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DUALS OF SMULLYAN TREES

HUGUES LEBLANC and D. PAUL SNYDER

1. As readers of Jeffrey or Smullyan know, the consistency of a finite set S
of wffs from the sentential calculus (SC) can be tested by means of a tree,
called here a Smullyan tree.1 The branches of the tree, which are gotten by
breaking up each member of S into shorter wffs, breaking up these shorter
wffs into still shorter ones, and so on, represent the various ways in which
the members of S could be true. Those branches (if any) on which both an
atomic wff (one of the letters ζp*, (Q', 6R\ etc.) and its negation occur are
said to be closed, the rest to be open. And the method guarantees that:

(1) If every branch of the tree is closed, S (the set tested) is incon-
sistent, whereas

(2) If at least one branch stays open, S is consistent, and a truth-value
assignment on which all the members of S are true can be read off any open
branch of the tree.

When ζ~'y '&', ζv9, and o * serve as primitive connectives, the rules
for breaking up truth-functional compounds are seven in number:2

1. Concerning Smullyan trees, see [4], [5], and [6], We of course take a set S of
the sort described to be (semantically) consistent if there is a truth-value assign-
ment to the atomic components of the members of S on which all these members
are true (i.e., get a T).

2. When '= ' also serves as a primitive connective, two extra rules serve to break
up compounds of the sort A = B or the sort ~(A = B):

A Ξ B ~(A Ξ B)

A -A A ~A
B ~B ~B B
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TABLE I

Rl R2 R3
A &B AvB AD B

/\ A
B A B ~A B

R4 R5 R6 R7

~ ~ A -(A & B) -(A v B) ~(A 3 J3)

A ^ " ^ \ ^ ~A A

~A ~B ~B ~J3

We illustrate things by means of two trees. All the branches of the

first close, and hence the set tested is inconsistent. Three branches of the

second stay open, and hence the set tested is consistent. (We write 'x' at

the tip of every closed branch, and—to avoid pointless entries—do so the

minute an atomic wff and its negation have both occurred on the branch.)

EXAMPLE 1: {P D (Q & β), (~Pv Q) 3 ~ β , P}.

1 P 3 (Q & β)

2 (~PvQ) 3 ^ β

3 P

4 ~P Q& β (R3, 1)

5 # Q (Rl, 4)

6 β (Rl, 4)

7 ~(~PvQ) ^ β (R3, 2)

8 ~ ~ P ΛΓ (R6, 7)

9 ~Q (R6, 7)

Λ:

EXAMPLE 2: {-(P & ~ Q),-Qv β, ~ ( β 3 P)}.

1 ~(P& ~Q)

2 ~Qvβ
3 ~(βDP)

4 β (R7, 3)

5 ~P (R7, 3)

6 ~Q β (R2,2)

7 ~p Q ~p ~~Q ( R 5 ) 1)

8 Q Q (R4, 7)

As we shall soon see, lines 1-3 here are sure to be true on the result of

assigning the truth-value F to 'P', the truth-value F to '<?', and the
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truth-value T to (R', an assignment picked off the left-most branch; also on
the result of assigning F to Φ', T to 'R', and either one of T and F to (Q',
an assignment picked off the third branch.

Proof of (1) is easily had. Note indeed that if the uppermost wff in
rule R4 is true on some truth-value assignment a, the one wff into which it
decomposes is sure to be true on a; if the uppermost wff in rules R2, R3,
and R5 is true on a, at least one of the two wffs into which it decomposes is
sure to be true on a; and if the uppermost wff in rules Rl, R6, and R7 is
true on a, both of the two wffs into which it decomposes are sure to be true
on a. Hence, if the members of the set tested are true on any truth-value
assignment, then either all the wffs on the left-most branch of a tree must
be true on that assignment, or all those on the next branch, or all those on
the next, and so on. But the wffs on a closed branch cannot all be true on
any truth-value assignment: one of them is the negation of another. So, if
all the branches of a tree are closed, the set tested is sure to be
inconsistent.

Proof of (2) uses the notion of a "model set/' a model set S being such
that:

(a) If the negation ~A of an atomic wff A belongs to S, then A does not
belong to S;

(b) If a conjunction A & B belongs to S, then both A and B belong to S;
(c) If a disjunction AvB belongs to S, then at least one of A and B

belongs to S;
(d) If a conditional A D B belongs to S, then at least one of ~ A and B

belongs to S;
(e) If the negation ~~A of a negation ~A belongs to S, then A belongs

to S;
(f) If the negation - (A & B) of a conjunction A & B belongs to S, then

at least one of ~A and ~B belongs to S;
(g) If the negation ~(Av5) of a disjunction Avΰ belongs to S, then

both ~ A and ~ B belong to S; and
(h) If the negation ~ (A ^ B) of a conditional A^ B belongs to S, then

both A and ~J3 belong to S.

Now let S * consist of the atomic components of the various members
of a model set S of wffs. It is easily shown by mathematical induction on
the length of an arbitrary member of S that each and every member of S is
sure to be true on the result of assigning T to every member of S* which
belongs to S, F to every one whose negation belongs to S, and either T or F
to every other member of S*. So any model set is consistent.3 But the set
made up of the wffs on any open branch of a tree is readily seen to be a
model set. Hence that set (plus of course each one of its subsets) is sure
to be consistent. So, if any branch of a tree is open, then the set tested is

3. The notion of a model set is due to Hintikka, see [3], pp. 22-29; see also [6], p.
57, where model sets are called Hintikka sets.
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sure to be consistent, and its members are sure to be true on the following
truth-value assignment: T to every atomic wff which occurs unnegated on
that branch, F to every one which occurs negated, and either T or F to
every other atomic component of the members of the set. (The two truth-
value assignments under Example 2 were gotten that way: 'R9 occurred
unnegated, and both ζP9 and 'Q9 occurred negated, on the left-most branch
of the tree; (R9 occurred unnegated, and Ψ9 occurred negated, on the third
branch.)

2. Whether or not a wff A from SC is valid (i.e., is a tautology) can
likewise be tested by means of a Smullyan tree. Indeed, A is valid if and
only if {~ A} is inconsistent. So, if {~ A} has a closed tree, A is sure to be
valid; whereas, if {~ A} has an open tree, A is sure not to be valid, and a
truth-value assignment on which A is false (i.e. ~A is true) can be read
off any open branch of the tree. But the validity of A can be tested in
another and more direct way.

Smullyan trees have duals, to be known here as dual trees. The
branches of a dual tree, gotten by breaking up a wff A into shorter wffs,
breaking up these shorter wffs into still shorter ones, and so on, represent
the various ways in which A could be false. And proof will be given below
that:

(3) If every branch of a dual tree is closed, A (the wff tested) is valid,
whereas

(4) If at least one branch stays open, A is not valid, and a truth-value
assignment on which A is false can be read off any open branch of the tree.

With '~9, '&', 'v>, and o * serving again as primitive connectives, the
rules for breaking truth-functional compounds now run:4

TABLE II

Rl f R2f R3'
A &£ AvB A ^ B

/ / \ v A -A
A B B B

R4f R5f R6f R7'

— A ~(A&£) ~{AvB) ~{A^B)

~B ~A ~J3 A ~J3

4. When ' Ξ ' also serves as a primitive connective, two extra rules serve to break
up compounds of the sort A =B ov the sort ~{A = B):

A s B ~ ( A Ξ B)

-A A A -A
B ~B B ~ £
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Illustrations are as follows. Since every branch of the first tree is
closed, the wff tested is valid; since four branches of the second stay open,
the wff tested is not valid.

EXAMPLE 3: (P z> (~ρ & β)) Z> ((Q D ~p) & (P D R)).

1 (P z> (~ ρ & β)) z> ((ρ D ~p) & (p D β))

2 ~(PO (-Q&R)) (R3', 1)
3 (Q=3 ~P) & (P ^ β) (R3 f, 1)

4 P ~ ( ~ Q & β ) (R7f, 2)
5 Λ ~~ζ) (R5',4)
6 / \ ~ β (R 5'> 4 )
7 / \ Q ( R 4 ' ' 5 )

8 Q3~P PDβ Q 3 - P P-DR (Rfl, 3)
9 ~Q ~P ~Q - P (R3f, 8)

10 ~P β ~P β (R3f, 8)

X X X X

EXAMPLE 4: ((P D Q)v(P^β)) 3 (~(~P D Q)vβ).

1 ( ( P 3 Q ) v ( P ^ P ( ~ ( ~ P 3 § ) v β )

2 ~((P=>Q)v(PDβ)) (R3f, 1)
3 -(~P3Q)vβ (R3f, 1)
4 -(~PDQ) (R2f, 3)
5 β (R2f, 3)

6 ~P ~Q (R7r, 4)

7 ~(P^>Q) ~ ( P ^ β ) ~(P3Q) ~ ( P 3 β ) (R6f, 2)

/ \ / \ / \ / \
8 P ~Q P ~ β P ~Q P ~ β (R7f, 7)

X X X X

Line 1 here is sure to be true on the result, for example, of assigning T to
both 'P9 and 'Q', and F to 'R9, an assignment picked off the second branch.

Proof of (3) is as follows. If the uppermost wff in rule R4' is false on
some truth-value assignment a, the one wff into which it decomposes is
sure to be false on a; if the uppermost wff in rules Rl ', R6 f, and R7Γ is
false on a, at least one of the two wffs into which it decomposes is sure to
be false on a; and if the uppermost wff in rules R2 f, R3', and R5f is false on
a, both of the two wffs into which it decomposes are sure to be false on a.
Hence, if the wff tested is false on any truth-value assignment, then either
all the wffs on the left-most branch of a dual tree must be false on that
assignment, or all those on the next branch, or all those on the next, and so
on. But the wffs on a closed branch of a dual tree cannot all be false on any
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truth-value assignment. So, if all the branches of a dual tree are closed,
the wff tested cannot be false either on any truth-value assignment, and
hence has to be valid.

Proof of (4) calls for the notion of a "dual model set," a dual model
set S being such that:

(a') If the negation ~A of an atomic wff A belongs to S, then A does not
belong to S;

(bf) If a conjunction A & B belongs to S, then at least one of A and B
belongs to S;

(cf) If a disjunction Ay Bbelongs to S, then both A and Bbelong to S;
(df) If a conditional A 3 B belongs to S, then both ~A and B belong

to S;
(ef) If the negation ~~A of a negation ~A belongs to S, then A belongs

to S;
(ff) If the negation ~ (A & B) of a conjunction A & B belongs to S, then

both ~ A and ~ B belong to S;
(gf) If the negation ~ (A v B) of a disjunction A v £ belongs to S, then at

least one of ~A and ~B belongs to S; and
(h') If the negation ~(A 3 JS) of a conditional A D £ belongs to S, then

at least one of A and ~B belongs to S.

Now let S* consist this time of the atomic components of the various
members of a dual model set S of wffs. An obvious induction will show that
each and every member of S is sure to be false on the result of assigning F
to every member of S* which belongs to S, T to every one whose negation
belongs to S, and either T or F to every other member of S*. But the set
made up of the wffs on any open branch of a dual tree is a dual model set.
So, if any branch of a dual tree is open, then the wff tested is sure to be
false on the following truth-value assignment: F to every atomic wff which
occurs unnegated on that branch, T to every one which occurs negated, and
either T or F to every other atomic component of the members of the set.
(The truth-value assignment under Example 4 was gotten that way: *P9 and
ζQ9 occurred negated, and ζR9 occurred unnegated, on the second branch of
the tree.)5

3. Dual trees can also be used to test the consistency of a finite set of wffs
from SC. Indeed, {Al9 A2, . . . , An} is inconsistent if and only if ~(AX &
A2 & . . . & An) is valid. So, if this negated conjunction has a closed dual
tree, the original set {A1,A2} . . . , An] is sure to be inconsistent; whereas,
if ~(Aj_ & A2 & . . . & An) has an open dual tree, the set is sure to be
consistent, and a truth-value assignment on which Au A2, . . . , An are sure
to be true can be read off any open branch of the tree. But Smullyan trees

5. The reduction technique of [2] resembles our dual trees. In [1] it is extended to
the quantificational calculus and abbreviated so as to require less rewriting of
formulas. In [7] it is extended to quantified modal logic.
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are a more direct means of testing consistency, exactly as their duals are
a more direct means of testing validity.

The techniques presented above extend to the quantificational calculus.
Finite sets of wffs from that calculus can again be tested for consistency,
and individual wffs tested for validity, by means of trees. The rules for
breaking up quantifications and their negations are the same whether the
tree constructed be a Smullyan tree or the dual of one:

TABLE ΠI

R8 R9 RIO Rll
(VX)A ~(VX)A (IX) A ~(3X)A

A{C/X) ~A(C/X) A(C/X) ~A(C/X)

Note: In all four rules A(C/X) is the result of putting the
individual constant (= parameter) C for every free occurrence
of X in A. In rule R8 and Rl l , C may be any individual con-
stant, and the compound may be decomposed as often as
desired. In rules R9 and RIO, C must be foreign to any branch
on which ~A(C/X) and A(C/X) are entered, and the compound
may be decomposed only once.

A full account of Smullyan trees at the quantificational level will be found in
[4], [5], and [6].
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