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NON-DEFINABILITY OF CERTAIN SEMANTIC PROPERTIES
OF PROGRAMS

RICHARD A. DeMILLO

1 Introduction This paper has a two-fold purpose. First, we address
ourselves to the problem of describing programs with languages which are,
in some sense, "related" to the programming language in question. In
particular, we examine generalizations of the halting and equivalence
problems and show that no uniform first order methods of description can
exist. Second, we illustrate the very natural sort of correspondence which
may be established between results in mathematical logic and a class of
foundational problems in computer science. What we will refer to as
programs, are variously called program schemata and abstract programs
in the literature. The question of description or definability has been
examined by a number of authors. Positive results relating to definability
of termination appear in Engeler [2] and Manna [4], Equivalence and
decision problems are given thorough treatment in Luckham, Park, and
Paterson [3]. The import of definability results is indicated in Manna and
Waldinger [5]. Details of the logical results are available in Bell and
Slomson [l] and vanFraassen [6].

2 The LangΊMges J£ andfii^Q) By the language -£ we mean a first order
predicate calculus with identity and the following primitive alphabet:

1. denumerably many individual variables: x0, xl9 . . . (in some cases a
variable may be denoted by y^);
2. function symbols of specified addicity and unspecified number: fo,fi, . . . ;
3. predicate s y m b o l s of specified addicity and unspecified number:
q0, ^ i , . . . .

Function symbols taking 0—arguments are also called individual constants
(denoted a0, al9 . . .). When / is either a function or a function symbol, we
let f\z) be z when n = 0 and f(fn~\z)) when n > 0. J£ is completely specified
when we set down its rules of formation, logical axioms, and rules of
inference, all in the usual fashion. P{Jθ is a programming language
derived from <£. About P(*Q)'s exact structure we can be quite informal.
Programs in P(£) are taken to be constructed from the following
components:

Received May 7, 1973



584 RICHARD A. DeMILLO

Xi^-t + / \ -

for Xi a variable, t a term \s

j for 0 a formula

(STARTj ( HALT j

The intended interpretations of these components are obvious and well-
known. The geometric representation also allows us to be informal about
"tracing" through programs. In particular, if a trace through a program
has allowed us to reach a component C, then:

1. if C is an assignment or a start component, C's successor in the trace is
given by C's exit arrow;
2. if C is a decision component, C's possible successors in the trace are
given by the respective (+)-labelled and (-)-labelled exit arrows;
3. if C is a halting component, C has no successor.

It will be convenient to distinguish input variables (yd) in programs from
program variables (xi) in the style of Manna [4]. We will assume that no
confusion can arise, in writing programs, from this distinction. Hence, all
programs are idealized with respect to "free" and "bound" variables.

3 Models A realization % = {A, ϊ) of -C is a nonempty set A together with a
correspondence / between n-ary function symbols and m-ary predicate
symbols in £ and, respectively, rc-ary functions (including nullary functions
or individuals of 51) on A and ra-ary relations on A. The mapping / is
usually understood and is omitted in referring to realizations. Since <£ is
fixed throughout, we refer to 51 = (A,F, R)9 where F is the set of functions
in the range of / and R is the set of relations in the range of /, as a
realization of -C. A realization 51 of *C is of cardinal a iff Card (A) = a.
Terms of -C are interpreted in realizations as follows. Let t be a term, 51
a realization of <£, and a eAω an arbitrary ω-termed sequence in A. Then

I a(i), if t = Xi
_

Xf)(ti(a), . . ., tjfl))9 if t = f(tl9 . . ., tn).

Classes of models of formulas of ^ are defined with respect to the
relation K Let φ be a formula of -C, 5( a realization of *C, and a e Aω, Then
«N0[ά] iff:

1. φ is an atomic formula tλ - t2 or qi(tu . . ., tn) and t^a) = t2(a), or

(*i(β), 9 k(Λ)) e I(qi)Lrespectively;
2. 0 is ~ψ andSt^ψ [«];_

3. 0 is ψivψ2 and*lNψi[«]v3ll=ψ2[«];
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4. 0 is (V% )ψ and for each aeA, if "aι

a differs (if at all) from ~a only in that

aί(i) =a, then Mt=ψ [«*']•

If »N0[«] for all βeAω, then 21N0 and 51 is called a modeZ of 0.
Accordingly, if X is a set of formulas of <£, then ?! is a model of X iff

<UeίΊ{«|«N0}.

The following model theoretic results are relevant.

Theorem 1 (Compactness) A set X of sentences of °C has a model iff each
finite subset of X has a model.

Theorem 2 (Upward Lowenheim-Skolem) If a set X of sentences of *£ has a
denumerable model, then X has a model of every infinite cardinal.

4 Execution Sequences Let p be a program in P(Jθ and %l be a realization
of £. We define a (finite or infinite) execution sequence,

7Γ = (τι(i)\i>0 andτr(z)eAω>,

and for each j such that π(j) exists, the fth component of p as follows:

1. the O'th component of p is the successor of the start component;

2. if the j 'th component, C, of p is an assignment component x% *- t, then

(t(π(j)), iϊk = i

u(j + D(k) = j
lπ(i)(^), otherwise

and the j + 1st component is the successor of C;
3. if the j'th component, C, of p is a decision component 0, then π(j + 1) =
π(j) and the j + 1st component of p is the (+)-successor of C if 5ίN0[π(j)]
and the (-)-successor of C if ^(^0[π(j)];
4. if the j 'th component, C, of p is a halting component, then π(j) is the last
term of π and Mαχ(π) = j .

If Mαχ(π) exists and π(0) = a, we write j(SU,a,p) and say that p
terminates in $ί at a. If π and πf are respective execution sequences for p
and £' in M, 7r(0) = πf(0) = β, then we write E (% a, p, pr) and say that p and
£ f are equivalent in $1 at Έ just in case π(Mαχ(τr)) = πf(Mαχ(π')) whenever
either side is defined. If we agree to write E($I, p, p') when E(2f, «, />, ί f )
for all αe Aω and if for each realization % of £ we have E(21, />, />') then />
and >̂f are related by Ξ , the strong equivalence of Luckham, Park, and
Paterson [3], up to nonconflicting rearrangements of variables. There is no
generality lost in assuming that variables appear uniformly in p and p\ so
that E applies as (actual) equivalence.

5 Definability of Properties E and T are examples of semantic properties
of programs. A property is definable in ^ when it can be totally described

1. T is definable in j£ iff for each p, a program, there exists a formula 0 of
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^ , whose only free variables are the input variables of p9 such that 51 N0[#]
just in case T(5I, a, p), whenever 5! is a realization of *C and aeAω;
2. E is definable in <£ iff for each pair of programs p and p* there exists a
formula φ of <£, whose only free variables are the input variables of p and
p\ such that 51 N φ[a] just in case E (51, a, p, p'), whenever 5( is a realization
of £a,ndaeAω.

These definitions easily generalize to arbitrary semantic properties.
A property which is not definable in <£ is said to be a nondefinable semantic
property.

6 Nondefinability of Termination In this section we apply Theorem 1 to the
programs in Figure 1 (see p. 587) to obtain the following:

Theorem 3 T is a nondefinable semantic property of programs.

Proof: We suppose that T is definable to contradict compactness. In
particular, consider Figure 1. There exists a formula φ of <£ such that
5ϊhφ[«] iff T(5I, Έ, p). Since p has no input variables φ is a sentence.
Likewise, for each n ̂  0, there is a sentence φn of J£ such that 51 l=0w[α] iff
T(5I, a,pn). Let

P = {p}v{Pn\n>0}
X(P) ={«}u{φJn>0}.

Each finite subset of X has a model. Indeed, let X(P') be such a subset.
Either P' = {p} or there is a largest m ̂  0 such that pme P'. We let 91 be
such that N= {0, 1, 2, o . .}, the natural numbers, with /(/) the successor
function, I(a0) = 0, and I(aλ) = m + 1. Then T(0l, Tz, £f) for any p' eP',Ίιe Nω.
Hence 91 is a model of X(P').

Now, consider X(P). The sentences X(P) have a model iff the pro-
grams in P simultaneously terminate in a realization $ί. But p terminates
in 51 just in case at least one of the statements in the infinite list (*) is true
in 51, and {pn\n ^ 0} simultaneously terminate in 5C just in case none of the
statements in (*) hold in 51. There is clearly no such 51. Therefore, each
finite subset of X(P) has a model, but X(P) itself has no model.

I(ao) =I{aγγ
Kf)(I(a0)) = I(aλ)

: r]

KfniM) = /(«i)
/

7 Nondefinability of Equivalence In this section we apply Theorem 2 to the
programs in Figure 2 (see p. 588) to obtain the following:

Theorem 4 E is a nondefinable semantic property of programs.

Proof: As in Theorem 3, we suppose that E is definable to contradict the
Lδwenheim-Skolem property. Consider the programs in Figure 2. Identify
3>x with Xj and let 91 be as above. Then for n ̂  0, I(f)n(l(ao)) = n. So, for
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ί START j

/

X

0, / χχ = aγ \ 1

ψ.

*i«-Λ*i)

(la) The Program p

ί START j

+—Oι = / r t (^iΓ>— : 1

ί HALT ]

(lb) For each n ^ 0, the Program pn

Figure 1
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ί START )

*i«-«o

c χ2= χι y I

^ I * 1

x2 - a0 I

Xi *- ao I

Φ

ί HALT j

\ ^ ^ _ _ ^ / (2a) The Program pω

I START )

NĴ

[ H A L T j

(2b) The Program pf

Figure 2
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each value n of Xj, pω terminates. That is, for πω an execution sequence for
pω in 91, Mαχ(πω) exists and

τrω(Mαx(πω))0') = πω(Mαx(πω))(3) = n
πω(Mαx(τrω))(l) = τrω(Mαχ(πω))(2) = I(a0).

Similarly, for each value n of Xj9 pf terminates, and if Uf is an
execution sequence for pf in 91, Mαχ(7τγ) exists and

π/(Mαχ(7Γ/))β') = πfHaχ(πf))(3) = n
Ήf(tΛax(Ήf))(l) = 7Γ/(Mαx(τr/))(2) = /(α0).

Hence for each neNω, E(9l, ̂ , ^ω, £/). Assuming that E is definable, for
each ne N, if neNω is such that rc(j) = n, then 91t=0[rc] for appropriate 0.
Hence, 91N (VXj)φ. Finally, observe that (VΛ:; ) 0 cannot have an uncountable
model. This follows, since for each model 31 of (VΛΓ; )0 , ty\=φ[a1

a] for all
ae Aω, ae A and by the definition of 0 and our choice of pω,

ae{l(f)n(I(ao))\n>0},

a denumerable set. But this contradicts the Lδwenheim-Skolem property,
since (V ;̂ )0 is a sentence with a denumerable model but no uncountable
model.

8 Conclusion By Theorems 3 and 4, the formulas defining the properties
T and E cannot uniformly exist, if they are to be first order. Intuitively
speaking, languages which either restrict variables of quantification to
individual variables or restrict formulas to finite strings of symbols are
not sufficient to definability.

In fact, the programs in Figure 1 correspond to the infinitary
formulas

Sψa1 =fn(aQ), a1 Φ a0> ax Φf{a0), . . .

for which compactness fails (see, e.g., Bell and Slomson [1]), and the
program in Figure 2a corresponds to the infinitary formula

(v*,)(\χ/*,=/Ή))

for which the Upward Lδwenheim-Skolem Theorem fails.
A subsequent paper will explore this analogy in more detail.
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