ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS WITH MANY-VALUED PROPOSITIONAL CALCULI

JULIUSZ REICHBACH

From the results presented in my paper [2] it follows that it is possible to approximate the first-order functional calculus by many valued propositional calculi; in this paper* we shall describe this approximation.

We shall use the terminology of [2] and in particular:
(1) individual variables: x_{1}, x_{2}, \ldots [or simply x],
(2) apparent individual variables: $a_{1}, a_{2}, \ldots[$ or simply $a]$,
(3) finite number of functional variables: f_{1}, \ldots, f_{c},
(4) logical constants: ' (negation), + (alternative), Π (general quantifier),
(5) atomic expressions: R, R_{1}, R_{2}, \ldots; expressions: E, F, G, E_{1}, F_{1}, $G_{1}, \ldots{ }^{1}$
(6) $w(E)$-the number of different individual [$p(E)$-apparent] variables occurring in the expression E,
(7) $\left\{i_{m}\right\}$-the sequence $i_{1}, \ldots, i_{m} ;\left\{i_{w(E)}\right\}$-all different indices of those and only those individual variables which occur in E,
(8) $n(E)=\max \left\{w(E)+p(E), \max \left\{i_{w(E)}\right\}\right\}$,
(9) $\bar{n}(E)=n(E)$, if E is an alternative of normal forms, $\bar{n}(E)=\max \{n(E)$, $n(F)\}$, where F is the simplest alternative of normal forms equivalent to E, in the opposite case (we choose an arbitrary alternative),
(10) \bar{c}-maximum of arguments of f_{1}, \ldots, f_{c},
(11) $E(u / z)$-the expression resulting from E by substitution of u for each occurrence of z in E (with usual conditions),
(12) $C(E)$-the set of all significant parts of the formula $E: H \in C(E) .^{2} \equiv$. $H=E$ or there exist F, G, H_{1} such that: $(H=F) \wedge\left(E=F^{\prime}\right) \vee\{(H=F)$ $\vee(H=G)\} \quad(E=F+G) \vee(\exists i)\left\{H=H_{1}\left(x_{i} / a\right)\right\} \wedge\left(E=\Pi a H_{1}\right)$,
(13) Skt -the set of all formulas of the form $\Sigma a_{1} \ldots \Sigma a_{i} \Pi a_{i+1} \ldots \Pi a_{k} F$, where F is a quantifierless expression containing no free variables, Πa_{j} is the sign of the universal quantifier binding the variable a_{j} and $\Sigma a_{j}^{j} G=\left(\Pi a_{j} G^{\prime}\right)^{\prime}, j=1, \ldots, k .{ }^{3}$

[^0]$\begin{array}{ll}\text { (16) } & M, M_{1}, \ldots \text {-functions of all atomic formulas with values } 1 \text { and } 0 ; T \text {, } \\ T_{1}, \ldots \text { functions on } S(1, \ldots, t) \text {, for given } t \text {, with values } 1 \text { and } 0\end{array}$
M, M_{1}, \ldots-functions of all atomic formulas with values 1 and $0 ; T$,
T_{1}, \ldots-functions on $S(1, \ldots, t)$, for given t, with values 1 and 0 (we shall name such functions "functions of the rank t "),
$S\left(\left\{i_{m}\right\}\right)$-the set of all atomic formulas R such that all indices of free variables occurring in R belong to $\left\{i_{m}\right\}$,
$n(E, r)=\max \left\{n\left(E_{1}\right), \ldots, n\left(E_{r}\right)\right\}$,
(K) -for each K,
w_{1}, v_{1}, \ldots-numbers 0 or 1.
The formal proof E_{1}, \ldots, E_{n} of the formula E is defined in the usual way, but to the proof of given theorems we must also assume that for each $i=1, \ldots, n, E_{i}$ is an alternative of significant parts of the formula E; the number n is named the length of this formal proof. The thesis is the last element of a formal proof.

Obviously:
L.O. If the length of a formal proof of the formula E is n, then the length of some formal proof of the formula $E(x / y)$ also is n.
L.1. For each formula E we may write an alternative F of formulas $G \epsilon S k t$ such that E is a thesis if and only if F is a thesis, $E^{\prime}+F$ is a thesis; we may also assume that $G=\Sigma a_{1} \ldots \Sigma a_{m-1} \Pi a_{m} H$ where H is quanti-fier-free.
L.1. asserts the existence of Skolem's normal form for theses, see [1].

In the following we shall interpret the signs' and + as Boolean operations 7 (complemention) and $\dot{+}$ (addition) respectively; therefore Π is interpreted as an infinite Boolean multiplication. By this interpretation we have extended the function M, see (16), on all formulas and therefore we shall use the symbol $M\{E\}$ for an arbitrary E.

It is known:
T.1. The formula E is a thesis if and only if for an arbitrary M we have $M\{E\}=0$.

Let $M / s_{1}, \ldots, s_{t} /$ be a function on $S(1, \ldots, t)$ such that for an arbitrary $R \in S(1, \ldots, t)$ we have:

$$
M / s_{1}, \ldots, s_{t} /(R)=M\left\{R\left(x_{s_{1}} / x_{1}\right) \ldots\left(x_{s_{t}} / x_{t}\right)\right\} 4^{4}
$$

L.2. If $k_{1}, \ldots, k_{q} \leq t$, then:

$$
M / s_{1}, \ldots, s_{t} / / k_{1}, \ldots, k_{q} /=M / s_{k_{1}}, \ldots, s_{k_{q}} /
$$

The proof is immediately.
In the sequel we shall write $\left\{i_{t}\right\}, i$ instead of i_{1}, \ldots, i_{t}, i if i is different from $i_{1}, \ldots, i_{t} ;\left\{i_{t}\right\}, i$ instead of i_{1}, \ldots, i_{t}, if $i=i_{j}$ for some $j \leq t$; therefore $M /\left\{i_{t}\right\}$ - instead of $M / i_{1}, \ldots, i_{t} /$ and $M /\left\{s_{i_{i}}\right\}$ - instead of $M / s_{i_{1}}$, $\ldots, s_{i} /$.

We shall also consider a Boolean algebra whose elements are n-tuples
of numbers 0 and 1 and operations 7 (complemention) and $\dot{+}$ (addition); ${ }^{5}$ this Boolean algebra determines a many valued propositional calculus.

Let
(I) $\quad E_{1}, \ldots, E_{k}, \ldots$
be the sequence of all formulas of the considered calculus and let $N\left(E_{k}\right)=k$ -the index of $E_{k}, k=1,2, \ldots$; let t be a natural number and Q a function on atomic formulas $R \in S(1, \ldots, t)$ whose values are n-tuples of numbers 0 and 1 ; we shall use the following abbreviation:

$$
Q(R)=\left(\begin{array}{l}
w_{1} N(R) \\
\vdots \\
\vdots \\
w_{n N(R)}
\end{array}\right)
$$

D.1. $g\left(t, j, q,\left\{i_{m}\right\}, Q\right) \ldots\left(i_{1}, \cdots, i_{m} \leq t\right) \wedge(R)\left\{\left(R \in S\left(\left\{i_{m}\right\}\right)\right) \rightarrow\left(w_{j N(R)}\right.\right.$ $\left.\left.=w_{q N(R)}\right)\right\}$.

We explain the meaning of $D .1$. :

- all elements of the set $S\left(\left\{i_{m}\right\}\right)$. The relation $g\left(t, j, q,\left\{i_{m}\right\}, Q\right)$ asserts that the lines j and q are equal; on this figure:

$$
Q\left(R_{k}\right)=\left(\begin{array}{c}
w_{1 k} \\
\vdots \\
w_{n k}
\end{array}\right)
$$

Let Q be the function defined above and V - the function defined in the following way:
(1d) $V\left\{t, Q,\left\{i_{m}\right\}, R\right\}=Q(R)$, if R is an atomic formula,
(2d) $V\left\{t, Q,\left\{i_{m}\right\}, F^{\prime}\right\}=V^{\urcorner}\left\{t, Q,\left\{i_{m}\right\}, F\right\}$,
(3d) $V\left\{t, Q,\left\{i_{m}\right\}, F+G\right\}=V\left\{t, Q,\left\{i_{m}\right\}, F\right\} \mp V\left\{t, Q,\left\{i_{m}\right\}, G\right\}$,
(4d) Let $k=N(\Pi a F)$ and $k_{r}=N\left\{F\left(x_{\gamma} / a\right)\right\}$; then: $V\left\{t, Q,\left\{i_{m}\right\}, \Pi a F\right\}=$ $\left(\begin{array}{l}w_{1 k} \\ \cdot \\ \dot{w_{n k}}\end{array}\right) \cdot \equiv \cdot(j)\left\{(j \leq n) \rightarrow\left(w_{j k}=1 \cdot \equiv \cdot(q)(r)\{(q \leq n) \wedge(r \leq t) \wedge g(t\right.\right.$,
$\left.\left.\left.\left.j, q,\left\{i_{m}\right\}, Q\right) \wedge V\left\{t, Q,\left\{i_{m}\right\}, r, F\left(x_{r} / a\right)\right\}=\left(\begin{array}{l}v^{r} k_{r} \\ \vdots \\ \dot{v}_{n k_{r}}^{r}\end{array}\right) \rightarrow\left(v_{j k_{r}}^{r}=v_{q k_{r}}^{r}=1\right)\right\}\right)\right\}$.

The meaning of (1d) - (3d) is known; we explain the meaning of (4d):

	$R_{1} \ldots R_{u}$	\longrightarrow	$F\left(x_{1} / a\right) \ldots F\left(x_{r} / a\right) \ldots F\left(x_{t} / a\right)$		
1	$0 \ldots 1$		$\nu_{1 k_{1}}^{1}$	$\cdots{ }^{\ldots} \cdot v_{1 k_{r}}^{r}$	$\cdots v_{1 k_{t}}^{t}$
j		-	-•••	. . .
\cdot	$\cdots \cdots$		\cdot \cdot
q			-	-•••	. . \cdot
n					
n	1... 0		$v_{n k_{1}}^{1}$	$\ldots v_{n k_{r}}^{r}$	$\cdots v_{n k_{t}}^{t}$

In the left part of this figure is the figure described above and on the right side we have:

$$
V\left\{t, Q,\left\{i_{m}\right\}, r, F\left(x_{r} / a\right)\right\}=\left(\begin{array}{ll}
v_{1}^{r} & k_{r} \\
\vdots & \\
v_{n}^{r} & \\
k_{r}
\end{array}\right), r=1, \ldots, t
$$

The definition (4d) asserts that $w_{j k}=1$ if and only if for each $q \leq n$, if the lines j and q are equal on the left side, then on the right side of ones we have only 1 (i.e. we have no 0).
D.2. $J(Q, t, G) \ldots(m)\left(i_{1}\right) \ldots\left(i_{m}\right)\left\{(m+p(G)<t) \wedge\left(\left\{i_{w(G)}\right\} \subset\left\{i_{m}\right\}\right)^{6} \rightarrow\right.$ (j) $\left.\left(V\left\{t, Q,\left\{i_{m}\right\}, j, G\right\}=V\left\{t, Q,\left\{i_{m}\right\}, G\right\}\right)\right\}$.

We note that $J(Q, t, G)$ is an invariant relation.
D.3. $F \in P(t, Q, E) . \equiv .(\exists G)\left\{(G \in C(E)) \wedge\left\{J(Q, t, G) \rightarrow V\left\{t, Q,\left\{i_{w(F)}\right\}\right.\right.\right.$, $\left.\left.F\}=\left(\begin{array}{l}1 \\ \vdots \\ 1\end{array}\right)\right\}\right\}$.

Because the values of M are n-tuples, then in the sequel we shall also write $M=M_{n}$.
D.4. $F \in P[t, E] . \equiv .\left(M_{n}\right)\left\{\left(1 \leq n \leq 2^{c t^{c}}\right) \rightarrow\left(F \in P\left(t, M_{n}, E\right)\right)\right\}$.
D.5. $\quad F \in P|E| . \equiv$. ($\exists t)\{(t \geq n(F)) \wedge(F \in P[t, E])\}$.
D.6. $E \in P$. $\equiv E \in P|E|$.

The meaning of D.3.-D.6. is simple; see [2].
We shall prove that P is the class of all true formulas:
D.7. $T \in M[k] . \equiv .\left(\exists s_{1}\right) \ldots\left(\exists s_{k}\right)\left\{T=M /\left\{s_{k}\right\}\right\}$.
$M[k]$ is the set of all functions of the form $M / s_{1}, \ldots, s_{k} /$.
D.8. $Q \sim\left(T_{1}, \ldots, T_{n}, k\right) . \equiv . T_{1}, \ldots, T_{n}$ are different functions of the rank k, Q is a function defined on $S(1, \ldots, k)$ whose values are n tuples of numbers 0,1 and for each $R \in S(1, \ldots, k): T_{j}(R)=1 \ldots$. $w_{j N(R)}=1, j \leq n$.
D.9. $Q \approx M\left(T_{1}, \ldots, T_{n}, k\right) . \equiv . Q \sim\left(T_{1}, \ldots, T_{n}, k\right)$ and T_{1}, \ldots, T_{n} are all elements of $M[k]$.

It is easy to prove:
L.3. If $Q \sim\left(T_{1}, \ldots, T_{n}, k\right)$, then:

$$
g\left(k, j, q, i_{m}, Q\right) . \equiv . T_{j} /\left\{i_{m}\right\}=T_{q} /\left\{i_{m}\right\}
$$

L.4. If $g\left(k, j, q,\left\{i_{m}\right\}, Q\right)$ and $V\left\{k, Q,\left\{i_{m}\right\}, E\right\}=\left(\begin{array}{l}w_{1} \\ \vdots \\ w_{n}\end{array}\right)$, then:

$$
w_{j}=1 . \equiv w_{q}=1, j, q \leq n .
$$

The proof of $L .4$. is inductive on the length of the formula E.
T.2. If E is an alternative of formulas belonging to $S k t, F \in C(E), M\{E\}=0$, $k \geq n(E), Q \approx M\left(T_{1}, \ldots, T_{n}, k\right)$, then:
(1) If $m+p(F) \leq k, F \in S\left(\left\{i_{m}\right\}\right), M /\left\{s_{i_{m}}\right\}=T_{j} /\left\{i_{m}\right\},\left\{i_{w(F)}\right\} \subset\left\{i_{m}\right\}$, $M\left\{F\left(x_{s_{i_{1}}} / x_{i_{1}}\right) \cdots\left(x_{s_{i_{m}}} / x_{i_{m}}\right)\right\}=0$ and $V\left\{k, Q,\left\{i_{m}\right\}, F\right\}=\left(\begin{array}{l}w_{1} \\ \vdots \\ w_{n}\end{array}\right)$,
then $w_{i}=0$. then $w_{j}=0$.
(2) If E is also an alternative of formulas of the form $\Sigma a_{1} \ldots \Sigma a_{r-1}$ $\Pi a_{r} G$, for some quantifierless G, then for each $F \in C(E)$ we have $J(Q, k, F)$ and therefore $E \bar{\epsilon} P$.

Proof: -First of all we notice that the proof in general case is analogous to the proof in the case $E \in S k t$ and (2) is a simple conclusion from (1) (in view of the form of E).

The proof of (1) is inductive on the number of quantifiers occurring in F and is analogic to the proof of T.2. from [2]; we use here L.3.
T.3'. If E_{1}, \ldots, E_{r} is a formalized proof of the formula E, then for each $k \geq n(E, r)$ we have $E_{j} \in P[k, E], j=1, \ldots, r$.

Proof: -By using the proof rules given in [2] or [3] it is easy to prove by induction on $j \leq r$ that for each $k \geq n(E, r)$:
(2) $\quad E_{j}+F \in P[k, E]$ for every F such that $C(F) \subset C(E)$ and $k \geq n(F)$.

The proof of $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$ is analogous to the proof of $T .3^{\prime}$. from [2]; we prove ones simultaneously, see [2]; we use L.O., L.2., L.3. and L.4.
T.3. If E is a thesis, then $E \in P$ (follows from T. 3°.).
L.5. There exists Skolem's normal form F of the formula E such that F is an alternative of formulas of the form $\Sigma a_{1} \ldots \Sigma a_{m-1} \Pi a_{m} G$, for some quantifierless $G, \bar{n}(E)=\bar{n}(F)$ and if $E \in P$, then $F \in P$.

To the proof of $L .5$. we use $T .3$., the deduction theorem and the usual Skolem's method of constructing normal forms.
T.4. The formula E is a thesis if and only if $E \in P$.
T.4. follows from T.1., T.2., T.3., L.1. and L.5.; to the proof of T.4. in the left-hand side we choose F which satisties L.1. and L.5.; the whole proof is analogic to the given in [2].
T.4. asserts that P is the class of all true formulas.

If we replace D.3. by:
D.3'. $F \in P(t, Q, E) . \equiv . J(Q, t, E) \rightarrow V\left\{t, Q,\left\{i_{w(F)}\right\}, F\right\}=\left(\begin{array}{c}1 \\ \vdots \\ i\end{array}\right)$
then T.4. remains true for normal forms.
T.4. proves the possibility of approximation of the first-order functional calculus by many valued Boolean propositional calculi; in this approximation the quantifier Π is interpreted as a finite operator, see (4d).

The examples we shall give in [4].

NOTES

1. The expression we define in the usual way; the expression in which an apparent variable a belong to the scope of two quantifiers Πa is not a formula; if a does not occur in E, then $\Pi a E$ is not a formula.
2. The dots separate more strongly than parentheses.
3. There are Skolem's normal forms for theses; alternatives of these formulas we also name Skolem's normal forms.
4. We may here replace the indices $1, \ldots, t$ by $i_{1}, \ldots, i_{w(R)}$.
5. We use the same denotation, because the operations are analogously to the given above.
6. The $\operatorname{sign} \subset$ is the inclusion.

REFERENCES

[1] D. Hilbert-P. Bernays: Grundlagen der Mathematik II, Berlin 1939.
[2] J. Reichbach: On the definitions of satisfiability, sent to American Journal of Mathematics.
[3] J. Reichbach: On characterizations of the first-order functional calculus, Notre Dame Journal of Formal Logic, vol. II (1961), pp. 1-15.
[4] J. Reichbach: Some examples of different methods of formal proofs, in preparation.
[5] J. Reichbach: On the connection of the first-order functional calculu: with many valued propositional calculi (An abstract). The Bulletin o the Research Council of Israel. Section F: Mathematics and Physics, Vol. 10 F1 (1961).

[^0]: *An abstract of this paper appeared in [5].

