definition in Π(P) of the relation < of Σ(1) is obvious. In turn, we
define the number-theoretic function + of Σ(1) as a primitive recursive
word function in Π( P ) as follows:

(3.14) X + Y= Γ*(Γ(X)® Γ ( r ) ) .

We conclude this section with a discussion of the primitive words in Π(P)
leading to the primitive-word unique resolution theorem in Π ( P ), and fin-
ally we state several properties of the even words in Π (P ).

First, we define the recursively definable class of words called the
primitive words of Π (P ) as follows:

(3.15) Y\\X<=>V Z *ίX{X= YQZ A Z φ ϊ\\

(3.16) p w ( X ) < ^ > X > / > 1 Λ AZ^X{Znon \\x v (Z = X v Z = px)}

(pw(X) m e a n s that X i s a pr imi t ive word in Π ( P ));

(Pi=p2,

(3.17) j
[Pn+ι = μZ ^ u 2 Δ ( n 2 Δ nn + 1){Z> Pn A pw(Z)}

(Pn is the nth primitive word in Π (P )). For example,

P2 =PlPl,P3 =/>3,^4 =Plp2,P5 =PlPlPlyPβ = PlPs

and so on. Note that not all elements of the alphabet P are primitive words
of Π(P). Clearly, the class of all prime-numeral words is a subclass of
the class of primitive words in Π ( P ). We now state two theorems of Π ( P ),
the proofs of which are similar to the proofs already given in detail earlier
by the author:4

(3.18) Pv

 non\\(XQY)v ( λ ( P j ^ λ U ) A X(Pv)?X(Y))v (Pv\\XvPv\\γ).

(3.19) (Primitive-word unique resolution theorem of Π( P ))
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PirΘ. . .QPi^PJsO. . . 0 P f l v A ^ s{λ(Pir) ϊλ{Pjv)} v \(Ph Pj r, s).

Note, it follows from Theorem (3.19) that the elements of the alphabet P are
also uniquely representable as word products of "primitive prime num-
bers", i. e., words of the form ρμ e P where μe P.

Lastly, we define and state several properties of the even words of Π ( P )
as follows:

(3o20) even(X)<^>X^ 1 A p1 ^ X;

(3.21) even(XΘ Y)<=>even(X) Λ even(r);

(3.22) even(X Δ F)<^>even(X) A num(r).

We note that on the strength of theorems (3.21) and (3.19) the even words in
Π ( P ) are uniquely represented as word products of even primitive words
of Π ( P ) . Clearly, the notion of even word in Π(P) is a reproduction in
Π( P ) of the familiar notion of even number in Σ(1).

Evidently, aside from the commutative recursive word arithmetic IΓ( P )
there is a class of noncommutative recursive word arithmetics over
the noncommutative word systems ΩίP1), Ω(P2), . . .(see author)6 which
can be constructed along the general lines indicated in this paper, the auth-
or's 4 earlier paper, and the paper by Vuckovic10 in particular.

§4. Some problems in Π( P ). We conclude this paper with two problems
in Π( P ). Before stating our problems, however, note the following theorem:

(Theorem of Vuckovic)

Every word function F(X, Y) in Π ( P ) defined by the scheme

F(X, D =A(X),

(4.1) F(l,pμY) = Bμ(Y),

F(pvX,pμY) = Cμ>v(X, F, F(X, Y)) ( μ , ^ N )

is a primitive recursive word function in Π ( P ).

We sketch a proof of this theorem. Define the following word function:

(Dμ{l,X, Y,Z)^1,
(4.2) ]

{Dμ(pvU,X, Y, Z) = Cμ,ΛX, Y, Z) ( μ , i / € N ) .

Now, let

(QU) = 1,
(4.3) \

{Q{PVX) =/>!(!/€ N) .

Final ly , define

(G(X, 1) =A(X),
(4.4)

(G(X,pμY) =[(/h[-] Q(X))ΘBμ(Y)]®
[Q(X)Q Dμ (X, X, Y, Z)] (μ e N).
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Clearly, G(X, Y) is a primitive recursive word function in Π ( P )• On the
other hand, it is obvious that F{X, Y) = G(X, Y). This completes the proof.

Next, note that we defined ordinary addition X + Y as a primitive recur-
sive word function in Π( P ) by means of the composition scheme of Π ( P )
as follows:

(4.5) i+y=r*(rU)θr(y)).

Problem I is to show whether it is possible to define X + Y either by the
primitive recursive word scheme (1.10) or scheme (4.1) or some scheme
reducible to scheme (1.10).

For example, ordinary multiplication X Y can be defined as a primitive
recursive word function inΠ(P) by means of the composition scheme of
Πi(P) as

(4.6) X' F = Γ * ( Γ ( I ) 0 Γ ( 7 ) ) ,

nonetheless, it is also possible, as we have already shown, to define X Y
by means of the primitive recursive scheme of Π (P ) as follows:

(X®1 = X,
(4.7) \

{X®pμY=pμ(X®Y) (μeN).

In the same sense, it may be possible also to define X + Y in Π ( P ) by either
the primitive recursive word scheme (1.10) or scheme (4.1). If so, then
clearly we would have one of the following cases:

(4.8) p v + p μ = B ' μ ( p v , 1 , p v + l ) ( μ , v e N ) ,

(4.9) pv + pμ = CμfV(l, 1, px) (μ, v e N).

In turn, we can enumerate the even words in Π ( P ), with the exception of pi
and pipx, as follows:

(4.10) ]
[En+1 = μ Z e V(P) {Z> En Λ even(Z)}.

Lastly, it is not difficult to see that given a definition of X + Y by means of
either scheme (lβlθ) or (4.1), it would be possible to construct a number-
theoretic function 0(μ,i^)(μ,^eN \ i ) directly, determined by Bμ or C^jV

such that

(4.11) Eφ(μfl/)=Bμ(pV9l,pv + l) ( μ , i/€"N \ J ) ,

o r

(4 .12) Eφ(μfV)=c'μfΊ,U,l,Pi) (μ, * e N \ i ) .

Obviously, 0(μ,^) in either case is an effectively calculable function and
consequently on the strength of Church's Thesis it is a recursive number-
theoretic function.

Assuming that X + Y is definable by scheme (1.10) or scheme (4.1), tak-
ing into account the numeration (4.10), Problem II is to determine whether



COMMUTATIVE RECURSIVE WORD ARITHMETIC 23

φ(μ, v) (μ, ve N\l) is a recursive number-theoretic function of the type for
which it is possible to show that it is either into or onto N.

If the above solution is possible, then clearly φ{μ,v) is into if and only if
Goldbach's conjecture is false and on the other hand φ(μ,v) is onto if and
only if Goldbach's conjecture is true.

We point out that the word-version of the Goldbach conjecture in Uipi) is
as follows: Every even-length word in U(pι) greater than n4 is expressible
as a word-sum of two prime numerals greater than pίt It is not difficult to
see that this version of the Goldbach conjecture in ΐl(pι) is equivalent to the
Goldbach conjecture in Σ(l).

Finally, we note that the Goldbach conjecture for primitive prime num-
bers is false, since the even number 12 cannot be expressed as a sum of
two primitive primes pp + ppviβ, v e N). From this it follows that the re-
stricted function φ(pμ,pv) (μ, v e N) is into N.
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