A STANDARD FORM FOR XUKASIEWICZ MANY-VALUED LOGICS

ROBERT E. CLAY

The purpose of this paper is to establish a relationship between a simple set of arithmetic functions and the functions in the Łukasiewicz many-valued logics. We first define the set of arithmetic functions to be used and derive a standard form for them. Then by an obvious restriction on the variables and a natural restriction on the function values these functions prove to be those generated in the above mentioned logics.

D1 $\mathcal{M}_{\text {is }}$ the set of functions defined on the integers and generated by substitution from the constant functions o and n, and the binary op-erations,,+- max and min. ${ }^{1}$
$T 1 \mathcal{L}=\left\{a_{0} n+\sum_{k=1}^{m} a_{k} p_{k} \mid a_{0}\right.$ and the a_{k} are integers and the p_{k} are variables
is the totality of functions generated by,,$+- o$, and n.
Proof: Algebraically obvious.
D2 If $f \in \mathcal{L}$, then f is called a linear form. ${ }^{2}$
P1 (a) $\max _{i}\left(a_{i}\right)+\max _{j}\left(b_{j}\right)=\max _{i, j}\left(a_{i}+b_{j}\right) \cdot{ }^{3}$
(b) $\min _{i}\left(a_{i}\right)+\min _{j}\left(b_{j}\right)=\min _{i, j}\left(a_{i}+b_{j}\right)$

Proof of a.

$$
\begin{aligned}
& a_{i} \leq \max _{i}\left(a_{i}\right), b_{j} \leq \max _{j}\left(b_{i}\right) \text { for all } i, j \text {. So } \\
& a_{i}+b_{j} \leq \max _{i}\left(a_{i}\right)+\max _{j}\left(b_{j}\right) \text { for all } i, j \text {. Therefore }
\end{aligned}
$$

1. $n,-$, and max would suffice.
2. When convenient we shall identify f with $f\left(p_{i}, \cdots, p_{n}\right)$
3. The index sets hereafter will be sections of the natural numbers. We adopt the convention, $\max (a)=a=\min (a)$
$\max _{i, j}\left(a_{i}+b_{j}\right) \leq \max _{i}\left(a_{i}\right)+\max _{j}\left(b_{i}\right)$.
There exist i_{o} and j_{o} so that
$a_{i}=\max _{i}\left(a_{i}\right), b_{j_{o}}=\max _{j}\left(b_{j}\right)$. Therefore
$\max _{i}\left(a_{i}\right)+\max _{j}\left(b_{j}\right)=a_{i_{o}}+b_{j_{o}} \leq \max _{i, j}\left(a_{i}+b_{j}\right) . Q E D$
P2 (a) $-\max _{i}\left(a_{i}\right)=\min _{i}\left(-a_{i}\right)$
(b) $-\min _{i}\left(a_{i}\right)=\max _{i}\left(-a_{i}\right)$

Proof of a.
$a_{i} \leq \max _{i}\left(a_{i}\right)$ for all i.
$-\max _{i}\left(a_{i}\right) \leq-a_{i}$ for all i. Therefore
$-\max _{i}\left(a_{i}\right) \leq \min _{i}\left(-a_{i}\right)$.
There exists an i_{o} so that $a_{i_{0}}=\max _{i}\left(a_{i}\right)$
$-\max _{i}\left(a_{i}\right)=-a_{i_{o}} \geq \min _{i}\left(-a_{i}\right) \quad Q E D$
P3 (a) $a+\max _{i}\left(a_{i}\right)=\max _{i}\left(a+a_{i}\right)$
(b) $a+\min _{i}\left(a_{i}\right)=\min _{i}\left(a+a_{i}\right)$

P4 (a) $a-\max _{i}\left(a_{i}\right)=\min _{i}\left(a-a_{i}\right)$
(b) $a-\min _{i}\left(a_{i}\right)=\max _{i}\left(a-a_{i}\right)$
$[P 2 b, P .3 a]$
P5 (a) $\min _{i}\left(a_{i}\right)+\max _{j}\left(b_{j}\right)=\max _{j}\left(\min _{i}\left(a_{i}+b_{j}\right)\right)$
(b) $\min _{i}\left(a_{i}\right)+\max _{j}\left(b_{j}\right)=\min _{i}\left(\max _{j}\left(a_{i}+b_{j}\right)\right)$

Proof of a. ${ }^{4}$
$\min _{i}\left(a_{i}\right)+\max _{j}\left(b_{j}\right)=[P 3 a] \max _{j}\left(\min _{i}\left(a_{i}\right)+b_{j}\right)=[P 3 b] \max _{j}\left(\min _{i}\left(a_{i}+b_{j}\right)\right)$
Thus max and min can always be moved exterior to + by $P 1, P 5$, and to - by P1, P2, P5. This together with T1 proves
$T 2$ If $f\left(p_{i}, \ldots, p_{k}\right) \in \mathcal{M}$, then either f is a linear form or $f\left(p_{i}, \ldots, p_{k}\right)=$ $F\left(\cdots, L_{i}\left(p_{i}, \cdots, p_{k}\right), \cdots\right)$, where F is composed only of max's and min's and the L_{i} are linear forms. If $f \in \mathcal{L}, F$ may be considered as vacuous.
4. We shall insert reason's into a proof by means of [1].

If $f\left(p_{i}, \cdots, p_{k}\right) \in \mathcal{M}$ and $f\left(p_{i}, \cdots, p_{k}\right)=F\left(\cdots, L_{i}\left(p_{i}, \cdots, p_{k}\right)\right.$, $\cdots)$ then $F\left(\cdots, L_{i}\left(p_{i}, \cdots p_{k}\right), \cdots\right)$ is called a standard form.

T3 Every function in $\mathcal{M}_{\text {can }}$ be represented by a standard form and viceversa.

Proof. [T2, D1, D3]
Note, as $P 5$ shows, that this representation is not unique.
P6 (a) $\max _{j}\left(\max _{i}\left(a_{i}\right), b_{j}\right)=\max _{i, j}\left(a_{i}, b_{j}\right)$
(b) $\min _{j}\left(\min _{i}\left(a_{i}\right), b_{j}\right)=\max _{i, j}\left(a_{i}, b_{j}\right)$

To bring the functions of \mathcal{M} into the realm of $n+1$ - valued logic, we first restrict the domains of all the variables to $\{0,1,2, \cdots, n\},{ }^{5}$ and then truncate their function values by means of the definition given below. We shall then prove that the functions in \mathcal{M} thus modified are precisely the functions in Lukasiewicz $\{C, N\}$-logics.

D4 For any integer a, the truncation of a, denoted by $\mathbf{T}(a)$ is defined by

$$
\mathbf{T}(a)=\left\{\begin{array}{l}
n, a \geq n \\
a, 0 \leq a \leq n \\
0, a \leq 0
\end{array}\right.
$$

$P 7 \quad 0 \leq \mathbf{T}(a) \leq n \quad[D 4]^{6}$
P8 $\quad a \leq b \rightarrow \mathbf{T}(a) \leq \mathbf{T}(b)$
$P F \quad$ 1) $b \geq n . \quad \mathbf{T}(b)=n \geq \mathbf{T}(a) \quad[P 7]$
2) $a \leq o . \mathbf{T}(a)=o \leq \mathbf{T}(b) \quad[P 7]$
3) $a \geq o$ and $b \leq n . \quad o \leq a \leq b \leq n \rightarrow \mathbf{T}(a)=a$ and $\mathbf{T}(b)=b$.
$P 9 \quad \mathbf{T}(\mathbf{T}(a))=\mathbf{T}(a) \quad[P 7]$
$P 10 \quad$ (a) $a \geq 0 \rightarrow \mathbf{T}(a)=\min (n, a)$
(b) $a \leq n \rightarrow \mathbf{T}(a)=\max (o, a)$

P11 $a \geq o$ and $b \geq 0 \rightarrow \mathbf{T}(a+b)=\mathbf{T}(\mathbf{T}(a)+\mathbf{T}(b))$
Proof:
(1) $a \geq n$. (Similarly for $b \geq n$)

$$
\begin{aligned}
& a+b \geq n \rightarrow \mathbf{T}(a+b)=n \\
& \mathbf{T}(a)=n \rightarrow[p 7] \mathbf{T}(a)+\mathbf{T}(b) \geq n \rightarrow \mathbf{T}(\mathbf{T}(a)+\mathbf{T}(b))=n .
\end{aligned}
$$

[^0](2) $o \leq a \leq n$ and $o \leq b \leq n$.
$\mathbf{T}(a)=a$ and $\mathbf{T}(b)=b \rightarrow \mathbf{T}(a+b)=\mathbf{T}(\mathbf{T}(a)+\mathbf{T}(b))$.
$P 12 \circ \leq a \leq n$ and $o \leq b \rightarrow \mathbf{T}(a-b)=\mathbf{T}(a-\mathbf{T}(b))$
Proof:
(1) $b \leq n . \quad \mathbf{T}(b)=b \rightarrow \mathbf{T}(a-b)=\mathbf{T}(a-\mathbf{T}(b))$
(2) $b \geq n$.
$a-b \leq o \rightarrow \mathbf{T}(a-b)=0$.
$\mathbf{T}(b)=n \rightarrow a-\mathbf{T}(b) \leq o \rightarrow \mathbf{T}(a-\mathbf{T}(b))=o$

$\begin{array}{ll}13 & \text { (a) } \mathbf{T}(\max (a, b))=\max (\mathbf{T}(a), \mathbf{T}(b))\end{array}$
(b) $\mathbf{T}(\min (a, b))=\min (\mathbf{T}(a), \mathbf{T}(b))$.

Proof of a

(1) $a \geq n$. (Similarly for $b \geq n$)
$\max (a, b) \geq n \rightarrow \mathbf{T}(\max (a, b))=n$.
$\mathbf{T}(a)=n$ and $[P 7] \mathbf{T}(b) \leq n \rightarrow \max (\mathbf{T}(a), \mathbf{T}(b))=n$.
(2) $o \leq a, b \leq n$.
$o \leq \max (a, b) \leq n \rightarrow \mathbf{T}(\max (a, b))=\max (a, b)$
$\mathbf{T}(a)=a$ and $\mathbf{T}(b)=b \rightarrow \max (\mathbf{T}(a), \mathbf{T}(b))=\max (a, b)$
(3) $a \leq o$ and $b \leq o$.
$\mathbf{T}(a)=0=\mathbf{T}(b) \rightarrow \max (\mathbf{T}(a), \mathbf{T}(b))=0$
$\max (a, b) \leq o \rightarrow \mathbf{T}(\max (a, b))=0$
(4) $a \leq o$ and $o \leq b \leq n$. (Similarly for $b \leq o$ and $o \leq a \leq n$)
$\mathbf{T}(a)=o \leq b=\mathbf{T}(b) \rightarrow \max (\mathbf{T}(a), \mathbf{T}(b))=\mathbf{T}(b)$
$a \leq b \rightarrow \max (a, b)=b \rightarrow \mathbf{T}(\max (a, b))=\mathbf{T}(b)$
$P 14 \mathbf{T}(\mathbf{T}(b)-\mathbf{T}(a))=\min (\mathbf{T}(b), \mathbf{T}(b-a), \mathbf{T}(n-a))$
Proof:
(1) $b \leq o$.
$\mathbf{T}(b)=o \rightarrow[P 7] \min (\mathbf{T}(b), \mathbf{T}(b-a), \mathbf{T}(n-a))=o$.
$\mathbf{T}(b)=o \rightarrow[P 7] \mathbf{T}(b)-\mathbf{T}(a) \leq o \rightarrow \mathbf{T}(\mathbf{T}(b)-\mathbf{T}(a))=o$
(2) $a \leq o$.
$\mathbf{T}(a)=o \rightarrow \mathbf{T}(\mathbf{T}(b)-\mathbf{T}(a))=\mathbf{T}(\mathbf{T}(b))=[P 9] \mathbf{T}(b)$
$b \leq b-a \rightarrow[P 8] \mathbf{T}(b) \leq \mathbf{T}(b-a)$
$n-a \geq n \rightarrow \mathbf{T}(n-a)=n \geq \mathbf{T}(b)$
$\therefore \min (\mathbf{T}(b), \mathbf{T}(b-a), \mathbf{T}(n-a))=\mathbf{T}(b)$.
(3) $a \geq 0$ and $b \geq n$.

```
\(\mathbf{T}(b)=n \rightarrow \mathbf{T}(\mathbf{T}(b)-\mathbf{T}(a))=\mathbf{T}(n-\mathbf{T}(a))=[P 12] \mathbf{T}(n-a)\).
\(\mathbf{T}(b)=n \geq \mathbf{T}(n-a)\)
\(n-a \leq b-a \rightarrow[P 8] \mathbf{T}(n-a) \leq \mathbf{T}(b-a)\)
\(\therefore \min (\mathbf{T}(b), \mathbf{T}(b-a), \mathbf{T}(n-a))=\mathbf{T}(n-a)\)
```

(4) $a \geq o$ and $o \leq b \leq n$.
$\mathbf{T}(b)=b \rightarrow \mathbf{T}(\mathbf{T}(b)-\mathbf{T}(a))=\mathbf{T}(b-\mathbf{T}(a))=[P 12] \mathbf{T}(b-a)$
$b-a \leq b \rightarrow[P 8] \mathbf{T}(b-a) \leq \mathbf{T}(b)$.
$b-a \leq n-a \rightarrow[P 8] \mathbf{T}(b-a) \leq \mathbf{T}(n-a)$
$\therefore \min (\mathbf{T}(b), \mathbf{T}(b-a), \mathbf{T}(n-a))=\mathbf{T}(b-a)$.
We now enter the $n+1$-valued logic based on C and N and using the values $\{o, 1, \ldots, n\}$. We shall use p, q, possibly with subscripts, for the variables. To recall
$C p q=\max (o, q-p) ; N p=n-p$.
$\alpha_{2} p q=\min (n, p+q)$ is also in this logic [1].
P15 $C p q=\mathbf{T}(q-p)$
PF $\quad q \leq n$ and $p \geq o \rightarrow q-p \leq n \rightarrow \mathbf{T}(q-p)=\max (o, q-p)=C p q$
T4 The truncation of any linear form, i.e. $\mathbf{T}\left(a_{0} n+\sum_{i+1}^{k} a_{i} p_{i}\right)$ is generated by C and N. Let $n=p_{o}$, then this becomes $\mathbf{T}\left(\sum_{i=0}^{k} a_{i} p_{i}\right)$

Proof. By induction on $\sum_{i=0}\left|a_{i}\right|$.
k

1. $\Sigma\left|a_{i}\right|=0$.
$i=0$
then $a_{i}=o$ for all $o \leq i \leq k$, and $\sum_{i=0}^{k} a_{i} p_{i}=o=C p p$.
2. Suppose the theorem is valid for all linear forms
$\sum_{i=0}^{k} a_{i} p_{i}$ for which $\sum_{i=0}^{k}\left|a_{i}\right|<l$.
Consider an arbitrary linear form $\sum_{i=0} a_{i} p_{i}$ for which $\sum_{i=0}^{k}\left|a_{i}\right|=l$.
2.1. $a_{i} \leq o$ for all $o \leq i \leq k$.
then $\sum_{i=0}^{k} a_{i} p_{i} \leq o \rightarrow T \quad \sum_{i=0}^{k} a_{i} p_{i}=0=C p p$.
2.2. There is a $j, o \leq j \leq k$ so that $a_{j}>o$.

Then $\left|a_{j}-1\right|<\left|a_{j}\right|$; and since $|a|=|-a|$,

$$
\left|-\left(a_{j}-1\right)\right|+\sum_{\substack{i=0 \\ i \neq j}}^{k}\left|-a_{j}\right|=\left|a_{j}-1\right|+\sum_{\substack{i=0 \\ i \neq j}}^{k}\left|a_{i}\right|<l . \text { Therefore }
$$

by the induction hypothesis, and since the negative of a linear form is a linear form,
for $A=\left(a_{j}-1\right) p_{j}+\sum_{\substack{i=0 \\ i \neq j}}^{k} a_{i} p_{i}, \mathbf{T}(A)$ and $\mathbf{T}(-A)$ are generated.
Consider
$C\left(\mathbf{T}(-A), \alpha_{i_{2}}\left(p_{j}, \mathbf{T}(A)\right)\right)=\max \left(o, \min \left(n, p_{j}+\mathbf{T}(A)\right)-\mathbf{T}(-A)\right)$
For values of the variables for which $A \geq 0$
$\max \left(o, \min \left(n, p_{j}+\mathbf{T}(A)\right)-\mathbf{T}(-A)\right)=[-A \leq o] \max \left(o, \min \left(n, p_{j}+\mathbf{T}(A)\right)=\right.$ $\left[p_{j} \geq o, \mathbf{T}(A) \geq o\right] \min \left(n, p_{j}+\mathbf{T}(A)\right)=[P 10] \mathbf{T}\left(p_{j}+\mathbf{T}(A)\right)=\left[p_{j}=\mathbf{T}\left(p_{j}\right)\right]$
$\mathbf{T}\left(\mathbf{T}\left(p_{j}\right)+\mathbf{T}(A)\right)=[P 11] \mathbf{T}\left(p_{j}+A\right)=\mathbf{T}\left(p_{j}+\left(a_{j}-1\right) p_{j}+\sum_{i=0} a_{i} p_{i}\right)=$ $\mathrm{T}\left(\sum_{i=0} a_{i} p_{i}\right)$.
$i \neq j$
For values of the variables for which $A \leq 0$.
$\max \left(o, \min \left(n, p_{j}+\mathbf{T}(A)\right)-\mathbf{T}(-A)\right)=\max \left(o, \min \left(n, p_{j}\right)-\mathbf{T}(-A)\right)=\max (o$, $\left.p_{j}-\mathbf{T}(-A)\right)=[P 10] \mathbf{T}\left(p_{j}-\mathbf{T}(-A)\right)=[P 12,-A \geq 0] \mathbf{T}\left(p_{j}-(-A)\right)=\mathbf{T}\left(p_{j}+\right.$
$A)=\mathbf{T}\left(\sum_{\substack{i=0 \\ i \neq j}}^{k} a_{i} p_{i}\right)$.
$i \neq j$
Thus the induction step is proved and the proof is complete.
If $f \in \mathcal{M}, \mathbf{T}(f)$ is generated by C and N.
Proof:
Let $F\left(\cdots, L_{i}, \cdots\right)$ be a standard form representing f.
Then $\mathbf{T}(f)=\mathbf{T}\left(F\left(\cdots, L_{i}, \cdots\right)=[T 2, P 13] F\left(\cdots, \mathbf{T}\left(L_{i}\right), \cdots\right)\right.$.
By $T 4$, the $\mathbf{T}\left(L_{i}\right)$ are generated. Now

$$
\max (p, q)=\alpha_{2} p C p q ; \min (p, q)=C C p q q .
$$

Therefore by $P 6$, max and min for any finite number of arguments are generated by C and N.
Therefore, $F\left(\cdots, \mathbf{T}\left(L_{i}\right), \cdots\right)=\mathbf{T}(f)$ is generated.

T6 Every function generated by C and N is the truncation of a function in \mathcal{M}.

Proof:

$C p q=[P 15] \mathbf{T}(q-p)$ and $N p=\mathbf{T}(n-p)$. Therefore, $C p q$ and $N p$ are truncations of standard forms. Since $N p=C p n$, it remains to prove that the truncations of standard forms are closed under the application of C.

Take any two standard forms $F\left(\cdots, L_{i}, \cdots\right)$ and $G\left(\cdot \cdots, M_{j}, \cdots\right)$, then by $P 13$
$\mathbf{T}\left(F\left(\cdots, L_{i}, \cdots\right)\right)=F\left(\cdot \cdots, \mathbf{T}\left(L_{i}\right), \cdots\right)=F_{t}$ and
$\mathbf{T}\left(G\left(\cdots, M_{j}, \cdots\right)\right)=G\left(\cdots, \mathbf{T}\left(M_{j}\right), \cdots\right)=G_{\boldsymbol{t}}$.
There are four possible forms that $G_{t}-F_{t}$ may take,
I. $\min _{k}\left(\alpha_{k}\right)-\max _{l}\left(\beta_{l}\right)$
II. $\max _{k}\left(\alpha_{k}\right)-\min _{l}\left(\beta_{l}\right)$
III. $\max _{k}\left(\alpha_{k}\right)-\max _{l}\left(\beta_{l}\right)$
IV. $\min _{k}\left(\alpha_{k}\right)-\min _{l}\left(\beta_{l}\right)$

From P1, P2, and P5 we know

1) $\min _{k}\left(a_{k}\right)-\max _{l}\left(b_{l}\right)=\min _{k, l}\left(a_{k}-b_{l}\right)$
2) $\max _{k}\left(a_{k}\right)-\min _{l}\left(b_{l}\right)=\max _{k, l}\left(a_{k}-b_{l}\right)$
3) $\max _{k}\left(a_{k}\right)-\max _{l}\left(b_{l}\right)=\max _{k}\left(\min _{l}\left(a_{k}-b_{l}\right)\right)$
4) $\min _{k}\left(a_{k}\right)-\min _{l}\left(b_{l}\right)=\min _{k}\left(\max _{l}\left(a_{k}-b_{l}\right)\right)$

We note that minus sign gives rise to only minus signs in all four cases. Therefore, by repeated application ${ }^{7}$ of 1), 2), 3) and 4) we deduce that $G_{t}-F_{t}=H\left(\cdots, \mathbf{T}\left(M_{j}\right)-\mathbf{T}\left(L_{i}\right), \cdots\right)$ for some values of i and j, and where H is composed only of max's and min's.
Therefore

$$
\begin{aligned}
& C(\mathbf{T}(F), \mathbf{T}(G))=[P 15] \mathbf{T}(\mathbf{T}(G)-\mathbf{T}(F))=\mathbf{T}\left(G_{t}-F_{t}\right)=\mathbf{T}(H)=H(\cdot \cdots, \\
& \left.\mathbf{T}\left(\mathbf{T}\left(M_{j}\right)-\mathbf{T}\left(L_{i}\right)\right), \cdots\right)=[P 14] H\left(\cdot \cdots, \min \left(\mathbf{T}\left(M_{j}\right), \mathbf{T}\left(M_{j}-L_{i}\right), \mathbf{T}(n-\right.\right. \\
& \left.\left.\left.L_{i}\right)\right), \cdots\right)=[P 13] \mathbf{T}\left(H\left(\cdot \cdots, \min \left(M_{j}, M_{j}-L_{i}, n-L_{i}\right), \cdots\right)\right)=\mathbf{T}\left(H^{*}\right. \\
& \left.\left(\because, M_{j}, M_{j}-L_{i}, n-L_{i}, \cdots\right)\right) \\
& \text { where } H^{*} \text { is again composed only of max's and min's. Since } L, M \text {, } \\
& \text { and } n \text { are linear forms, clearly so are } M_{j}-L_{i} \text { and } n-L_{i} . \text { Thus } \\
& H^{*}\left(\cdots, M_{j}, M_{j}-L_{i}, n-L_{i}, \cdots\right) \text { is a standard form. }
\end{aligned}
$$

[^1]
So

$C(\mathbf{T}(F), \mathbf{T}(G))=\mathbf{T}\left(H^{*}\right)$, the truncation of a standard form. Therefore the truncations of standard forms are closed under the application of C.

T7 The functions generated by C and N are precisely the truncations of the functions of \mathcal{M}.

Proof by T3, T5, T6.
If desired, any standard form $F\left(\cdots, L_{i}, \cdots\right)$ may be transformed to have the following alternating property:

T8 If A_{i} is the main functor of F and A_{i+1} is the main functor of any argument of A_{i}, then any sequence $A_{1}, A_{2}, \ldots, A_{k}$ that can be formed in F is an alternation of max's and min's.
Proof. If A_{i} and A_{i+1} are both max's, then $P 6 a$ reduces them to a single max. Similarly for min.
It is of interest to note that although C and N are formed from n and the truncation of subtraction, that the truncations of the functions in \mathcal{L}, i.e. those generated by n and - , are not sufficient to yield the $\{C, N\}$-logics. To be assured of this insufficiency we shall prove that

T9 max(similarly min) is not the truncation of a linear form unless the logic is two-valued, i.e. $n=1$.

Proof. If $n=1, \max (p, q)=\mathbf{T}(p+q)=\alpha_{2}(p, q)$
Let $n>1$, suppose that $\max (p, q)$ is the truncation of a linear form, i.e.
$\max (p, q)=\mathbf{T}(a n+b p+c q)$
$1=\max (1,0)=\mathbf{T}(a n+b) \rightarrow a n+b=1$
$1=\max (1,1)=\mathbf{T}(a n+b+c) \rightarrow a n+b+c=1$
\therefore By subtraction, $c=0$. Similarly $b=0$
Therefore $\max (p, q)=\mathbf{T}(a n)$. By this makes max a constant function. Contradiction.

REFERENCE

[1] R. E. Clay, A simple proof of functional completeness in many-valued logics based on Łukasiewicz C and N, Notre Dame Journal of Formal Logic, Vol. III (1962), pp. 114-117.

University of Notre Dame

Notre Dame, Indiana
and
San Jose State College
San Jose, California

[^0]: 5. Note that this is different from restricting the arguments of the various operations to this set.
 6. In subsequent proofs we shall not refer explicitly to $D 4$.
[^1]: 7. A trivial but notationally cumbersome induction.
