Notre Dame Journal of Formal Logic Volume IV, Number 1, January 1963

A STANDARD FORM FOR ŁUKASIEWICZ MANY-VALUED LOGICS

ROBERT E. CLAY

The purpose of this paper is to establish a relationship between a simple set of arithmetic functions and the functions in the Lukasiewicz many-valued logics. We first define the set of arithmetic functions to be used and derive a standard form for them. Then by an obvious restriction on the variables and a natural restriction on the function values these functions prove to be those generated in the above mentioned logics.

- \mathcal{M} is the set of functions defined on the integers and generated by D1 substitution from the constant functions o and n, and the binary operations +, -, max and min.¹
- T1 $\mathcal{L} = \left\{ a_o n + \sum_{k=1}^{m} a_k p_k \mid a_o \text{ and the } a_k \text{ are integers and the } p_k \text{ are variables} \right\}$ is the totality of functions generated by +, -, o, and n.

Proof: Algebraically obvious.

D2 If
$$f \in \mathcal{L}$$
, then f is called a linear form.²

P1 (a)
$$\max_{i} (a_{i}) + \max_{j} (b_{j}) = \max_{i, j} (a_{i} + b_{j}).^{3}$$

(b) $\min_{i} (a_{i}) + \min_{j} (b_{j}) = \min_{i, j} (a_{i} + b_{j})$

Proof of a.

$$a_i \leq \max_i (a_i), \ b_j \leq \max_j (b_i)$$
 for all i, j . So
 $a_i + b_j \leq \max_i (a_i) + \max_j (b_j)$ for all i, j . Therefore

Received October 9, 1962

^{1.} n, -, and max would suffice.

^{2.} When convenient we shall identify f with $f(p_i, \dots, p_n)$

^{3.} The index sets hereafter will be sections of the natural numbers. We adopt the convention, $\max(a) = a = \min(a)$

$$\begin{aligned} \max_{i,j} (a_i + b_j) &\leq \max_i (a_i) + \max_j (b_i). \\ \text{There exist } i_o \text{ and } j_o \text{ so that} \\ a_{i_o} &= \max_i (a_i), b_{j_o} &= \max_j (b_j). \text{ Therefore} \\ \max_i (a_i) + \max_i (b_j) &= a_{i_o} + b_{j_o} &\leq \max_i (a_i + b_j). \text{ QED} \end{aligned}$$

$$P2 \quad (a) -\max_i (a_i) &= \min(-a_i) \\ (b) -\min_i (a_i) &= \max_i (-a_i) \\ (b) -\min_i (a_i) &= \max_i (-a_i). \end{aligned}$$

$$Proof of a. \\ a_i &\leq \max_i (a_i) \text{ for all } i. \\ -\max_i (a_i) &\leq -a_i \text{ for all } i. \\ -\max_i (a_i) &\leq -a_i \text{ for all } i. \\ -\max_i (a_i) &\leq \min_i (-a_i). \\ \text{There exists an } i_o \text{ so that } a_{i_o} &= \max_i (a_i) \\ -\max_i (a_i) &= -a_{i_o} &\geq \min_i (-a_i) \\ QED \end{aligned}$$

$$P3 \quad (a) \ a + \max_i (a_i) &= \max_i (a + a_i) \\ (b) \ a + \min_i (a_i) &= \min_i (a + a_i) \\ (b) \ a - \min_i (a_i) &= \max_i (a - a_i) \\ (b) \ a - \min_i (a_i) &= \max_i (a - a_i) \\ (b) \ a - \min_i (a_i) &= \max_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \max_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \max_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \min_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \min_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \min_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \min_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \min_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \min_i (a - a_i) \\ (c) \ a - \min_i (a_i) &= \max_i (a - a_i) \\ (c) \ a$$

T2 If $f(p_i, \ldots, p_k) \in \mathcal{M}$, then either f is a linear form or $f(p_i, \ldots, p_k) = F(\cdots, L_i(p_i, \cdots, p_k), \cdots)$, where F is composed only of max's and min's and the L_i are linear forms. If $f \in \mathcal{L}$, F may be considered as vacuous.

^{4.} We shall insert reasons into a proof by means of [1].

D3 If
$$f(p_i, \dots, p_k) \in \mathcal{M}$$
 and $f(p_i, \dots, p_k) = F(\dots, L_i(p_i, \dots, p_k), \dots)$ then $F(\dots, L_i(p_i, \dots, p_k), \dots)$ is called a standard form.

T3 Every function in \mathcal{M} can be represented by a standard form and viceversa.

Proof. [T2, D1, D3]

Note, as P5 shows, that this representation is not unique.

P6 (a)
$$\max_{j} (\max_{i}(a_{i}), b_{j}) = \max_{i,j} (a_{i}, b_{j})$$

(b) $\min_{j} (\min_{i}(a_{i}), b_{j}) = \max_{i,j} (a_{i}, b_{j})$

To bring the functions of \mathcal{M} into the realm of n + 1 - valued logic, we first restrict the domains of all the variables to $\{0, 1, 2, \dots, n\}$,⁵ and then truncate their function values by means of the definition given below. We shall then prove that the functions in \mathcal{M} thus modified are precisely the functions in Lukasiewicz $\{C, N\}$ -logics.

D4 For any integer a, the truncation of a, denoted by T(a) is defined by

$$\mathbf{T}(a) = \begin{cases} n, \ a \ge n \\ a, \ 0 \le a \le n \\ 0, \ a \le 0 \end{cases}$$

$$P7 \quad 0 \le \mathbf{T}(a) \le n \quad [D4]^6$$

$$P8 \qquad a \le b \to \mathbf{T}(a) \le \mathbf{T}(b)$$

$$PF \quad 1) \quad b \ge n. \quad \mathbf{T}(b) = n \ge \mathbf{T}(a) \quad [P7]$$

$$2) \quad a \le o. \quad \mathbf{T}(a) = o \le \mathbf{T}(b) \quad [P7]$$

$$3) \quad a \ge o \text{ and } b \le n. \quad o \le a \le b \le n \to \mathbf{T}(a) = a \text{ and } \mathbf{T}(b) = b.$$

$$P9 \quad \mathbf{T}(\mathbf{T}(a)) = \mathbf{T}(a) \quad [P7]$$

P 10 (a)
$$a \ge o \rightarrow \mathbf{T}(a) = \min(n, a)$$

(b) $a \le n \rightarrow \mathbf{T}(a) = \max(o, a)$

P11 $a \ge o \text{ and } b \ge o \Rightarrow \mathbf{T}(a + b) = \mathbf{T}(\mathbf{T}(a) + \mathbf{T}(b))$

Proof:

(1)
$$a \ge n$$
. (Similarly for $b \ge n$)
 $a + b \ge n \rightarrow \mathbf{T} (a + b) = n$
 $\mathbf{T}(a) = n \rightarrow [P7] \mathbf{T}(a) + \mathbf{T}(b) \ge n \rightarrow \mathbf{T}(\mathbf{T}(a) + \mathbf{T}(b)) = n$.

^{5.} Note that this is different from restricting the arguments of the various operations to this set.

^{6.} In subsequent proofs we shall not refer explicitly to D4.

(2)
$$o \le a \le n$$
 and $o \le b \le n$.
 $\mathbf{T}(a) = a$ and $\mathbf{T}(b) = b \to \mathbf{T}(a+b) = \mathbf{T}(\mathbf{T}(a) + \mathbf{T}(b))$

P12 $o \le a \le n \text{ and } o \le b \to \mathbf{T}(a - b) = \mathbf{T}(a - \mathbf{T}(b))$

Proof:

(1) $b \le n$. $\mathbf{T}(b) = b \to \mathbf{T}(a - b) = \mathbf{T}(a - \mathbf{T}(b))$ (2) $b \ge n$. $a - b \le o \to \mathbf{T}(a - b) = o$. $\mathbf{T}(b) = n \to a - \mathbf{T}(b) \le o \to \mathbf{T}(a - \mathbf{T}(b)) = o$

P13 (a)
$$T(\max(a, b)) = \max(T(a), T(b))$$

(b) $T(\min(a, b)) = \min(T(a), T(b)).$

Proof of a

- (1) $a \ge n$. (Similarly for $b \ge n$) $\max(a, b) \ge n \rightarrow \mathbf{T}(\max(a, b)) = n$. $\mathbf{T}(a) = n$ and $[P7] \mathbf{T}(b) \le n \rightarrow \max(\mathbf{T}(a), \mathbf{T}(b)) = n$.
- (2) $o \le a, b \le n$. $o \le \max(a, b) \le n \to \mathbf{T}(\max(a, b)) = \max(a, b)$ $\mathbf{T}(a) = a \text{ and } \mathbf{T}(b) = b \to \max(\mathbf{T}(a), \mathbf{T}(b)) = \max(a, b)$
- (3) $a \leq o \text{ and } b \leq o$. $\mathbf{T}(a) = o = \mathbf{T}(b) \rightarrow \max(\mathbf{T}(a), \mathbf{T}(b)) = o$ $\max(a, b) \leq o \rightarrow \mathbf{T}(\max(a, b)) = o$
- (4) $a \le o \text{ and } o \le b \le n$. (Similarly for $b \le o \text{ and } o \le a \le n$) $T(a) = o \le b = T(b) \rightarrow max(T(a), T(b)) = T(b)$ $a \le b \rightarrow max(a, b) = b \rightarrow T(max(a, b)) = T(b)$
- P14 $\mathbf{T}(\mathbf{T}(b) \mathbf{T}(a)) = \min(\mathbf{T}(b), \mathbf{T}(b a), \mathbf{T}(n a))$

Proof:

(1)
$$b \leq o$$
.

$$T(b) = o \rightarrow [P7] \min (T(b), T(b-a), T(n-a)) = o.$$

$$T(b) = o \rightarrow [P7] T(b) - T(a) \leq o \rightarrow T(T(b) - T(a)) = o.$$
(2) $a \leq o$.

$$T(a) = o \rightarrow T(T(b) - T(a)) \leq o \rightarrow T(T(b) - T(a)) = o.$$
(3) $b \leq b - a \rightarrow [P8] T(b) = [P9] T(b)$

$$b \leq b - a \rightarrow [P8] T(b) \leq T(b-a)$$

$$n - a \geq n \rightarrow T(n-a) = n \geq T(b)$$

$$\therefore \min (T(b), T(b-a), T(n-a)) = T(b).$$
(3) $a \geq o$ and $b \geq n$.

$$\mathbf{T}(b) = n \rightarrow \mathbf{T}(\mathbf{T}(b) - \mathbf{T}(a)) = \mathbf{T}(n - \mathbf{T}(a)) = [P12] \mathbf{T}(n - a).$$

$$\mathbf{T}(b) = n \ge \mathbf{T}(n - a)$$

$$n - a \le b - a \rightarrow [P8] \mathbf{T}(n - a) \le \mathbf{T}(b - a)$$

$$\therefore \min(\mathbf{T}(b), \mathbf{T}(b - a), \mathbf{T}(n - a)) = \mathbf{T}(n - a)$$

$$a \ge a \text{ and } a \le b \le n.$$

(4)
$$a \ge 0$$
 and $0 \le b \le n$.
 $\mathbf{T}(b) = b \rightarrow \mathbf{T}(\mathbf{T}(b) - \mathbf{T}(a)) = \mathbf{T}(b - \mathbf{T}(a)) = [P12] \mathbf{T}(b - a)$
 $b - a \le b \rightarrow [P8] \mathbf{T}(b - a) \le \mathbf{T}(b)$.
 $b - a \le n - a \rightarrow [P8] \mathbf{T}(b - a) \le \mathbf{T}(n - a)$
 $\therefore \min(\mathbf{T}(b), \mathbf{T}(b - a), \mathbf{T}(n - a)) = \mathbf{T}(b - a)$.

We now enter the n + 1-valued logic based on C and N and using the values $\{o, 1, \ldots, n\}$. We shall use p, q, possibly with subscripts, for the variables. To recall

$$Cpq = \max(o, q-p); Np = n-p.$$

 $\mathcal{O}_2 pq = \min(n, p+q)$ is also in this logic [1].

P15
$$Cpq = \mathbf{T}(q-p)$$

PF $q \le n$ and $p \ge 0 \Rightarrow q-p \le n \Rightarrow \mathbf{T}(q-p) = \max(0, q-p) = Cpq$
T4 The truncation of any linear form, i.e. $\mathbf{T}(a_0n + \sum_{i=1}^{k} a_ip_i)$ is generated
by C and N. Let $n = p_0$, then this becomes $\mathbf{T}\left(\sum_{i=0}^{k} a_ip_i\right)$
Proof. By induction on $\sum_{i=0}^{k} |a_i|$.
1. $\sum_{i=0}^{k} |a_i| = 0$.

then
$$a_i = o$$
 for all $o \le i \le k$, and $\sum_{i=o}^{k} a_i p_i = o = Cpp$.

2. Suppose the theorem is valid for all linear forms

$$\sum_{i=0}^{k} a_{i} p_{i} \text{ for which } \sum_{i=0}^{k} |a_{i}| < l.$$

Consider an arbitrary linear form $\sum_{i=0}^{k} a_{i} p_{i}$ for which
$$\sum_{i=0}^{k} |a_{i}| = l.$$

2.1.
$$a_i \leq o$$
 for all $o \leq i \leq k$.
then $\sum_{i=0}^k a_i p_i \leq o \rightarrow \mathbf{T} \quad \sum_{i=0}^k a_i p_i = o = Cpp$.

2.2. There is a $j, o \leq j \leq k$ so that $a_j > o$.

Then $|a_i - 1| < |a_i|$; and since |a| = |-a|,

$$|-(a_j-1)| + \sum_{i=0}^{k} |-a_j| = |a_j-1| + \sum_{i=0}^{k} |a_i| < l.$$
 Therefore $i \neq j$

by the induction hypothesis, and since the negative of a linear form is a linear form,

for
$$A = (a_j - 1) p_j + \sum_{\substack{i=0\\i\neq j}}^k a_i p_i$$
, $\mathbf{T}(A)$ and $\mathbf{T}(-A)$ are generated.

Consider

 $C(\mathbf{T}(-A), \boldsymbol{\alpha}_{2}(\boldsymbol{p}_{i}, \mathbf{T}(A))) = \max(o, \min(n, \boldsymbol{p}_{i} + \mathbf{T}(A)) - \mathbf{T}(-A))$

For values of the variables for which $A \ge o$

$$\max(o, \min(n, p_j + \mathbf{T}(A)) - \mathbf{T}(-A)) = [-A \le o] \max(o, \min(n, p_j + \mathbf{T}(A)) = [p_j \ge o, \mathbf{T}(A) \ge o] \min(n, p_j + \mathbf{T}(A)) = [P10] \mathbf{T}(p_j + \mathbf{T}(A)) = [p_j = \mathbf{T}(p_j)]$$

$$\mathbf{T}(\mathbf{T}(p_j) + \mathbf{T}(A)) = [P11] \mathbf{T}(p_j + A) = \mathbf{T}(p_j + (a_j - 1) p_j + \sum_{i=o}^{k} a_i p_i) =$$

$$\mathbf{T}(\sum_{i=o}^{k} a_i p_i).$$

$$i \ne j$$

For values of the variables for which $A \leq o$.

 $\max(o, \min(n, p_j + T(A)) - T(-A)) = \max(o, \min(n, p_j) - T(-A)) = \max(o, p_j - T(-A)) = [P 10] T(p_j - T(-A)) = [P 12, -A \ge o] T(p_j - (-A)) = T(p_j + A) = T(\sum_{i=o}^{k} a_i p_i).$

Thus the induction step is proved and the proof is complete.

T5 If $f \in \mathcal{M}$, $\mathbf{T}(f)$ is generated by C and N.

Proof:

Let $F(\cdots, L_i, \cdots)$ be a standard form representing f. Then $\mathbf{T}(f) = \mathbf{T}(F(\cdots, L_i, \cdots)) = [T2, P13] F(\cdots, \mathbf{T}(L_i), \cdots)$. By T4, the $\mathbf{T}(L_i)$ are generated. Now

$$\max(p, q) = \boldsymbol{\alpha}_{p} C p q; \min(p, q) = C C p q q.$$

Therefore by P6, max and min for any finite number of arguments are generated by C and N.

Therefore, $F(\cdot \cdot \cdot , \mathbf{T}(L_i), \cdot \cdot \cdot) = \mathbf{T}(f)$ is generated.

T6 Every function generated by C and N is the truncation of a function in \mathcal{M} .

Proof:

Cpq = [P15] **T**(q-p) and Np = **T**(n-p). Therefore, Cpq and Np are truncations of standard forms. Since Np = Cpn, it remains to prove that the truncations of standard forms are closed under the application of C.

Take any two standard forms $F(\cdots, L_i, \cdots)$ and $G(\cdots, M_j, \cdots)$, then by P13

$$\mathbf{T}(F(\cdots, L_i, \cdots)) = F(\cdots, \mathbf{T}(L_i), \cdots) = F_t \text{ and}$$

$$\mathbf{T}(G(\cdots, M_i, \cdots)) = G(\cdots, \mathbf{T}(M_i), \cdots) = G_t.$$

There are four possible forms that $G_t - F_t$ may take,

I.
$$\min_{k}(\boldsymbol{\alpha}_{k}) - \max_{l}(\boldsymbol{\beta}_{l})$$

II.
$$\max_{k}(\boldsymbol{\alpha}_{k}) - \min_{l}(\boldsymbol{\beta}_{l})$$

III.
$$\max_{k}(\boldsymbol{\alpha}_{k}) - \max_{l}(\boldsymbol{\beta}_{l})$$

IV.
$$\min(\boldsymbol{\alpha}_{k}) - \min(\boldsymbol{\beta}_{l})$$

$$\frac{1}{k} \frac{1}{k} \frac{1}$$

From P1, P2, and P5 we know

1)
$$\min_{k}(a_{k}) - \max_{l}(b_{l}) = \min_{k,l}(a_{k} - b_{l})$$

2) $\max_{k}(a_{k}) - \min_{l}(b_{l}) = \max_{k,l}(a_{k} - b_{l})$
3) $\max_{k}(a_{k}) - \max_{l}(b_{l}) = \max_{k}(\min_{l}(a_{k} - b_{l}))$

4)
$$\min_{k}(a_{k}) - \min_{l}(b_{l}) = \min_{k}(\max_{l}(a_{k} - b_{l}))$$

We note that minus sign gives rise to only minus signs in all four cases. Therefore, by repeated application⁷ of 1), 2), 3) and 4) we deduce that $G_t - F_t = H(\cdots, \mathbf{T}(M_j) - \mathbf{T}(L_i), \cdots)$ for some values of *i* and *j*, and where *H* is composed only of max's and min's.

*b*₁))

Therefore

$$C(\mathbf{T}(F), \mathbf{T}(G)) = [P15] \mathbf{T}(\mathbf{T}(G) - \mathbf{T}(F)) = \mathbf{T}(G_{t} - F_{t}) = \mathbf{T}(H) = H(\cdots, \mathbf{T}(\mathbf{T}(M_{j}) - \mathbf{T}(L_{i})), \cdots) = [P14] H(\cdots, \min(\mathbf{T}(M_{j}), \mathbf{T}(M_{j} - L_{i}), \mathbf{T}(n - L_{i})), \cdots) = [P13] \mathbf{T}(H(\cdots, \min(M_{j}, M_{j} - L_{i}, n - L_{i}), \cdots)) = \mathbf{T}(H^{*}(\cdots, M_{j}, M_{j} - L_{i}, n - L_{i}, \cdots))$$

where H^* is again composed only of max's and min's. Since L, M, and n are linear forms, clearly so are $M_j - L_i$ and $n - L_i$. Thus $H^*(\cdots, M_j, M_j - L_i, n - L_i, \cdots)$ is a standard form.

^{7.} A trivial but notationally cumbersome induction.

So

66

 $C(\mathbf{T}(F), \mathbf{T}(G)) = \mathbf{T}(H^*)$, the truncation of a standard form. Therefore the truncations of standard forms are closed under the application of C.

T7 The functions generated by C and N are precisely the truncations of the functions of \mathcal{M} .

Proof by *T3*, *T5*, *T6*.

If desired, any standard form $F(\cdots, L_i, \cdots)$ may be transformed to have the following alternating property:

- T8 If A_i is the main functor of F and A_{i+1} is the main functor of any argument of A_i , then any sequence A_1, A_2, \ldots, A_k that can be formed in F is an alternation of max's and min's.
 - Proof. If A_i and A_{i+1} are both max's, then P6a reduces them to a single max. Similarly for min.

It is of interest to note that although C and N are formed from n and the truncation of subtraction, that the truncations of the functions in \mathcal{L} , i.e. those generated by n and -, are not sufficient to yield the $\{C,N\}$ -logics. To be assured of this insufficiency we shall prove that

T9 max(similarly min) is not the truncation of a linear form unless the logic is two-valued, i.e. n = 1.

Proof. If n = 1, $\max(p,q) = \mathbf{T}(p+q) = \boldsymbol{\alpha}_{2}(p,q)$

Let n > 1, suppose that $\max(p, q)$ is the truncation of a linear form, i.e.

 $\max(p,q) = \mathbf{T}(an + bp + cq)$ $1 = \max(1,0) = \mathbf{T}(an + b) \rightarrow an + b = 1$ $1 = \max(1,1) = \mathbf{T}(an + b + c) \rightarrow an + b + c = 1$ $\therefore By subtraction, c = 0. Similarly b = 0$

Therefore $\max(p,q) = \mathbf{T}(an)$. By this makes max a constant function. Contradiction.

REFERENCE

 R. E. Clay, A simple proof of functional completeness in many-valued logics based on Łukasiewicz C and N, Notre Dame Journal of Formal Logic, Vol. III (1962), pp. 114-117.

University of Notre Dame Notre Dame, Indiana and San Jose State College San Jose, California