Notre Dame Journal of Formal Logic Volume IV, Number 1, January 1963

ON STRENGTHENING INTUITIONISTIC LOGIC

RICHARD E. VESLEY

Leblanc and Belnap [2] have shown that standard Gentzen rules of inference (N-version) for intuitionistic propositional calculus (PC_I) become rules for classical propositional calculus (PC_C) upon strengthening the ' \equiv 'elimination rule. They conjecture that PC_I can be strengthened to PC_C only by strengthening rules for ' \sim ' or ' \supseteq ' or ' \equiv '.

We show that the addition of a clause (c) to their two part 'v'-introduction rule turns their formulation of PC_I into one of PC_C . The new rule is: DI_C : (a) $A \models A \lor B$, (b) $B \models A \lor B$, (c) $If \models A^*$ and $A, P \models Q$, then $\models A \lor P$,

where for (c) the restrictions hold: (i) P and Q are (metamathematical variables for) distinct proposition letters (using the terminology of [1]); (ii) A is a wff containing no proposition letter other than P; (iii) A^* is an instance of A (i.e. there is some wff B such that A^* results from A upon substitution of B for P).

Lemma 1: In the system obtained from PC_I by replacing DI by DI_C : $\vdash A \lor \sim A$.

Proof: For any wff A, let P_1, P_2, \ldots, P_m be the proposition letters occurring in A. In PC_i for each P_i , $i = 1, \ldots, m$, (and for any proposition letter Q): $\vdash \sim (P_i \otimes \sim P_i)$ and $\sim P_i, P_i \vdash Q$. Hence by DI_C (c) (with $\sim P_i$ as A): $\vdash \sim P_i \lor P_i$. Thence (cf. [1] §29 Remark 1 (b)): $\vdash A \lor \sim A$.

Lemma 2: DI_C (c) is a derivable rule of inference for PC_C .

Proof: Assume in PC_C (with (i) - (iii) above): (a) $\vdash A^*$ and (b) $A, P \vdash Q$. By (a), (iii) and the consistency of PC_C , there is some assignment of truth values to the proposition letters of A which makes t the value of A. By (ii), the only proposition letter of A is P. Then by (b) (with (i)) and consistency, the assignment which gives the value t to A is exactly the assignment of f to P. Similarly from (b) and consistency, the assignment of t to P yields f for A. Hence by completeness: $\vdash \sim A \equiv P$. Then from $\vdash A \lor \sim A$ we can deduce $\vdash A \lor P$.

Theorem: If in PC_I the rule DI is replaced by DI_C , the system obtained is PC_C .

Proof: By Lemmas 1 and 2.

REFERENCES

- [1] S. C. Kleene, Introduction to metamathematics, New York, 1952.
- [2] Hugues Leblanc and Nuel D. Belnap, Jr., "Intuitionism reconsidered," Notre Dame Journal of Formal Logic, vol. III (1962), pp. 79-82.

The University of Wisconsin-Milwaukee Milwaukee, Wisconsin

Received December 17, 1962