Notre Dame Journal of Formal Logic Volume III, Number 2, April 1962

ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS WITH MANY-VALUED PROPOSITIONAL CALCULI

JULIUSZ REICHBACH

From the results presented in my paper [2] it follows that it is possible to approximate the first-order functional calculus by many valued propositional calculi; in this paper* we shall describe this approximation.

We shall use the terminology of [2] and in particular:

- (1) individual variables: x_1, x_2, \ldots [or simply x],
- (2) apparent individual variables: a_1, a_2, \ldots [or simply a],
- (3) finite number of functional variables: f_1, \ldots, f_c ,
- (4) logical constants: ' (negation), + (alternative), Π (general quantifier),
- (5) atomic expressions: R, R_1, R_2, \ldots ; expressions: $E, F, G, E_1, F_1, G_1, \ldots$
- (6) w(E) -the number of different individual [p(E)-apparent] variables occurring in the expression E,
- (7) $\{i_m\}$ -the sequence $i_1, \ldots, i_m; \{i_{w(E)}\}$ -all different indices of those and only those individual variables which occur in E,
- (8) $n(E) = \max \{w(E) + p(E), \max \{i_{w(E)}\}\},\$
- (9) $\overline{n}(E) = n(E)$, if E is an alternative of normal forms, $\overline{n}(E) = \max \{n(E), n(F)\}\$, where F is the simplest alternative of normal forms equivalent to E, in the opposite case (we choose an arbitrary alternative),
- (10) \overline{c} -maximum of arguments of f_1, \ldots, f_c ,
- (11) E(u/z) -the expression resulting from E by substitution of u for each occurrence of z in E (with usual conditions),
- (12) C(E) -the set of all significant parts of the formula E: $H \in C(E)$.² = . H = E or there exist F, G, H_1 such that: $(H = F) \land (E = F') \lor \{(H = F) \lor (H = F)\}$ $\lor (H = G)\}$ $(E = F + G) \lor (\exists i) \{H = H_1 (x_i/a)\} \land (E = \Pi a H_1),$
- (13) Skt the set of all formulas of the form $\sum a_1 \dots \sum a_i \prod a_{i+1} \dots \prod a_k F$, where F is a quantifierless expression containing no free variables, $\prod a_j$ is the sign of the universal quantifier binding the variable a_j and $\sum a_i G = (\prod a_i G')^i$, $j = 1, \dots, k$.³

Received January 29, 1961

^{*}An abstract of this paper appeared in [5].

- (14) $S(\{i_m\})$ -the set of all atomic formulas R such that all indices of free variables occurring in R belong to $\{i_m\}$,
- (15) $n(E, r) = \max \{n(E_1), \ldots, n(E_r)\},\$
- (16) M, M₁, ... -functions of all atomic formulas with values 1 and 0; T, T₁, ...-functions on S(1, ..., t), for given t, with values 1 and 0 (we shall name such functions "functions of the rank t"),
- (17) (K) -for each K,
- (18) w_1, v_1, \ldots -numbers 0 or 1.

The formal proof E_1, \ldots, E_n of the formula E is defined in the usual way, but to the proof of given theorems we must also assume that for each $i = 1, \ldots, n, E_i$ is an alternative of significant parts of the formula E; the number n is named the length of this formal proof. The thesis is the last element of a formal proof.

Obviously:

- L.0. If the length of a formal proof of the formula E is n, then the length of some formal proof of the formula E(x/y) also is n.
- L.1. For each formula E we may write an alternative F of formulas $G \in Skt$ such that E is a thesis if and only if F is a thesis, E' + F is a thesis; we may also assume that $G = \sum a_1 \dots \sum a_{m-1} \prod a_m H$ where H is quantifier-free.

L.1. asserts the existence of Skolem's normal form for theses, see [1].

In the following we shall interpret the signs ' and + as Boolean operations 7 (complemention) and \div (addition) respectively; therefore Π is interpreted as an infinite Boolean multiplication. By this interpretation we have extended the function M, see (16), on all formulas and therefore we shall use the symbol $M\{E\}$ for an arbitrary E.

It is known:

T.1. The formula E is a thesis if and only if for an arbitrary M we have $M\{E\} = 0$.

Let $M/s_1, \ldots, s_t$ be a function on $S(1, \ldots, t)$ such that for an arbitrary $R \in S(1, \ldots, t)$ we have:

$$M/s_1, \ldots, s_t/(R) = M \{R(x_{s_1}/x_1) \ldots (x_{s_t}/x_t)\}^4$$

L.2. If $k_1, \ldots, k_q \leq t$, then:

$$M/s_1, \ldots, s_t//k_1, \ldots, k_q/=M/s_{k_1}, \ldots, s_{k_q}/.$$

The proof is immediately.

In the sequel we shall write $\{i_t\}$, *i* instead of i_1, \ldots, i_t , *i* if *i* is different from i_1, \ldots, i_t ; $\{i_t\}$, *i* instead of i_1, \ldots, i_t , if $i = i_j$ for some $j \le t$; therefore $M/\{i_t\}$ - instead of $M/i_1, \ldots, i_t/$ and $M/\{s_{i_t}\}$ - instead of M/s_{i_t} , $\ldots, s_i/$.

We shall also consider a Boolean algebra whose elements are n-tuples

of numbers 0 and 1 and operations 7 (complemention) and \div (addition);⁵ this Boolean algebra determines a many valued propositional calculus.

Let

$$(I) \quad E_1, \ldots, E_k, \ldots$$

be the sequence of all formulas of the considered calculus and let $N(E_k) = k$ —the index of E_k , k = 1, 2, ...; let t be a natural number and Q a function on atomic formulas $R \in S(1, ..., t)$ whose values are *n*-tuples of numbers 0 and 1; we shall use the following abbreviation:

$$Q(R) = \begin{pmatrix} w_{1 \ N(R)} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ w_{n \ N(R)} \end{pmatrix}$$

D.1. $g(t, j, q, \{i_m\}, Q) = (i_1, \dots, i_m \le t) \land (R) \{(R \in S(\{i_m\})) \to (w_j \ N(R) = w_q \ N(R))\}.$

We explain the meaning of D.1.:

	R_1	, ,	R_k, \ldots	, R _u
1	0	• • •	w1k	1
•	•	• • •		•
•	•	• • •		•
•	•	• • •	• • • •	•
i		•••	<i>w</i> _{jk}	•
•	•	• • •	• • • •	•
•	•	• • •	• • • •	•
•	•	• • •	• •••	•
9	•	• • •	w _q k · · ·	•
•	•	• • •	• •••	•
•	•	• • •	• • • •	•
•	•	• • •	• •••	•
n	1	• • •	$w_{nk} \cdots$	0

- all elements of the set $S(\{i_m\})$. The relation $g(t, j, q, \{i_m\}, Q)$ asserts that the lines j and q are equal; on this figure:

$$Q(R_k) = \begin{pmatrix} w_{1\ k} \\ \vdots \\ \vdots \\ w_{n\ k} \end{pmatrix}$$

Let Q be the function defined above and V – the function defined in the following way:

 The meaning of (1d) - (3d) is known; we explain the meaning of (4d):

	$R_1 \dots R_u$	\rightarrow	$F(x_1/a) \ldots F(x_r/a) \ldots F(x_t/a)$		
1	0 1 		$v_{1k_1}^1$	$\cdots v_{1k_r}^r$	$\dots v_{1k_t}^t$
•			• •	••••	• • • • •
j			•	• • • •	••••
•			•	• • • •	• • • •
9	• • • • • •				••••
•			• .	• • • •	• • • •
n	10		$v_{nk_1}^I$	$\dots \nu_{nk_r}^r$	$\cdots v_{nk_t}^t$

In the left part of this figure is the figure described above and on the right side we have:

$$V\{t, Q, \{i_{m}\}, r, F(x_{r}/a)\} = \begin{pmatrix} v_{1}^{r} k_{r} \\ \vdots \\ v_{n}^{r} k_{r} \end{pmatrix}, r = 1, \ldots, t.$$

The definition (4d) asserts that $w_{jk} = 1$ if and only if for each $q \le n$, if the lines j and q are equal on the left side, then on the right side of ones we have only 1 (i.e. we have no 0).

$$D.2. \quad J(Q, t, G) = (m)(i_1) \dots (i_m) \{(m + p(G) < t) \land (\{i_w(G)\} \subset \{i_m\})^6 \rightarrow (j)(V\{t, Q, \{i_m\}, j, G\} = V\{t, Q, \{i_m\}, G\})\}.$$

We note that J(Q, t, G) is an invariant relation.

D.3.
$$F \in P(t, Q, E) = (\exists G) \{ (G \in C(E)) \land \{J(Q, t, G) \rightarrow V \{t, Q, \{i_{w(F)}\}, F\} = \begin{pmatrix} I \\ \vdots \\ i \end{pmatrix} \}$$

Because the values of M are n-tuples, then in the sequel we shall also write $M = M_n$.

D.4. $F \in P[t, E] := (M_n) \{ (1 \le n \le 2^{ct^{\overline{c}}}) \to (F \in P(t, M_n, E)) \}.$ D.5. $F \in P|E| := (\exists t) \{ (t \ge n (F)) \land (F \in P[t, E]) \}.$ D.6. $E \in P := E \in P|E|.$

The meaning of D.3. - D.6. is simple; see [2]. We shall prove that P is the class of all true formulas:

D.7.
$$T \in M[k]$$
. $\equiv .(\exists s_1) \ldots (\exists s_k) \{T = M/\{s_k\}\}.$

M[k] is the set of all functions of the form $M/s_1, \ldots, s_k/$.

D.8. $Q \sim (T_1, \ldots, T_n, k) = ..., T_1, \ldots, T_n$ are different functions of the rank k, Q is a function defined on $S(1, \ldots, k)$ whose values are n-tuples of numbers 0, 1 and for each $R \in S(1, \ldots, k)$: $T_j(R) = 1 = ..., w_{j \mid N(R)} = 1, j \le n.$

D.9. $Q \approx M(T_1, ..., T_n, k) = Q \sim (T_1, ..., T_n, k)$ and $T_1, ..., T_n$ are all elements of M[k].

It is easy to prove:

L.3. If $Q \sim (T_1, \ldots, T_n, k)$, then: $g(k, j, q, i_m, Q) = . T_i / \{i_m\} = T_a / \{i_m\}.$ L.4. If $g(k, j, q, \{i_m\}, Q)$ and $V\{k, Q, \{i_m\}, E\} = \begin{pmatrix} w_1 \\ \vdots \\ \vdots \\ w \end{pmatrix}$, then: $w_{i} = 1 . \equiv . w_{a} = 1, j, q \leq n$.

The proof of L.4. is inductive on the length of the formula E.

- T.2. If E is an alternative of formulas belonging to Skt, $F \in C(E)$, $M\{E\} = 0$, $k \ge n(E), \ Q \approx M(T_1, \ldots, T_n, k),$ then:
 - (1) If $m + p(F) \le k$, $F \in S(\{i_m\}), M/\{s_{i_m}\} = T_j/\{i_m\}, \{i_{w(F)}\} \subset \{i_m\},$ $M\{F(x_{s_{i_{1}}}/x_{i_{1}}) \dots (x_{s_{i_{m}}}/x_{i_{m}})\} = 0 \text{ and } V\{k, Q, \{i_{m}\}, F\} = \begin{pmatrix} w_{1} \\ \vdots \\ \vdots \\ w \end{pmatrix},$ then $w_i = 0$.
 - (2) If E is also an alternative of formulas of the form $\sum a_1 \dots \sum a_{n-1}$ $\prod a_{\epsilon}G$, for some quantifierless G, then for each F ϵ C(E) we have J(Q, k, F) and therefore $E \overline{\epsilon} P$.

Proof: -First of all we notice that the proof in general case is analogous to the proof in the case $E \in Skt$ and (2) is a simple conclusion from (1) (in view of the form of E).

The proof of (1) is inductive on the number of quantifiers occurring in F and is analogic to the proof of T.2. from [2]; we use here L.3.

T.3'. If E_1, \ldots, E_r is a formalized proof of the formula E, then for each $k \ge n(E, r)$ we have $E_j \in P[k, E], j = 1, \ldots, r$.

Proof: -By using the proof rules given in [2] or [3] it is easy to prove by induction on $j \leq r$ that for each $k \geq n(E, r)$:

- (1°) $E_j \in P[k, E]$; therefore $E \in P$. (2°) $E_j + F \in P[k, E]$ for every F such that $C(F) \subset C(E)$ and $k \ge n(F)$.

The proof of (1°) and (2°) is analogous to the proof of T.3'. from [2]; we prove ones simultaneously, see [2]; we use L.O., L.2., L.3. and L.4.

- T.3. If E is a thesis, then $E \in P$ (follows from T.3'.).
- There exists Skolem's normal form F of the formula E such that F is L.5. an alternative of formulas of the form $\sum a_1 \dots \sum a_{m-1} \prod a_m G$, for some quantifierless G, $\overline{n}(E) = \overline{n}(F)$ and if $E \in P$, then $F \in P$.

To the proof of L.5. we use T.3, the deduction theorem and the usual Skolem's method of constructing normal forms.

T.4. The formula E is a thesis if and only if $E \in P$.

T.4. follows from T.1., T.2., T.3., L.1. and L.5.; to the proof of T.4. in the left-hand side we choose F which satisfies L.1. and L.5.; the whole proof is analogic to the given in [2].

T.4. asserts that P is the class of all true formulas.

If we replace D. 3. by:

D.3'.
$$F \in P(t, Q, E) := J(Q, t, E) \rightarrow V\{t, Q, \{i_{w(F)}\}, F\} = \begin{pmatrix} 1 \\ \vdots \\ i \end{pmatrix}$$

then T.4. remains true for normal forms.

T.4. proves the possibility of approximation of the first-order functional calculus by many valued Boolean propositional calculi; in this approximation the quantifier Π is interpreted as a finite operator, see (4d).

The examples we shall give in [4].

NOTES

- 1. The expression we define in the usual way; the expression in which an apparent variable a belong to the scope of two quantifiers $\prod a$ is not a formula; if a does not occur in E, then $\prod aE$ is not a formula.
- 2. The dots separate more strongly than parentheses.
- 3. There are Skolem's normal forms for theses; alternatives of these formulas we also name Skolem's normal forms.
- 4. We may here replace the indices $1, \ldots, t$ by $i_1, \ldots, i_{w(R)}$.
- 5. We use the same denotation, because the operations are analogously to the given above.
- 6. The sign \subset is the inclusion.

REFERENCES

- [1] D. Hilbert-P. Bernays: Grundlagen der Mathematik II, Berlin 1939.
- [2] J. Reichbach: On the definitions of satisfiability, sent to American Journal of Mathematics.
- [3] J. Reichbach: On characterizations of the first-order functional calculus, Notre Dame Journal of Formal Logic, vol. II (1961), pp. 1-15.
- [4] J. Reichbach: Some examples of different methods of formal proofs, in preparation.
- [5] J. Reichbach: On the connection of the first-order functional calculus with many valued propositional calculi (An abstract). The Bulletin o the Research Council of Israel. Section F: Mathematics and Physics, Vol. 10 F1 (1961).

Tel Aviv, Israel