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Eventual Permanence

MICHAEL BYRD

Some statements are true now and will be true from now on. Such state-
ments are permanently true. This kind of claim figures prominently in reasoning
about such diverse topics as games, natural resources, and cosmology. The
significance of the notion of presently permanent truth has long been realized.
It is in fact just the Diodorean conception of necessity, a notion which has been
widely and thoroughly examined (see [3] and [4]).

Some statements, while not permanently true now, will sooner or later
become permanently true. Claims with this modal status also figure prominently
in reasoning about many diverse topics. For example, it is not now true that
our oil reserves are exhausted. However, eventually it will be true that these
reserves are permanently exhausted.1

The usefulness of the concept mentioned in the preceding paragraph ex-
tends to circumstances where the concern is not with universal permanence,
but with what is permanent in a system. Games yield many examples of this
kind. At a certain move in a chess match, the statement, "White has no Queen,"
may be false. Yet, it may also be true, because of the arrangement of the pieces
on the board, that it will eventually be permanently true that White has no
Queen. Relative to that move in that particular chess game, the statement,
"White has no Queen," will eventually be permanently true.

These examples suggest that the concept of eventual permanence is a
significant and useful one. Unlike Diodorean necessity, however, the idea of
eventual permanence has been largely neglected. The only exception to this
pattern of neglect with which I am familiar is Rescher and Urquhart's treatment
of "Marxist necessity" ([4], pp. 135-137). Their discussion, while correct as
far as it goes, is admittedly inconclusive on an important point which will be
discussed below. Moreover, they restrict their investigation to a special case, a
case which is not necessarily the most interesting or significant. My aim in this
paper is to begin where Rescher and Urquhart leave off and to give a more
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thorough treatment of the notion of eventual permanence and its most impor-
tant applications.

The task is twofold. First, it is necessary to find a precise, but intuitively
satisfactory, account of the truth conditions of statements of the form, "It will
eventually be permanently true that p . " This proves to be a problem that is not
entirely trivial. Second, I shall seek to isolate the logic of eventual permanence
by providing axiomatic systems which are sound and complete relative to this
concept. As is usual in such cases, what the logic of the notion is depends on
what assumptions are made concerning the structure of time. In succeeding
sections, I concentrate on two key cases: (a) linear, unending time; (b) branch-
ing, unending time. Some other cases are discussed more briefly.

1 Unending, linear time For temporal structures of this kind, Rescher and
Urquhart supply the following truth condition (see [4], p. 135) for sentences
of the form, "It will eventually be permanently true that 5":

VI V(LS, x) = t iff(Ey)(y > x and (z)(ifz >yy then V(S, z) = t)).

For the case of linear, unending time, VI provides a satisfactory explication of
the truth-conditions for eventual permanence. The truth of LS implies that,
eventually, it will always be true that 5; the falsity of LS implies that it will
never be the case that S is permanently true.

Rescher and Urquhart conjecture that the logic of eventual permanence
is, in this case, represented by the modal system D5. This logic is axiomatized
in the following way:

ASO All truth-functional tautologies.
Al L(SDT)D.LSDLT
A2 LS D MS
A3 MS D LMS
Def. (MS=~L~S)
Rules. Substitution, modus ponens, necessitation.

Obviously, D5 is sound relative to VI. However, Rescher and Urquhart leave
the completeness of D5 as an open question. That D5 is indeed complete is a
consequence of Segerberg's generalization of Scroggs's Theorem ([5], pp. 126,
190). Segerberg shows that the only consistent extensions of D5 are D5,
D5 Altn (n > 2), S5, and 55 Altn (n > 1). Here the system D5 Altn (respec-
tively, S5 Altn) is formed by adding the axiom:

Alt* LS, v L(Sλ D S2) v L((Sι & S2) D S3) v . . . v L(iSx & S2 & . . . & Sn) D

to the system D5 (S5). The correct logic for eventual permanence is not an
extension of 55, since eventual permanence does not imply truth. Because D5
is sound for VI, it follows that the correct logic is D5 or D5 Altn, for some n.
To see that no D5 Altn is correct, consider the structure <iV, <>, where N is the
natural numbers and < is "less than". This structure validates D5, when " I " is
interpreted via VI. To falsify Altn, consider the valuation Vn for which:

KΛ(5/,/) = /iff iΞ/mod(/i+l).
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On this valuation, no disjunct of Altn is true at 0. Consider, for example, that
kth disjunct L((Sχ & . . . & Sk^) D Sk). For every m such that k = m moά{n + 1),
Vn(Sλ & . . . & Sfr-i, m) - t and Vn{Sk, m) =/. Since there are infinitely many
numbers of this kind, the kth disjunct is false at 0. So, the logic of eventual
permanence is not D5 Altn, for any n. The correct logic is therefore D5.

One further point is worthy of note. The dual of eventual permanence in
unending, linear time is an interesting concept in its own right. Using VI, the
operator "Λf' has the following truth-condition:

VΓ V(MS, x) = t iff O) (if> > x, then (Ez)(z > y and V(S, z) = f)).

Consequently, the truth of MS implies that S never permanently ceases to be
true. Put in positive and more familiar terms, the truth of MS implies (and is
implied by) the claim that the truth of S will eternally recur. The dual of
eventual permanence in infinite linear time is therefore eternal recurrence, and
the logic of the notion of eternal recurrence in this sort of temporal structure
is D5.

2 Unending, branching time Rescher and Urquhart consider the notion of
eventual permanence only for the case of linear time. But, of course, it is not
true that the concept of eventual necessity presupposes the linearity of time. It
is clearly consistent to maintain that there are and will be distinct, alternative
future courses of events, even though certain conditions are eventually perma-
nent. Recall the chess example mentioned at the beginning of the paper. In that
case, it can be maintained that "White has no Queen" will eventually be per-
manently true and yet that there are distinct, alternative ways in which the
match might proceed. Consequently, an investigation of eventual permanence
in unending, branching time is a natural and important extension of Rescher
and Urquhart's work.

The first problem is to provide a formal truth condition for this concept
that is appropriate in a forward branching temporal structure. It is clear that
VI of Section 1 will not work since, on that definition, it is possible that
V(LS, x) = t and V(L~S, x) = t. The trouble with VI is that it doesn't require
enough for the truth of LS. On VI, LS can be true if S becomes always true in
some alternative future. But this latter fact is not sufficient to imply that the
truth of S will eventually be permanent.

A natural first idea for improvement is the thought that the right-hand
side of the biconditional in VI should be made to hold for every u > x . Thus,
one might propose:

V2 V{LSt x) = t iff {u){if u > x, then (Ey)(y > u and (z)(if z> y, then
V(S, z) = 0)).

This definition succeeds in ruling out the possibility that both LS and L ~S are
true at x. However, it is still not an intuitively satisfactory definition. For if S
is to be eventually permanent in a branching structure, then, no matter what
course the future takes, S must sooner or later turn out to be always true. But
the right-hand side of V2 can be true even if there is an alternative course of
events in which the falsity of S eternally recurs. This possibility is realized in a
branching structure of the following sort:
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~S ~5 ~S ~S ~S forever

^ A r < J ^ \ r - c / ^ S : . . .

^ \ . ^ \ . ^N. ΦJQ

<o X ^ X ^ X

v\\ .
•

In this model, LS is true by V2 at 0, although, intuitively speaking, it is not
true at 0 to say that it will eventually be permanently true at S. So, V2 isn't a
satisfactory definition, either.

To obtain an adequate truth condition, it is necessary to introduce the
concept of a temporal branch. Given an irreflexive, transitive ordering of mo-
ments, a temporal branch is a possible course that events might actually take.
Such a course is represented by a set whose elements are linearly ordered with
respect to one another and which is maximal among such sets. That is, a set B is
a temporal branch in a branching structure iff:

1. For distinct x and y in B, x < y or y < x

2. If B C B*, then there are distinct x and y in B* for which neither x < y
nor y < x holds.

Using the concept of a temporal branch, a correct characterization of
eventual permanency can be obtained. For it to be true at time x that S will
eventually be permanently true it must be the case that no matter which branch
through x is considered, the truth of S sooner or later becomes permanent on
that branch. This is expressed in V3:

V3 V(LS, x) = t iff for every branch B, if x e B, then (Ey)(y eB andy>x
and (z) (ifzeB andz>y, then V(S, z) = t)).

Before proceeding to determine the logic of eventual permanency so de-
fined, it will be worthwhile to distinguish eventual permanence from a closely
related concept. This concept is given by the truth condition:

V3* V(NS, x) = t iff for every branch B, ifx e B, then (Ey)(y eBandy>x
and (z) (ifz>y, then V(S, z) = ί)).

V3* defines a concept appropriately described as eventual Diodorean necessity.
For, if NS is true at xf then no matter which branch through x is considered,
we will sooner or later arrive at a point at which S is necessary, in the Diodorean
sense.
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Despite the similarity between V3 and V3* they do not coincide. To see
this, consider the model on which ςS' is assigned these values:

μ , / ^|« t +. forever

" v v ^ \ \V further
vv vv vv similar
\V Vf >̂C branches

\ \ . \ .

•

In this model, LS is true at 0 according to V3. No matter which branch through
x is chosen, it ends in an unbroken string of ί's. However, V3* assigns NS false
at 0; for no matter what point on the top branch is chosen, there is always a
later point (not on the top branch) at which S is false.

The preceding model suggests an example which brings out the distinction
between what will eventually be permanently true and what will eventually be
necessary in the Diordorean sense of necessity. Suppose that there are only ten
years of oil reserves left and that the reserves cannot be replenished. Assume
also that we may postpone indefinitely (because of alternative energy sources)
our use of this reserve. In this circumstance, it is correct to claim that the state-
ment, "Oil is not being used as an energy source," will eventually be perma-
nently true. If in the future we never choose to use oil again, then in that case
the claim is clearly a permanent truth. On the other hand, should we decide at
some point to use the reserve, then after ten years it will be exhausted. There-
after, the claim, "Oil is not being used as an energy source," will be perma-
nently true.

, Note, however, that it is not correct to claim that "Oil is not being used as
an energy source" will eventually be necessary, in the Diodorean sense of neces-
sity. For suppose we postpone using the reserve forever. In that case, the claim
that oil is not being used is permanently true. However, it is not necessary since
at any future point there is an alternative future course in which oil is used for
a while as an energy source.2

Let me return now to the task of isolating the logic of eventual perma-
nence, as defined in V3, for a branching, unending temporal structure. The
correct logic is a system which I shall call D4C. This system is axiomatized, as
follows:

ASO All truth-functional tautologies.
Al L(SDT)D LSDLT
A2 LS D MS
A3 LS D LLS
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A4 L(LS D S)
Rules, substitution, modus ponens, necessitation.

It seems worthwhile to comment briefly on some of these axioms. A2
reflects the fact each branch is unending. A3 says that if S is eventually neces-
sary, then 5"s eventual permanence will eventually be permanent (in fact, it is
presently permanent). A4 is perhaps the most interesting. It is clear, of course,
that LS D S is not valid for eventual permanence. It need not be true that some-
thing which will eventually be permanent need be true now. However, as A4
says, it will eventually be permanently true that whatever is eventually perma-
nent is true. For if this were not so then something might be going to be perma-
nently true forever without ever actually becoming permanently true. And this
last is impossible.

3 Completeness The remarks of the preceding paragraph form the core of
a proof that every theorem of D4C is valid for eventual permanence in unend-
ing, branching time. It remains to show that D4C is complete.

Consider the Scott-Lemmon canonical frame (WD4C, RD4C)ΪOXD4C, where
Wβ4c is the class of all D4C maximal consistent sets and for all X, Y in D4C,
XRD4CY iff \A: LA e X\ C Y. An irreflexive, transitive ordering < i s imposed
on this frame using the following definitions:

Dl For X, Y e WD4C, X - Y iff X = Y or both XRD4CY and YRD4CX.
D2 The cluster [X] = 17: X^ Y\.
D3 [X] precedes [Y] iff XRD4CY and not-ΎRD 4 CX.

To define the ordering relation < on WQ4C, first select for each cluster [X] an
arbitrary linear order <[jr] on [X]. The relation < is defined by cases:

1. H[X] = [Y],X<YiffX<[X]Y
2. If[X]Φ[Y],X<Y iff [X] precedes [ Y].

It is clear that < is irreflexive and asymmetric; < is transitive since RD4C i s

(The ideas used here derive from Segerberg [5], p. 75.)
Given the structure (WD4C, O , we define a sequence of such structures

whose union is the frame for the model required to show completeness. First,
we extend the definitions of ~ and [ ] to pairs of the form (U, X) where ί/is a
set and X is in WQ4C

D4 (U, X) ~ (Uf, Y) iff U = U' and X - Y.

D5 The cluster [<£/, X)} = \<U, Y): <£/, X) - <J7, Y)\.

Next, we define by recursion a sequence of structures (Wn, <n).

Al. Wo=U0,X):XeWD4Cl

2. if <0, JO, <0, Y) e WD4C) then <0, X) < 0 <0, Y) iff X<Y.

Bl. Wn+ί= Wn U {<£/, X): U is a cluster in Wn of the form [<K, 7>], F i s a
reflexive member of WD4C, and either [<F, Y)] = [<F, X)] or
<V, YXn{VtX)\.

2a. if £/, U' eWn,U<n+1 U' iff U <n U'.
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2b. if <£/, X), <U', Y) e Wn+ι - Wn, then <£/, X) <n+ί <£/', 7> iff £/ = £/'
and X < Y.

2c. if <£/, X) e Wn+1 - Wn and <£/', r> e R>π, then <£/', F> < Λ + 1 <£/, X) iff
there is a cluster [<£/", Z>] such that U = [<ί/", Z>] and either
<£/', r> ~<£/", Z> or (U\ Y) <n <£/", Z).

Wn+1 extends Wn and < r t + 1 extends <n. We define the frame (W*, <*) by setting
W* = U R/Λ and defining C/ <* £/' iff for some n, U<nU'.

The relation <* is clearly irreflexive and asymmetric. Transitivity of <*
requires a simple induction which we omit. It also needs to be established that
each branch in W* is unending. To do this, we prove first that if X is an ir-
reflexive element of WD4c, then X occurs only in pairs of the form (0, X).
Suppose X does not occur as right-hand member of any element in Wk+1 - Wk,
for any k < m. If X does occur as a right-hand member of an element of
Wm+1 ~ Wm, then X occurs in an element of the form <[<K, Γ>], X). Here
[<K, Y)} is a cluster in Wm, either [(V, Y)] = [(V, X)] or (V, Y) <m <V, X), and
Y is a reflexive element in WD4C- Since X is irreflexive, [(V, Y)] Φ [(V, X)] so,
(V, Y) <m (V, X). Since <m is defined on Wm, (V, X) is in Wm. By the induction
hypothesis, (V, X) is not in Wk+1 - Wk for any k < m. Thus <K, X) is in Wo and
so has the form <0, X\ and (V, Y) has the form <0, Y). Since (0, F> <m <0, X),
we have <0, F> < 0 <0, Λr>, and so Y<X. Now 7 < X implies that YRD4CX. Since
X is irreflexive, there is a wff 5 such that LB e X and ~ £ e X. But L(LB D £) is
a theorem of ZMC and so L(LB D B) is in Y. Thus, LB D B is in X, a contradic-
tion, thereby establishing that X occurs only as right-hand members of elements

of H/o.
To show that every branch in W* is unending, let (Vt Y) be a member of a

branch Γ. Either Y is irreflexive or reflexive. If it is irreflexive, (V, Y) = <0, 10.
Since LA D MA is in D4C, there is an X such that YRO4QX. By the transitivity
of*, not-AjR/^cT- Thus F < * and <0, F> <* <0,*>. If Y is reflexive, <F, Y) < *

<[<F, r>], r>.

To define the canonical countermodel v* on W*, <*>, we set:

For each sentence letter £>, υ* (p, (V, X)) - t iff p e X.

It must be shown that:

For each sentence A,υ*(A,(VtX)) = tiffAe X.

The only problem concerns the case where A-LB. So, suppose LB e X and let
T be a branch in W* containing <K, *>. Assume <£/, F> is on Γ and <F, X) < *
<£/, Y). We wish to show that B e Y. This will follow from the fact that for any
n, if (V, X) <n (U, y>, then XRD4CY. If Λ = 0, the result follows because
<0, X) < 0<0, r> iff X < Y. Next, assume the result holds if k < m. If both <F, X)
and <C/, F> are in Wm+1 - Wm, the result holds because (V, X) <m+ι (U, Y) only
if X < Y. Suppose then that (V, X) e Wm and <£/, Y) e Wm+ι - Wm. There must
be a cluster [<£/", Z)] such that U = [(U", Z>] and either (K, *> -<ί/' ;, Z>or
<V, X) <m <U", Z>. Suppose the former: then XRD4CZ. Now, <[<£/", Z>], F) is
in W/m+1 - R̂ m only if either <U", Z) = <U", Y) or <ί/", Z) < m <£/", F>. In the
first case, ZRD4CY; so XRD4CY, by transitivity. If <ί/", Z> < m <ί//;, F>, then
ZRj)4cY by induction hypothesis, and so XRj)4cY as before. If instead we
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assume that (V, X) <m <£/", Z>, we obtain XR^QZ by induction hypothesis
and proceed as in the previous case. Thus, (V, X) <* (U, Y) implies that
XRD4CY It follows that B e Y\ so, by the induction on rank, v*(B, <£/, Y)) = t
for each <ί/, Y) succeeding (V, X) on T. Thus, υ*(LB, (V, X)) = t.

Next, assume that LB 4 X. We must show that there is a branch T through
(V, X) such that ~B eternally recurs on T after <F, X). If LB i X, then M~B e X.
Hence, there is a Y in WD4C such that XRD4QY and ^2? e 7. Since XRD4CY and
L(JL4 D .4) is a theorem of D^C, we have YRD4CY. Let Qj, Q2, . . . be the
sequence of elements of W* defined by:

Qi =<[<F, Y)]9Y)

β « + r ( [ β « ] J > .

Now, <K, JSf) <* d . For let Λ be the least number such that (V, X) e Wn. Since
XRj)4cY, either X ~ Y or X < Y. In either case, the definition of <n+\ guar-
antees that (V, X) <n+ι Qv By a similar argument, we have β^ <* Qk+\ for
each A:. Let T be a branch through (V, X) which terminates with the members
of [ β j , followed by the members of [Q2], and so on. By the induction on
rank, υ*(~B, Qi) = t. Thus, for each U on T9 there is a Qi after ί/ which falsifies
B.So9υ*(LB,(V,X))=f.

Since every nontheorem of D4C is falsified somewhere in W* on i;*, it
follows that every nontheorem of D4C can be falsified in an unending, branch-
ing structure, where LS means eventual permanence. This establishes the com-
pleteness of D4C.

Several facts about D4C are worth noting. Although D4C has not been
discussed previously in connection with modal or tense logic, it has been sug-
gested by Hintikka as a candidate for a satisfactory deontic logic ([1], p. 185).
The system is sound and complete for the class of frames (W, R) where R meets
the conditions:

1. (x)(Ey)(xRy)
2. (x)(y) (if xRy, then yRy)
3. (x)(y)(z) (if xRysndyRz9thenxRz).

Using the method of filtrations, it is apparent that D4C has the finite model
property relative to the class of frames just described. So, D4C is decidable.
Furthermore, D4C has the same structure of modalities as S4, excepting the
null modality. Finally, a natural deduction formulation of D4C is obtained by
making two changes in the usual rules for S4 (see [2], pp. 331-334): (a) add the
rule, from LA and L ~ A, infer B; (b) restrict applications of the necessity
elimination rule to strict subderivations.

I should add that I believe the methods employed in this section have a
significance beyond the particular problem considered here. These methods
have enabled us to gain insight into a modal operator whose structure is of
greater complexity than traditionally considered modal operators. To see this,
reflect on the quantificational structure of the truth conditions of the usual op-
erators and of eventual permanence. Necessity, in its various guises, has a truth
condition of the form (x)(. . . x . . .). On the other hand, the truth conditions
V3 for eventual permanence have roughly the form (x)(3y)(z)(. . x . . y . . z . .).
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It seems to me not unlikely that other interesting concepts have truth-condi-
tions with this or a similar structure. So, methods like the one used above may
well be significant analytical tools.

4 Concluding remarks Throughout the discussion, I have assumed that the
temporal structures are unending. If this assumption is dropped, then the truth-
conditions VI and V3 should be revised. For, as these conditions stand, both
15 and L ~ S would be true at any final moment. The natural intuition here
however, I think, is that truth, permanence, and eventual permanence collapse
at a final moment. This difficulty can be surmounted by replacing strict in-
equalities in VI and V3 by <.

What logics are obtained by dropping the "no last moment" assumption
and revising VI and V3 as indicated? The answer is the same as before; linear
time with modified VI yields D5; branching time with modified V3 yields D4C.

Another interesting question concerns assumptions intermediate between
linearity and branching. The most familiar assumption of this kind is future
convergence:

FC (x)(y)(Ez)(x <zandy< z).

A first question to face is: what truth-condition is appropriate, VI or V3? The
answer to this question isn't obvious. My criticism of VI in branching time is
not correct if applied to future convergent time. So I shall leave this question
undecided.

It is important to note, however, that the choice of truth-condition affects
the logic of eventual permanence. If VI is used, then the logic of eventual
permanence in unending, FC time is D5. On the other hand, if V3 is used, the
logic is weaker. To see this note that MLS D LS is false at 0 in the following
structure:

Moreover, the correct logic is stronger than D4C, since the familiar postulate
MLS D LMS is valid on V3 in unending, convergent time. My conjecture is that
the correct logic is the logic D4.2C obtained by adding the usual convergence
postulate to D4C.

Finally, I want to return to the notion of eternal recurrence. I suggested
earlier that eternal recurrence was the dual of eventual permanence in linear
time. This duality doesn't hold in branching time. The dual of 'L' on V3 is given
by the condition:

V3' V(MS, x) = t iff there is a branch B such that x is in B and for every
y > x, ify e B, then there is a z > y and z e B for which V(Sf z) = t.
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In my opinion, this condition is too weak to adequately represent eternal
recurrence. Condition V3' makes MS true at 0 in the model:

s e t c ^ ^ -

However, my intuition is that it is false to claim at 0 that S will eternally recur.
To correctly claim at 0 that S will eternally recur, it is necessary that S eternally
recur, no matter what course the future may take. I thus suggest the following
as a satisfactory truth condition for eternal recurrence ('/?')•

V4 V(RS, x) = t iff for every branch B, if x e B, then for every y > x, if
y e B, there is a z, z>y, z e B and V(S, z) = t.

The reader should note that 'i?' is not the dual of 'V in branching time, since
~R ~ S D LS is not valid.

What logic correctly describes the logic of eternal recurrence in branching
time? I don't know, but it is easy to see that 7?' is not a familiar modal opera-
tor. To see this, note that 'R* differs from necessity-like operators in that
neither "RS D ~R ~ 5" nor "(RS & RT) D R(S & T)" are valid. On the other
hand, 7Γ differs from possibility-like operators in that " # ( 7 ^ D A)" is valid
and "^(^4 v B) D (RA v RB)" is not valid. I therefore leave the question of
axiomatizing 7Γ open.

NOTES

1. It is natural at first sight to think that the concept of eventual permanence should be

identified with the concept of eventual necessity, in the Diodorean sense of necessity.

Reasons challenging this identification emerge in Section 2.

2. My remarks do not mean that the 'internal logic' of W differs from 'ZΛ It does not. The

difference would emerge in a combined system where *NS 13 LSy would be valid, but not

ΊSDNS\
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