Notre Dame Journal of Formal Logic
Volume XV, Number 2, April 1974 NDJFAM

## A STUDY OF $Z$ MODAL SYSTEMS

## R. I. GOLDBLATT

In [10], Sobocinski has shown that the addition to various S 4 -extensions of Zeman's formula
Z1 $\quad L M p . L M q \rightarrow(M(p . q) \rightarrow L M(p . q))$
generates a new family that he refers to as the $Z$ modal systems. In this paper a completeness proof is given for the system $\mathrm{Z} 1=\mathrm{S} 4+\mathrm{Z} 1$, and the finite model property is established. Since the system is finitely axiomatisable its decidability follows. Furthermore it is shown that each $Z$ modal system is the intersection of $S 5$ with some system from family $K$.

In the field of $\mathrm{S} 4, \mathrm{Z} 1$ is inferentially equivalent to

## Z2 $\quad L(L M p \rightarrow M L p) \vee L(M q \rightarrow L M q)$

the formula added to S 4.4 by Schumm to obtain the system now called S 4.9 (cf. Sobociński [9], p. 361)
(1) $L M(p \vee q) . L M(\sim p \vee q) \rightarrow(M((p \vee q) \cdot(\sim p \vee q)) \rightarrow L M((p \vee q) .(\sim p \vee q)))$ $\mathbf{Z 1}, p / p \vee q, q / \sim p \vee q$
(2) $(p \vee q) \cdot(\sim p \vee q) \leftrightarrow q$ PC
(3) $\quad M q \rightarrow M((p \vee q) .(\sim p \vee q))$
(2), C2
(4) $L M((p \vee q) .(\sim p \vee q))-L M q$
(2), C2
(5) $\quad L M p \rightarrow L M(p \vee q)$ C2
(6) $\sim M L p \rightarrow L M(\sim p \vee q) \quad$ C2
(7) $L M P . \sim M L p \rightarrow(M q \rightarrow L M q) \quad$ (1), (3), (4), (5), (6), PC
(8) $\quad(L M p \rightarrow M L p) \vee(M q \rightarrow L M q) \quad$ (7), PC
(9) $M(L M p \rightarrow M L p) \vee L(M q-L M q) \quad$ (8), C2
(10) $\quad M(L M p \rightarrow M L p) \rightarrow(L M p \rightarrow M L p)$ S4
(11) $(L M p \rightarrow M L p) \rightarrow L(L M p \rightarrow M L p)$

Z1, S4 (cf. [1])
Z2 $L(L M p \rightarrow M L p) \vee L(M q \rightarrow L M q)$ (9), (10), (11), PC

This shows that Z1 contains the system $\mathrm{S} 4+\mathrm{Z} 2$. We shall subsequently establish the converse in two different ways.

Definitions and discussion of the model-theoretic concepts used below are given in Segerberg [5], [6], and [7] (cf. also the Metatheorem of [1]).

Proposition 1: $A$ is a theorem of $\mathrm{S} 4+\mathrm{Z2}$ if and only if it is verified by every S4-frame satisfying

$$
\begin{equation*}
\forall x \forall y((x R y \rightarrow y R x) \vee \exists z(y R z . \forall w(z R w \rightarrow z=w))) \tag{a}
\end{equation*}
$$

Proof: Necessity. We leave it to the reader to check that any 54 -frame satisfying (a) verifies $\mathbf{Z 2}$.

Sufficiency. Let $A$ be any wff not derivable in $S 4+\mathbf{Z 2}$. Then $A$ is false at some point $t$ in the canonical model for $\mathrm{S} 4+\mathrm{Z2}$, and hence false at $t$ in the submodel $\mathfrak{u}$ generated from the canonical model by $t$. Let $\Psi$ be the closure under modalities of the set of all subwff of $A$, and $\mathfrak{u}^{\prime}$ a Lemmon filtration of $\mathfrak{u}$ through $\Psi$. Then $\mathfrak{u}^{\prime}$ is finite, reflexive, and transitive, and hence is an $\mathrm{S4}$-frame (Segerberg [5], Section 3, and [6], Chapter I, Theorem 7.6). Furthermore by the Filtration Theorem ([7], p. 303) $A$ is false in $\mathfrak{u}^{\prime}$ at $[t]$. It remains only to show that $\mathfrak{u}$ ' satisfies (a).

Let $[x]$ be any point in $\mathfrak{u}^{\prime}$ and suppose there is some point $[y]$ in $\mathfrak{u}^{\prime}$ such that

$$
\begin{equation*}
[x] R^{\prime}[y] \text { and } \operatorname{not}[y] R^{\prime}[x] \text { in } \mathfrak{u}^{\prime} \tag{b}
\end{equation*}
$$

We have to prove the second disjunct of (a).
Since $\mathfrak{u}^{\prime}$ is finite, reflexive, and transitive there is some final cluster $Y$ in $\mathfrak{u}^{\prime}$ that either contains [y] or succeeds [y] ([5], p. 19). From (b) it follows that $[x]$ precedes $Y$ and so $Y$ is a non-initial final cluster. Now if we can show that $Y$ is a simple final cluster, i.e., it consists of a single element with no alternative except itself, then the proof will be complete.

To get a contradiction we suppose $Y$ is a proper cluster and therefore contains at least two distinct elements, say $[z]$ and $[w]$. Since $[z] \neq[w]$ there is some wff $B$ in $\Psi$ such that

$$
\begin{equation*}
B \text { is true in } \mathfrak{u}^{\prime} \text { at }[z] \text {, but false at }[w] \tag{c}
\end{equation*}
$$

Since the relation $R^{\prime}$ is universal over $Y$, it follows from (c) that

$$
\begin{equation*}
M B \text { is true, and } L B \text { is false, in } \mathfrak{u}^{\prime} \text { at every point in } Y \tag{d}
\end{equation*}
$$

Now if $z R u$ in $\mathfrak{u},[z] R^{\prime}[u]$ in $\mathfrak{u}^{\prime}$. But $Y$ is final, so $[u] \epsilon Y$, whence by (d), MB is true but $L B$ is false in $\mathfrak{u}^{\prime}$ at $[u]$. But $M B$ and $L B$ are in $\Psi$, so by the Filtration Theorem $M B$ is true and $L B$ is false in $\mathfrak{u}$ at $u$. This shows that $L M B$ is true and $M L B$ is false in $\mathfrak{u}$ at $z$, hence

$$
\begin{equation*}
(L M B \rightarrow M L B) \text { is false at } z \tag{e}
\end{equation*}
$$

Now the model $\mathfrak{u}$ is transitive and generated by $t$, and so

$$
\begin{equation*}
t R u, \text { for all } u \text { in } \mathfrak{u} \tag{f}
\end{equation*}
$$

Then (e) and (f) together yield

$$
\begin{equation*}
L(L M B \rightarrow M L B) \text { is false in } \mathfrak{u} \text { at } t \tag{g}
\end{equation*}
$$

As in [6], Chapter II, Lemma 2.1 we can construct a Boolean combination $C$ of members of $\Psi$ such that

$$
\begin{equation*}
C \text { is true in } \mathfrak{u} \text { at } u \text { iff }[u] \notin Y \tag{h}
\end{equation*}
$$

Now from (b), $[x] \notin Y$, so by (h), $C$ is true in $\mathfrak{u}$ at $x$. Thus by (f)
$M C$ is true at $t$
Now if $z R u,[u]_{\in} Y$ (see above) so by (h), $C$ is false at $u$. Hence $M C$ is false at $z$, so by (f)

$$
\begin{equation*}
L M C \text { is false at } t \tag{j}
\end{equation*}
$$

The reflexivity of $\mathfrak{u}$, together with (i) and (j) show that

$$
\begin{equation*}
L(M C \rightarrow L M C) \text { is false at } t \tag{k}
\end{equation*}
$$

But (g) and (k) contradict the fact that every substitution-instance of $\mathbf{Z 2}$ is true at every point in $\mathfrak{u}$, and in particular at $t$. This ends our proof.

It is an easy matter to check that $\mathbf{Z 1}$ is verified by every $\mathbf{S 4}$-frame satisfying condition (a) above, and so by Proposition 1 is derivable in $\mathbf{S 4}+\mathbf{Z 2}$. This, with our earlier result establishes that $\mathbf{Z 1}=\mathbf{S} 4+\mathbf{Z 2}$.

Corollary ([5], section 3) Z1 has the finite model property.
Proof. The model $\mathfrak{u}$ ' in Proposition 1 has at most $2^{14 n}$ elements, where $n$ is the number of subwff of the non-theorem $A$ that it falsifies ( Z 1 has the same fourteen distinct modalities as S 4 ).

If the element [ $t$ ] of Proposition 1 is contained in a final cluster then, since [ $t$ ] generates $\mathfrak{u}^{\prime}$, the underlying frame of $\mathfrak{u}^{\prime}$ consists of a single cluster and therefore verifies S5. If, on the other hand, $[t]$ is not contained in a final cluster then every final cluster in $\mathfrak{u}^{\prime}$ is non-initial and therefore by the proof of Proposition 1 is simple. But a finite $S 4$-frame in which every final cluster is simple is a frame for K1 (Segerberg [5]). Thus $\mathfrak{u}^{\prime}$ is either an 55 -model or a K1-model and since it falsifies the non-Z1theorem $A, A$ must be a non-theorem of either S 5 or K1, and hence of $\mathrm{S} 5 \cap \mathrm{~K} 1$. But Z 1 is contained in both S 5 and K 1 , and so we conclude that $\mathrm{Z} 1=\mathrm{S} 5 \cap \mathrm{~K} 1$.

This intersection result, and the fact that $Z 1$ is a consequence in $S 4$ of Z2, may alternatively be deduced from Theorem 2 of Halldén [2] (cf. also Theorem 2 of Kripke [3]). This theorem shows that if $S$ is a system containing PC and having modus ponens as its only primitive rule of inference, and if $A$ and $B$ are two formulae with no propositional variable in common, then

$$
(S+(A \vee B))=(S+A) \cap(S+B) .
$$

Now Simons [8] has given an axiomatisation of S4 that has modus ponens as its only primitive rule. Furthermore, the same system results when the same extra axioms are added to this basis and to Lewis' basis for S4. This observation, and Halldén's theorem show immediately that $\mathbf{S} 4+\mathbf{Z 2}$ is the intersection of $\mathrm{S} 4+L(M q \rightarrow L M q)$ and $\mathrm{S} 4+L(L M p \rightarrow M L p)$, i.e., of S5 and K1. But Z 1 is easily derivable in both S5 and K1, whence it is derivable in $\mathbf{S 4}+\mathbf{Z 2}$.

Proposition 2．Let $S$ be a system contained in S5 and obtained by adding some axioms $S$（which may be a finite conjunction of wff）to $\mathbf{S 4}$ ．Then $\overline{(S+\mathbf{Z} 1) ~}$ $=\mathrm{S} 5 \cap(S+K 1)$ ．

Proof：Since $\mathbf{Z 1}$ is a theorem of S 5 ，and deducible from K 1 ，it is immediate that $(S+\mathbf{Z} 1) \subseteq S 5 \cap(S+\mathbf{K} 1)$ ．For the converse we use again an axiomatisa－ tion of S 4 with modus ponens the only primitive rule．Letting $B=L(M q \rightarrow$ $L M q)$ and $K=L(L M p \rightarrow M L p)$ we see by Halldén＇s theorem that the system $\mathrm{S} 5 \cap(S+\mathrm{K} 1)$ can be axiomatised as $\mathrm{S} 4+(B \vee(S . K))$ ，where $B$ and（ $S . K$ ） have no variable in common．Now if $A$ is a theorem of this system then by the Deduction Theorem there are finitely many instances（ $B_{i} \vee\left(S_{i} . K_{i}\right)$ ）， $(1 \leqslant i \leqslant n)$ ，such that $\left(B_{1} \vee\left(S_{1} . K_{1}\right)\right) \ldots\left(B_{n} \vee\left(S_{n} . K_{n}\right)\right) \rightarrow A$ is derivable in S4． Hence $\left(B_{1} \vee S_{1}\right) .\left(B_{1} \vee K_{1}\right) \ldots\left(B_{n} \vee S_{n}\right) .\left(B_{n} \vee K_{n}\right) \rightarrow A$ and so $S_{1} .\left(B_{1} \vee K_{1}\right) \ldots$ $S_{n} .\left(B_{n} \vee K_{n}\right) \rightarrow A$ is derivable in S4．But each conjunct in the antecedent of this last formula is derivable in $S+\mathbf{Z 1}$ ，and therefore so is $A$ ．QED

From Proposition 2 we read off the following connections between $Z$ and $K$ modal systems．

$$
\begin{aligned}
& \mathrm{Z} 1=\mathrm{S} 5 \cap \mathrm{~K} 1 \\
& \mathrm{Z} 2=\mathrm{S} 5 \cap \mathrm{~K} 1.2 \\
& \mathrm{Z} 3=\mathrm{S} 5 \cap \mathrm{~K} 1.1 \\
& \mathrm{Z} 4=\mathrm{S} 5 \cap \mathrm{~K} 2 \\
& \mathrm{Z} 5=\mathrm{S} 5 \cap \mathrm{~K} 2.1 \\
& \mathrm{Z} 6=\mathrm{S} 5 \cap \mathrm{~K} 3 \\
& \mathrm{Z} 7=\mathrm{S} 5 \cap \mathrm{~K} 3.1 \\
& \mathrm{Z} 8=\mathrm{S} 5 \cap \mathrm{~K} 3.2 \\
& \mathrm{Z} 9=\mathrm{S} 5 \cap \mathrm{~K} 4=\mathrm{S} 4.9^{1}
\end{aligned}
$$

There is some interest in the relationship between $\mathbf{Z 2}$ and the formula

$$
\Delta \quad(L M p \rightarrow M L p) \vee(M q \rightarrow L M q)
$$

which is obviously derivable from $\mathbf{Z 2}$ ．In showing that $\mathbf{Z 2}$ was a con－ sequence of $Z 1$ we first derived $\Delta$ from $Z 1$ and then used the 54.01 axiom

$$
\Gamma 4 \quad(L M p \rightarrow M L p) \rightarrow L(L M p \rightarrow M L p)
$$

which is also derivable from $\mathbf{Z 1}$ in S 4 ，to obtain $\mathbf{Z 2}$ ．Thus $\Delta$ and $\mathbf{Z 2}$ are equivalent in the field of 54.01 and therefore in the field of every proper S4－extension except S 4.02 and S 4.04 （cf．［1］）．However in S4 itself $\Delta$ is weaker than $\mathrm{Z2}$ ．This follows from consideration of the matrix flll of Sobociński［9］，p．350．By the methods of Lemmon［4］，section 5，\＆⿴囗十 $\mathfrak{l l}$ is seen to be the matrix representation of the four－element reflexive frame that can be displayed graphically as

[^0]
with the circle $Y$ denoting a two－element cluster．Now（ $L M p \rightarrow M L p$ ） cannot be falsified at $a$ or $b$ ，since each of these points has an alternative （viz b）that has no alternative except itself（Segerberg［5］，p．18）．On the other hand（ $M q \rightarrow L M q$ ）cannot be falsified on the cluster $Y$ ．Thus the frame， and hence the matrix must verify $\Delta$ ．But this frame does not satisfy condi－ tion（a）of Proposition 1 and so there will be some assignment on it that falsifies Z2．In fact for $p=6, q=6, L(M 6 \rightarrow L M 6) \vee L(L M 6 \rightarrow M L 6)=$ $L(5 \rightarrow 13) \vee L(13 \rightarrow 16)=L 9 \vee L 4=9 \vee 12=9$ ．Thus the addition to S 4 of $\Delta$ yields a new system properly contained in Z1．

Concerning other matrices of Sobociński［9］we make the following comments：
 $\Delta$ ．For $p=6, q=4,(M 4 \rightarrow L M 4) \vee(L M 6 \rightarrow M L 6)=(4 \rightarrow 8) \vee(1 \rightarrow 8)=5 \vee 8=$
5．Thus $\mathrm{S} 4+\Delta$ is independent of S 4.01 ．
 S4．02 and S4．04，so these two systems are independent of S4＋$\Delta$ ．
3）Since $\not ⿴ 囗 十 ⺝ 11$ verifies $S 4.04$ and $\Delta$ but rejects $Z 2$ we obtain two new systems， $\mathrm{S} 4.02+\Delta$ and $\mathrm{S} 4.04+\Delta$ ，properly contained in Z 3 and Z 2 respec－ tively．The matrix 14 verifies S 4.02 and $\Delta$ but rejects S 4.04 ，showing that $S 4.02+\Delta$ is a proper subsystem of $54.04+\Delta$ ．

I conjecture that $\mathrm{S} 4+\Delta$ is characterised by the class of S 4 －frames satisfying

$$
\forall x \forall y((x R y \rightarrow y R x) \vee \exists z(x R z . \forall w(z R w \rightarrow z=w))),
$$

or alternatively by the class of finite 54 －frames in which every non－final cluster is succeeded by at least one simple final cluster．

## REFERENCES

［1］Goldblatt，R．I．，＂A new extension of S4，＂Notre Dame Journal of Formal Logic， vol．XIV（1973），pp．567－574．
［2］Halldén，S．，＂Results concerning the decision problem of Lewis＇s calculi S3 and S6，＂The Journal of Symbolic Logic，vol． 14 （1949），pp．230－236．
［3］Kripke，S．，＂Semantic analysis of modal logic II，＂The Theory of Models， North Holland Publishing Co．，Amsterdam（1965），pp．206－220．
[4] Lemmon, E. J., "Algebraic semantics for modal logics I," The Journal of Symbolic Logic, vol. 31 (1966), pp. 46-65.
[5] Segerberg, Krister, "Decidability of S4.1," Theoria, vol. 34 (1968), pp. 7-20.
[6] Segerberg, Krister, An Essay in Classical Modal Logic, Ph.D. Thesis, Stanford University (1971).
[7] Segerberg, Krister, "Modal logics with linear alternative relations," Theoria, vol. 36 (1970), pp. 301-322.
[8] Simons, L., "New axiomatisations of S3 and S4," The Journal of Symbolic Logic, vol. 18 (1953), pp. 309-316.
[9] Sobociński, B., "Certain extensions of modal system S4," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 347-368.
[10] Sobociński, B., "A new class of modal systems," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 381-384.

Victoria University of Wellington
Wellington, New Zealand


[^0]:    1．A similar，and independent，proof that the systems Z 9 and S 4.9 are identical has been obtained by K．Fine（cf．Notre Dame Journal of Formal Logic，vol．XIII （1972），p．118）．

