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VARIATIONS IN DEFINITION OF ULTRAPRODUCTS OF A FAMILY
OF FIRST ORDER RELATIONAL STRUCTURES

WILFRED G. MALCOLM

Two variations are made in the standard definitions, cf. [l], of an
ultraproduct of a family of first order relational structures with respect to
a chosen ultrafilter X of the index set I. The first variation, following a
method used by W. A. J. Luxemburg, cf. [2] in the construction of higher
order ultraproducts, relaxes the requirement of similarity on the members
of the family. The second variation uses subfilters of X to define the
individuals and relations of the ultraproduct.

In section 1 the construction of the ultraproduct with these variations
is set out and some consequences developed, particularly those relating to
the identity relation. In section 2 a family of similar structures is taken
and a necessary and sufficient condition is established under which the first
variation produces more relations, from an extensional view-point, than the
standard definition.

1 Let {Mj : ie l} be a collection of first order relational structures. For
each i, let M, = {fl°; R), 1$, . . .}, where β° is the class (non empty) of
individuals in the zώ structure and, for each positive integer k, R^ is the
class of ^-placed relations of the structure. Each β* contains at least the
empty relation and each R* contains the identity relation denoted by e t. It
is further assumed that the distinct members of each R% are distinct from a
set-theoretic and extensional point of view. Finally, if ax, . . , #£eβ°and
skeRki then "sk(a1, . . , ak)" denotes the fact that al9 . . , ak are related
by sk.

Let X be an ultrafilter defined on I. For each k > 0, Xk is a subfilter
of X; that is X*is a subclass of X and is a filter. For each k Ξ> 0, let β,* be

the class {/*: fk : I -» | J {βj : i e l} and for alH e I, f\i) e #*}. Let ~Λ denote
the relation defined on flf by: for all /*, gkeRh\, fk~kgk #> and only if,
{i: fkti)=gkd)}eXk.

Lemma 1. For each integer k ^ 0, ~k is an equivalence relation.

Proof: Immediate.
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For each integer k ^ 0, let R^k denote the quotient class of #f with
respect to ~& and if fkeR^ let fk denote its equivalence class. The next
lemma prepares the way for the definition of the individuals and relations
of the ultraproduct.

Lemma 2. For each integer k ^ 0, {i : fk(i)(fΌ

1(i), . . Jl(ϊ))}eX if, and only
*/> {i : gk(i)te°i(i), . . , g*(*))}eX, where f? ~ o g?, for each j from 1 to k, and
andfk~kg

k.

Proof: Let Fj = {i :/?(*) = g^i)}, for each j from 1 to fc, and Fk = {i ;f\i) =
gk(i)}. Now Fk Π F°x Π .. n F£ Π Fx C F 2 and ^ n f ! π . . n ^ o n F 2 c F 1 ? where
*Ί = {* : ΆMfiM, •/*(*"))} and F 2 = {< : ̂ (Ofefti), . . rf(ί))}. ButX0 and X*
are subfliters of X. Hence Fλe X if, and only if, F2e X.

The ultraproduct, denoted by τι\Λi/(X\ X°9 . .) can now be defined. The
class of individuals is R°χ0. For each integer k > 0, and for each fke Rχky a
^-placed relation of the ultraproduct, denoted by the same symbol/^, is
defined by: /*(/$, . . ,/J) if, and only if, {i :/*(t)(/?(ή, . . ,Λ°W)}eX, for all

/?, . . ,/£e β ° 0 The symbol β*^ is also used to denote the class of ^-placed
relations of the ultraproduct.

Lemma 2, which justifies the definitions as given, has not required the
'ultra' property of X. If this requirement is dropped the definition provides
a variation to the standard construction of reduced products. Further, it is
noted that Los's theorem as stated for an ultraproduct in relation to a
suitable first order language still holds for an ultraproduct defined as
above.

The first result below establishes that from a set theoretic and
extensional viewpoint the use of subf liters Xk, for k > 0, adds no extra
relations to those gained by taking Xk = X.

Theorem 1. For each k > 0, if f\gke flf such that Jk$ Jk but {i : fk(i} =
gk(i)}e X then for allft,. . J°keR%Jk(fly. . ,/£) if, and only if, g\fu . . ,/£).

Proof: J\fl, . . Jl) if, and only if, {i : /(*)(/?(*), . J°k(i))h X', that is if,
and only iί,_{i ιAi)(f°i&, . . ,/£(*))} c X, as {i :fk(i) = gk(i)} e X; that is if,
and only if, gk(fϊ, . . . ,/£).

From now on for all k > 0, Xk will be X itself. The next theorem
establishes that for all k > 0, the distinct members of Rχ provide distinct
k-placed relations on an extensional basis.

Theorem 2. For each k > 0 and fk, gke flf, fkφ gk if, and only if, there exist
/ϊ> JktRχo satisfying one, and only one, of the relations f\ gk.

Proof: Assume JkΦ ~gk and let G = {i : f\i) Φ g\i)}. Hence G e l . For each
ie G, there exists α{, . . , a{e R° which satisfy one, and only one, of the
relations fk(i), g\ί), as f\i) Φ gk(i). Let Go = {i : ie G and f\ϊ){a[, . . , aft}
and Gx = {i : ie G and g\i)(a[,. . , aft}. Now G = Go U G^and so either Goe X,
dfίX or GxeX, G9fίX. Define, for each j from 1 to kjf as follows: for all
ie G, put ff(i) = aj; for all i / G choose f*(i) some arbitrary member of R?.
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Hence ή is uniquely defined as GeX. Further, if Goe X, G^X then fμj
from 1 to k, satisfy the relation /*_but not gk, but if G±e X, Gof[X then they
satisfy g^ but not/*5. Conversely, if/* = ipthen for all/°eβχo, j from 1 to k,
f\fl ,fk) if, and only if, g\f*, . . ,/J).

The next results are concerned with the way the identity relations in
the component structures transfer to the ultraproduct. For technical
reasons a short lemma is set out.

Lemma 3. Let G = {i : |fl°| = l}. //X° is a subfilter of ultrafliter X then
Rχo ΦRx if, and only if, there is an F eX such that F ^G and F <[X0.

Proof: Assume that R% * Rx and so there exist /°, g°eR°{ such that/0 ~ £ °
but f ^og0- Let F={i: f(i) = g°(i)} and so F D G, FeXbut F^X°. Con-
versely, assume there exists an Fe X such that F D G but FeX°. Define
/°,^°€«? by: for all t eF put f(i) = ^(i); for a l H / F take/(z) ^ ^(z). Thus
f~g° but /° / o ^ ° and so fl°o ^ βχ

A subfilter X° of an ultrafilter X will be called distinct if β£ 0 *flχ,
otherwise it will be called indistinct.

Theorem 3. If f2eR] is defined by. f2(i) = e, , for all ieϊ, then f is the
identity relation of πϊ\Ai/(X;XΌ) if, and only if, X° is an indistinct subfilter
ofX.

Proof: Assume X° is an indistinct subfilter of X and so Rxo = Rχ. For all
f°,go6RΌ

xo, Tif^g0) if, and only if, {z_: e, (/°(z), gΌ(i))}eX; that is if, and
only if, f ~g°; that is if, and only if, f° =g°, as Rχ0 = Rx. Hence ψ is the
identity relation. Conversely, assume X° is a distinct subfilter of X.
Hence, as in Lemma 3, there exist/0^j R°o such that f° Φg° but f ~g°.
Thus {i :f°(i) =gΌ(i)}eX and so f(f°,g°). Hence/ 2 is not the identity
relation.

It should be noted that / 2 as defined in the above theorem is always an
equivalence relation and moreover one with the general substitution
property. Thus the theorem has given that a distinct subfilter gives rise to
a non-normal structure. The next theorem sets out the expected relationship
between such a non-normal structure and the normal ultraproduct got by
putting X° equal to X.

Theorem 4. πMi/(X;X) is isomorphic to a quotient structure of ΉM{/

(x;x°).
Proof: Define a map β :R°O->RX by: for each/ o eβ χ O , put β(f°) = [/°],
where [fo]e_Rx. βj.s w e l 1 defined and surjective. Further, j or a l l / k e R x ,
and for all/ϊ, . . JJcflJK/*(/?, ^k) if, and only_if, /*tf(7ϊ), . , β(7^0)).
Let ~β be_ the binary relation defined on # ° 0 by: /° ~βg° if, and only if,
β(/°) = βfe70). Now ~β as defined is a congruence of irMi/(X;X°) and it can
be immediately checked that the quotient structure with respect to this
congruence is isomorphic to πMz /(X;X).

2. Let {Mi : i e l} now be a family of similar structures. For each k > 0,
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let the symbols {rf : j < ak} denote the ̂ -placed relations of each M2, where
ctk is the common (i.e. for all ie I) cardinality of each Rχ, and each symbol
rf>j < &k denotes the corresponding relation in each structure under the
similarity correspondence. In Robinson cf. [3] the individuals of the ultra-
product are defined as in section 1 but withX0 = {l}. But in Bell-Slomson
cf. [1], the individuals are defined by taking X° = X. It is this which is
called the standard definition. Further, the ^-placed relations of the
ultraproduct in this standard definition, denoted by the same symbols,
{rj*: j < α̂ } as used for the component structures are defined by: rHf\,. ,fl)
if, and only if, {i : rf(/?(i), . . ,/*(«))} e-X. Now in terms of section 1 this
definition has selected from #f the subclass sf = {hf : hf: I -> \J{R* : ie\}
and for all ie I, hj(i) = rf, j < #&} and associated with each member of this
subclass a ^-placed relation of the ultraproduct. The following theorem
establishes a necessary and sufficient condition under which the construc-
tion of section 1 applied to this family of similar structures reproduces
only the standard relations. Of course at least the standard relations will
always be produced for if km Φ hn then Ufa Φ Tin.

Theorem 5. For all k > 0, there exists an fke #f such that fkφ hk for any
hke sf if, and only if, X is ak-incomplete.

Proof: Assume that X is ^-incomplete and so let βk be the first cardinal,
βk ^ oik, such that X is &-incomplete. Thus there exists, (with a permuta-
tion of the index set of Rf if necessary), for each j < βky an Fj e X such that

Π {Fj : j < βk}= φ. Construct /* inductively as follows: for all i^F0, put
fk(i) = r§; for all ieF0 - Fu put fk(i) = r\\ assume that f\ΐ) has been defined

for all ΰ ( J {CFt : t < δ] for some ordinal δ < βk, where C ^ is the comple-
ment of Ft, and define f\ϊ) = r£ for all ie f]{Ft : t < δ} - JPg. By induction
fk is well defined and domain /*= I, as p|{F ; :j < βk}= φ. Now {i : fk(i) =
r§ = CF0 and so f^Φhj as CFjX. For 0 < j < βk, {i : f\ϊ) = rf} = C\{Ft :
t < j} -Fj a_nd so /* Φ hf as Cf) ix. Finally if βk^ j < ak, {i : f\i) = rf} = φ
and so fkΦ hf as φf(X. Conversely, assume there is an fke Rf such that for
all hfe sf, J*Φhf. For each; < ak, define G; = {i : f\i) = rf}. Now (J ί^/ :

i < ak} = I and so Π { C G ; : 3 ̂  ak} = 0 B u t f o r a 1 1 J < ak, CGj eX and so X
is ak-incomplete.

While the above theorem establishes the distinctness of fkin terms of
an equivalence class of maps Theorem 2 ensures that the distinctness is
carried over to the relations of the ultraproduct on an extensional basis.

Corollary 1. For each k > 0, if <Xk is finite then for each fke βf, there exists
some hk e sf such that Jk = hk.

Proof: If ak is finite then X is ^-complete.

Corollary 2. If X is a principal ultrafilter then for all integers k > 0, and
for all fke Rk

s, there exists some hk e sf such that fk = hk.

Proof: A principal ultrafilter is ^-complete for all ak.
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The final theorem concerns the relationship between two ultraproducts,
each formed by the standard definition from the same family of similar
structures with respect to the same ultrafilter, but where in the case of the
second ultraproduct the similarity correspondence may, for each k > 0,
link different k -placed relations from each structure from those linked in
the first case.

Let ΉΪsAi/X be the standard ultraproduct formed as noted at the
beginning of section 2. Let π'Mi/X be a second ultraproduct formed by the
standard definition but following possible rearrangements of the relations
connected under the similarity correspondence; that is, for each ie\\ and
for each k > 0, if βf is a permutation of the set {j : j < ak} then the ^-placed
relations of π'M. /X are given by r'*, j < ak, where r't(J%, . . Jk) if, and
only if, {i : r**(y)(/?(ί), . . ,/£(t))} € X.

Theorem 6. There exists such a τ\*\AjX as above non-isomorphic to τ[\λjx
ify and only if, there exists some k > 0 such that X is a^-incomplete.

Proof: Assume that for each k > 0, X is ^-complete. Associate each
standard relation rf, j < ak, in -πϊλi/X with hf, where for all ie\, hf(i) = rf.
Associate r f^, j < α&, in π'M^ /X with h'f, where for all ie I, h'Hί) = rβh{j)
From Theorem 5 it follows that {hf j < ak} = {h'f : j < ak}. Hence nYAjX is
the same structure as π'hλi/X. Conversely, assume that for some k > 0,X
is ^-incomplete. Hence from Theorem 5 there exists 7ktRχ such thatJ kis
distinct from each of the standard ^-placed relations of πMf /X For each
j < ak, let Gj = {i :fk{i) = rf\. Thus {G7 : j < ak} partitions X and for each
j < ak, Gj^ X. For each ie I, and each m Φ k, m > 0, take βf as the identity
permutation of am. For each ie I, take β1- as one of the permutations of <*k
such that βi{0) = j , where ieGj. Hence the relation r'o of ττfYAjX is associ-
ated with Jk and so is distinct from all the k -placed relations of TΓMJ/X

Thus 7ΓfM;/X is not isomorphic to πhλi/X.
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