Word Problems for Bidirectional, Single-Premise Post Systems

CHARLES E. HUGHES and DAVID W. STRAIGHT

Introduction A bidirectional, single-premise Post system is a Post canonical form F where, if $R_{1} \rightarrow R_{2}$ is a rule, then $R_{2} \rightarrow R_{1}$ is also a rule. One class of bidirectional Post systems, the Thue systems first defined in [7], have been extensively studied. Thue systems with unsolvable word problems were shown to exist by Post [5] and, more recently, Overbeek [4] demonstrated that this class of problems represents every recursively enumerable (r.e.) many-one degree of unsolvability. In this paper we extend Overbeek's result to include bidirectional extensions of Post normal systems, tag systems, and the one-letter systems introduced by Hosken [1].

Post Systems Let Σ be a finite set of symbols and let $Q_{1}, Q_{2}, \ldots, Q_{n}$ be new symbols called operational variables. A word over $\Sigma \cup\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$, containing at least one operational variable, is called a word form. An identification of the operational variables $Q_{1}, Q_{2}, \ldots, Q_{n}$ is a set of pairs $\left\{\left(Q_{i}, W_{i}\right) \mid 1 \leqslant i \leqslant n\right\}$ where each W_{i} is a word over Σ. Let $Y \equiv y_{1} Q_{i_{1}} y_{2} Q_{i_{2}} \ldots$ $y_{m} Q_{i_{m}} y_{m+1}$ be a word form where $y_{1}, y_{2}, \ldots, y_{m+1}$ are words over Σ and $Q_{i_{1}}, Q_{i_{2}}, \ldots, Q_{i_{m}}$ are operational variables. Then Y^{\prime} is the result of applying the identification $\Phi=\left\{\left(Q_{i}, W_{i}\right) \mid 1 \leqslant i \leqslant n\right\}$ to Y, denoted Y^{Φ}, if $Y^{\prime} \equiv$ $y_{1} W_{i_{1}} y_{2} W_{i_{2}} \ldots y_{m} W_{i_{m}} y_{m+1}$.

A single-premise Post system $F=(\Sigma, V, P)$ is such that Σ is a finite alphabet, V is a finite set of operational variables, and P is a finite set of rules, each of the form $R_{1} \rightarrow R_{2}$, where R_{1} and R_{2} are word forms. Let W_{1} and W_{2} be words over Σ. Then W_{2} is said to be an immediate successor of W_{1} in F, denoted $\left(W_{1}, W_{2}\right)_{F}$, if there exists some rule of $P, R_{1} \rightarrow R_{2}$, and some identification Φ of V such that $R_{1}^{\Phi} \equiv W_{1}$ and $R_{2}^{\Phi} \equiv W_{2} . W_{2}$ is said to be derivable from W_{1} in F, denoted $\left[W_{1}, W_{2}\right]_{F}$ (or $\left[W_{1}, W_{2}\right]$, whenever F is understood from context), if there exists a sequence $Y_{1}, Y_{2}, \ldots, Y_{k}$, where $k \geqslant 1$, of words over Σ such
that $Y_{1} \equiv W_{1}, Y_{k} \equiv W_{2}$ and for each $j, 1 \leqslant j<k,\left(Y_{j}, Y_{j+1}\right)_{F}$. The length of the above derivation is $k-1$ and each Y_{i} is said to be in the derivation of W_{2} from W_{1}.

A Post normal system $N=(\Sigma,\{Q\}, P)$ is a Post system where each rule is of the form $\alpha Q \rightarrow Q \beta$, for α and β words over Σ. Let $N=(\Sigma,\{Q\}, P)$ be a Post normal system where $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then N is called a tag system if there exist a constant positive integer d, called the deletion number of N, and for each $i, 1 \leqslant i \leqslant n$, a word W_{i}, uniquely corresponding to a_{i}, such that

$$
P=\bigcup_{i=1}^{n}\left\{a_{i} W Q \rightarrow Q W_{i} \mid W \text { is a word over } \Sigma \text { and }|W|=d-1\right\} .
$$

A restricted Post canonical form (RPCF) $R=(\{1\},\{X\}, P)$ is a system where each rule is of the form $X^{a} 1^{b} \rightarrow X^{c} 1^{d}$ (where Y^{z} represents z consecutive occurrences of Y). These one-letter forms are more commonly viewed as systems operating on natural numbers. In this case each rule is of the form $a x+b \rightarrow$ $c x+d$ where a, b, c, and d are natural numbers. The natural number n_{2} is said to be an immediate successor of n_{1} if there is a rule $a x+b \rightarrow c x+d$ such that, for some natural number y, both $n_{1}=a y+b$ and $n_{2}=c y+d$. The association of this latter formulation with canonical systems is clear when we interpret a string of n consecutive 1 's as representing the natural number n.
Bidirectional Post Systems Let $F_{1}=\left(\Sigma, V, P_{1}\right)$ be a single-premise Post system. The inverse of F_{1} (sometimes denoted F_{1}^{-1}) is the system $F_{2}=\left(\Sigma, V, P_{2}\right)$ where P_{2} contains the rule $R_{2} \rightarrow R_{1}$ just in case P_{1} contains $R_{1} \rightarrow R_{2}$. The rules in F_{2} are in effect the inverses of those in F_{1}. While the inverses of semi-Thue and Thue systems are themselves semi-Thue and Thue systems, respectively, the inverses of Post normal systems are not normal and the inverses of tag systems are not tag systems.

The bidirectional extension of any single-premise system $F_{1}=\left(\Sigma, V, P_{1}\right)$ is the system $F_{3}=\left(\Sigma, V, P_{1} \cup P_{2}\right)$ where P_{2} is the set of rules contained in the inverse of F_{1}. The primary research reported here concerns properties of the word problems for bidirectional extensions of Post normal systems, tag systems, and RPCF's.
Decision Problems for Post Systems If $F=(\Sigma, V, P)$ is a Post system then the word problem for F is the problem of determining for arbitrary W_{1} and W_{2} over Σ whether or not [W_{1}, W_{2}]. The confluence problem for F is the problem of determining for arbitrary W_{1} and W_{2} over Σ whether or not there is a W_{3} over Σ such that $\left[W_{1}, W_{3}\right]$ and $\left[W_{2}, W_{3}\right]$. The decision problem for F with axiom A over Σ is the problem of determining for arbitrary W over Σ whether or not $[A, W]$. The general word problem (general confluence problem, general decision problem with axiom) for a class of systems, e.g., all tag systems, all Post normal systems, etc., is the family of word problems (confluence problems, decision problems with axiom) for all such systems.

Let G_{1} and G_{2} be a pair of general decision problems (that is, classes of decision problems such as the general confluence problem for tag systems) then G_{1} is said to be many-one reducible to G_{2} if there exists an effective mapping Ψ of the problems P in G_{1} into the problems $\Psi(p)$ in G_{2} such that, if
p is nonrecursive, then p is of the same many-one degree as $\Psi(p)$. Every nonrecursive r.e. many-one degree is said to be represented by G_{2} if the general decision problem for r.e. sets is many-one reducible to G_{2}.

Deterministic Systems Let $F=(\Sigma, V, P)$ be a Post system. Then F is said to be deterministic if, for each word W over $\Sigma,\left(W, W_{1}\right)_{F}$ and $\left(W, W_{2}\right)_{F}$ implies that $W_{1} \equiv W_{2}$. Thus, each word has at most one unique immediate successor. The confluence problem for a deterministic system is equivalent to the word problem for its bidirectional extension as is shown by the following.

Theorem 1 Let F_{1} be a deterministic Post system, let F_{2} be its inverse, and let F_{3} be its bidirectional extension. Then the confluence problem for F_{1} is of the same one-one degree (that is, is isomorphic) to the word problem for F_{3}.

Proof: Let W_{1} and W_{2} be any two words over F_{1} 's alphabet. Then W_{1} and W_{2} conflue in F_{1} just in case there is some word W_{3} such that $\left[W_{1}, W_{3}\right]_{F_{1}}$ and $\left[W_{2}, W_{3}\right]_{F_{1}}$. But then $\left[W_{1}, W_{3}\right]_{F_{3}}$ and $\left[W_{3}, W_{2}\right]_{F_{3}}$, and consequently $\left[W_{1}, W_{2}\right]_{F_{3}}$. Hence, if W_{1} and W_{2} conflue in F_{1}, then W_{1} derives W_{2} in F_{3}.

Going in the other direction, assume $\left[W_{1}, W_{2}\right]_{F_{3}}$. Let $W_{1} \equiv U_{1}, W_{2} \equiv U_{n}$, and $\left(U_{1}, U_{2}\right)_{F_{3}}, \ldots,\left(U_{n-1}, U_{n}\right)_{F_{3}}$ represent a derivation in F_{3} such that there is no shorter length path from W_{1} to W_{2}. We claim that there must exist some j, $0 \leqslant j<n$, such that $\left(U_{m}, U_{m+1}\right)_{F_{1}}, 1 \leqslant m \leqslant j$, and $\left(U_{m}, U_{m+1}\right)_{F_{2}}, j<m<n$. This, in effect, says that once a rule from F_{2} is used we can never again choose one from F_{1}. If this claim were false then for some $k,\left(U_{k}, U_{k+1}\right)_{F_{1}}$ and $\left(U_{k-1}\right.$, $\left.U_{k}\right)_{F_{2}}$. But, since F_{1} is deterministic $U_{k+1} \equiv U_{k-1}$ and there is a derivation of length $n-3$, contradicting the fact that $n-1$ is minimal. Thus our claim is verified. But then $\left[W_{1}, U_{j+1}\right]_{F_{1}}$ and $\left[U_{j+1}, W_{2}\right]_{F_{2}}$ which implies that $\left[W_{1}, U_{j+1}\right]_{F_{1}}$ and $\left[W_{2}, U_{j+1}\right]_{F_{1}}$ and hence W_{1} and W_{2} conflue in F_{1}.

Word Problems for Bidirectional Extensions The general word problems for bidirectional extensions of tag and, consequently, Post normal systems may be trivially shown to represent every r.e. many-one degree. This is accomplished as follows.

Lemma 1 Every nonrecursive r.e. many-one degree is represented by the general confluence problem for tag systems.

Proof: While not explicitly claimed there, this result follows from the construction in Hughes [2] and the fact that every r.e. many-one degree is represented by the general confluence problem for register machines [3].

Theorem 2 Every nonrecursive r.e. many-one degree is represented by each of the general word problems for the bidirectional extensions of tag and Post normal systems.

Proof: Tag systems are clearly deterministic and thus, by Theorem 1, the confluence problem for a tag system is of the same many-one degree as the word problem for its bidirectional extension. Thus the degree result of Lemma 1 may be carried over to the general word problem for bidirectional extensions of tag systems. The result for Post normal systems is a consequence of the fact that every tag system is also a Post normal system.

The case for the bidirectional extensions of restricted Post canonical forms is not demonstrated as easily as was done for tag systems. Our basis for the result is in the work of Overbeek [3] in which he established that every nonrecursive r.e. many-one degree is represented by the confluence problem for n-register machines. What will be shown here is an effective procedure which when given an arbitrary n-register machine R will produce a bidirectional RPCF F such that the confluence problem for R is of the same many-one degree as the word problem for F.

An n-register machine R is a system having n registers each capable of storing any nonnegative integer. R is defined by an ordered set of m rules, each having one of the forms:

$$
\begin{aligned}
& \operatorname{ADD}_{i}(j) \text {, where } 0 \leqslant i \leqslant n \text { and } 1 \leqslant j \leqslant m+1 ; \text { or } \\
& \operatorname{SUB}_{i}(j, k) \text {, where } 0 \leqslant i \leqslant n, 1 \leqslant j \leqslant m+1 \text { and } 1 \leqslant k \leqslant m+1 .
\end{aligned}
$$

A configuration of R is an $(n+1)$-tuple $Z=\left(h, r_{0}, r_{1}, \ldots, r_{n-1}\right)$ where $1 \leqslant h \leqslant m+1$ and each r_{i} is a natural number. If $Z=\left(h, r_{0}, r_{1}, \ldots, r_{n-1}\right)$ and $Z^{\prime}=\left(j, s_{0}, s_{1}, \ldots, s_{n-1}\right)$ are configurations of R, then Z^{\prime} is the immediate successor of Z in R if either
a. rule h is $\mathrm{ADD}_{i}(j), s_{i}=r_{i}+1$, and $s_{t}=r_{t}$ for $t \neq i$; or
b. rule h is $\operatorname{SUB}_{i}(j, k), r_{i}>0, s_{i}=r_{i}-1$, and $s_{t}=r_{t}$ for $t \neq i$; or
c. rule h is $\operatorname{SUB}_{i}(k, j), r_{i}=0$, and $s_{t}=r_{t}$ for $0 \leqslant t<n$.

If $h=m+1$, none of the rules apply; this case can be thought of as a terminal configuration.

We shall now demonstrate an effective procedure which when applied to an arbitrary n-register machine R, produces a bidirectional RPCF F such that the confluence problem for R is of the same many-one degree as the word problem for F.

Let R be an n-register machine with m rules. Let p_{i} denote the $i^{\text {th }}$ prime number, with $p_{0}=2$. The bidirectional RPCF will have the rules:
Set 1. $p_{r} p_{s} X \leftrightarrow p_{r} p_{t} X$ for $n \leqslant r \leqslant m+n, n \leqslant s \leqslant m+n$, and $n \leqslant t \leqslant m+n$.
$p_{r} p_{s} p_{i} X \longleftrightarrow p_{r} \eta_{s} X$ for $n \leqslant r \leqslant m+n, n \leqslant s \leqslant m+n$, and $0 \leqslant i<n$.
$p_{r} p_{s} X \leftrightarrow p_{r} p_{s} p_{i} X$ for $n \leqslant r \leqslant m+n, n \leqslant s \leqslant m+n$, and $0 \leqslant i<n$.
Set 2. If rule h of R is $\operatorname{ADD}_{i}(j)$ then include the rule

$$
p_{h+n-1} X \longleftrightarrow p_{j+n-1} p_{i} X
$$

If rule h of R is $\operatorname{SUB}_{i}(j, k)$ then include the rule

$$
p_{h+n-1} p_{i} X \leftrightarrow p_{j+n-1} X
$$

and the rules

$$
p_{h+n-1} p_{i} X+p_{h+n-1} t \leftrightarrow p_{k+n-1} p_{i} X+p_{k+n-1} t
$$

for each $t, 1 \leqslant t<p_{i}$.
We now show that the word problem for F is of the same many-one degree as the confluence problem for R. Let $Z=\left(h, r_{0}, r_{1}, \ldots, r_{n-1}\right)$ be an arbitrary configuration of R. We define $G(Z)$ as the natural number $p_{h+n-1} p_{0}^{r} p_{1}^{r}{ }_{1} \ldots$ $p_{n-1}^{r} \cdot \underline{n-1}$. A natural number α is normal if there exists a configuration Z of R such that $G(Z)=\alpha$.

Let Z be an arbitrary configuration of R. We wish to show the following:

1. When applied to normal numbers, the rules of F are deterministic in a forward (\rightarrow) or left-to-right direction; $G(Z)$ has at most one forward immediate successor in F, and
2. Z^{\prime} is the immediate successor of Z in R implies $G\left(Z^{\prime}\right)$ is the forward immediate successor of $G(Z)$ in F.

To show these results, we note that no member of Rule Set 1 can apply to a normal number α, since a normal number has only one prime factor p_{w}, where $n \leqslant w \leqslant m+n$. p_{w} in this case will be p_{h+n-1}, with $1 \leqslant h \leqslant m+1$, and $\alpha=p_{h+n-1} y$. Thus, exactly one of the following will be true:
a. $h=m+1$, and α will have no forward successor in F.
b. Rule h of R is $\operatorname{ADD}_{i}(j)$. In this case α has the forward successor $p_{j+n-1} p_{i} y$.
c. Rule h of R is $\operatorname{SUB}_{i}(j, k)$ and $y=p_{i} r$ for some r. The forward successor of α will be $p_{j+n-1} r$.
d. Rule h of R is $\operatorname{SUB}_{i}(j, k)$ and y is not divisible by p_{i}. Then $\alpha=p_{h+n-1}$ $\left(p_{i} r+t\right)$ for some natural number r and $1 \leqslant t<p_{i}$, and α has the forward successor $p_{k+n-1} y$.

This establishes determinism for F in a forward direction for normal numbers. Let F^{\prime} be the restriction of F to the forward or left-to-right rules only. We have then shown the following.

Lemma 2 There is a one-to-one relationship between the confluence problem for R and the confluence problem for F^{\prime} restricted to normal numbers.

In addition, Theorem 1 establishes that the confluence problem for F^{\prime} is of the same one-one degree as the word problem for F, where each is restricted to normal numbers. Thus we may conclude

Lemma 3 The word problem for F restricted to normal numbers is of the same one-one degree as the confluence problem for R.

We now show that questions about abnormal numbers in F (and F^{\prime}) are either trivially decidable or are reducible to questions about normal numbers.

Let α be an abnormal number. Then α is abnormal due to one of the following disjoint set of reasons.

1. α is not divisible by any p_{i}, for $n \leqslant i \leqslant m+n$.
2. α is divisible by $p_{r} p_{s}$, where $n \leqslant r \leqslant m+n$ and $n \leqslant s \leqslant m+n$.
3. α is the product of some y and r where y is normal and r is not divisible by any p_{i} with $0 \leqslant i \leqslant m+n$.
Case 1: If α is not divisible by any p_{i}, with $n \leqslant i \leqslant m+n$, then none of the rules can be applied, and so α can derive only itself.

Case 2: If α is divisible by $p_{r} p_{s}$, where $n \leqslant r \leqslant m+n$ and $n \leqslant s \leqslant m+n$, then α is of the form $x y z$, where x is not divisible by any prime p_{i} where $i \geqslant n$, y is not divisible by any prime p_{j} when $j<n$ or $j>m+n$, and z is not divisible by any prime p_{i} where $i \leqslant m+n$. Possibly $z=1$. Let K be the number of prime divisors of y greater than 1 (K must be at least 2). K is the number of factors representing rules. α then derives by Rule Set 1 any β, where $\beta=u v z ; u$ is not divisible by any prime p_{i} where $i \geqslant n, v$ is not divisible by any prime p_{i} where $j<n$ or $j>m+n$, and v has k prime divisors.

Case 3: If $\alpha=y r$, where y is normal and r is not divisible by any prime p_{i}, where $i \leqslant m+n$, then by Rule Set 2α derives any $\beta=x r$ where y derives x. Case 3 thus reduces to questions about normal numbers.

As a result, derivability questions about abnormal numbers are either trivial or they reduce to questions about normal numbers. Combining this with Lemma 3 and the fact that every nonrecursive r.e. many-one degree is represented by the general confluence problem for n-register machines, we have proven the following.
Theorem 3 Every nonrecursive r.e. many-one degree is represented by the general word problem for bidirectional RPCF's.

Bidirectional Systems with Axiom We will show in this section that our results also hold for bidirectional extensions of systems with axiom. We start by showing that every nonrecursive r.e. many-one degree is represented by the decision problem for bidirectional RCPF's with axiom. To do this, we will first demonstrate that a slightly nonstandard version of the n-register machine yields the same many-one degree results.

We will use as a basis the halting problem for register machines. This was shown by Shepherdson [6] to represent every nonrecursive r.e. many-one degree. Given R, an arbitrary n-register machine with k rules, we construct R^{\prime} by adding the rules $k+1, k+2, \ldots, k+n$, where rule $k+i+1$ is $\mathrm{SUB}_{i}(k+i+1$, $k+i+2$) for $0 \leqslant i<n$.

Rule $k+n+1$ can be regarded as the terminal rule. Thus if the terminal state is reached in R^{\prime}, all the registers will have been zeroed out.
Lemma 4 Every nonrecursive r.e. many-one degree is represented by the halting problem for the revised n-register machines (that is, by n-register machines that zero all registers before halting).

Given a revised n-register machine R, we present a method of constructing an RPCF F and axiom A such that the halting problem for R is of the same many-one degree as the decision problem for F with axiom A. We will then show how the inverse rules for F can be added so that the same result will hold for the bidirectional RCPF.

Let R be an arbitrary revised n-register machine with m rules. Let p_{i} denote the $i^{\text {th }}$ prime, with $p_{0}=2$. The axiom for the desired RPCF is p_{m+n+1} and the rules are the following:
a. If rule h of R is $\operatorname{ADD}_{i}(j)$ then add the rule

$$
p_{j+n-1} p_{i} X \rightarrow p_{h+n-1}
$$

b. If rule h of R is $\operatorname{SUB}_{i}(j, k)$ then add the rule

$$
p_{j+n-1} X \rightarrow p_{h+n-1} p_{i} X
$$

and the rules
$p_{k+n-1} p_{i} X+p_{k+n-1} t \rightarrow p_{h+n-1} p_{i} X+p_{h+n-1} t$, for each $t, 1 \leqslant t<p_{i}$.
Define configurations of R, normal numbers, and $G(Z)$ as before. The axiom will be the word $p_{m+n+1} p_{0}^{0} p_{1}^{0} \ldots p_{n-1}^{0}=p_{m+n+1}$. Thus F will simulate R backwards from the configuration ($m+n+1,0,0, \ldots, 0$).

Let W derive $(m+n+1,0,0, \ldots, 0)$ in R. The derivation proceeds by a sequence of rule applications $g_{1}, g_{2}, \ldots, g_{n}$. The rules of F that will be applied correspond to the rules of R in the order $g_{n}, \ldots, g_{2}, g_{1}$. Thus if the configuration W derives the configuration $(m+n+1,0,0, \ldots, 0)$ in R, then p_{m+n+1} derives $G(W)$ in F.

Let p_{m+n+1} derive $G(W)$ in F. The sequence of steps $h_{1}, h_{2}, \ldots, h_{j}$ in this derivation corresponds to the rules $h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{j}^{\prime}$ in R, and applied to W in the reverse order, starting with h_{j}^{\prime} in R, yields the configuration $(m+n+1,0$, $0, \ldots, 0$). Thus the following has been shown.

Lemma $5 \quad p_{m+n+1}$ derives $G(W)$ in F iff W derives $(m+n+1,0,0, \ldots, 0)$ in R.

We now show that adding the inverses of rules F yields nothing additional, so that $\left[p_{m+n+1}, G(W)\right]_{F \cup F^{-1}}$ iff W derives $(m+n+1,0,0, \ldots, 0)$ in R.

As shown before, the inverses of the rule set are deterministic. Thus if $\left[p_{n+m+1}, G(W)\right]_{F},\left[G(W), G\left(W^{\prime}\right)\right]_{F}$ and $\left(G\left(W^{\prime}\right), G\left(W^{\prime \prime}\right)\right)_{F^{-1}}$ then $W \equiv W^{\prime \prime}$. Since it is impossible to go back past the axiom, then $\left[p_{n+m+1}, G(W)\right]_{F}$ iff $\left[p_{n+m+1}\right.$, $G(W)]_{F \cup F^{-1}}$.

Theorem 4 Every nonrecursive r.e. many-one degree is represented by the general decision problem for bidirectional RCPF's with axiom.

Degree results as shown above can'be easily obtained for tag systems and, consequently, for Post normal systems with axiom. The basis for our proof lies in the constructions presented in Hughes [2]. There, revised n-register machines were used to prove the following lemma.

Lemma 6 Let m be an arbitrary nonrecursive r.e. many-one degree. Then there exists a tag system T and a fixed word A such that the problem to decide of an arbitrary word A whether or not W derives A is of degree m. Furthermore, T and A may be chosen so that A is a terminal word.

Using the above we can now prove our final result.
Theorem 5 Every nonrecursive r.e. many-one degree is represented by each of the general decision problems for the bidirectional extensions of tag and Post normal systems with axiom.

Proof: For an arbitrary r.e. many-one degree m, let T and A be chosen as in Lemma 6 and let S be the bidirectional extension of T. With T^{-1} denoting the inverse rules of T, the deterministic nature of T 's rules ensures that $[A, W]_{T^{-1}}$,
$\left(W, W^{\prime}\right)_{T^{-1}}$ and $\left(W^{\prime}, W^{\prime \prime}\right)_{T}$ implies $W \equiv W^{\prime \prime}$. Combining this with the fact that A is terminal in T, we get that $[A, W]_{T^{-1}}$ iff $[A, W]_{S}$. But then $[A, W]_{S}$ iff $[W, A]_{T}$ and our proof is complete.

REFERENCES

[1] Hosken, W. H., "Some Post canonical systems in one letter," BIT, vol. 12 (1972), pp. 509-515.
[2] Hughes, C. E., "Many-one degrees associated with problems of tag," The Journal of Symbolic Logic, vol. 38 (1973), pp. 1-17.
[3] Overbeek, R., "The representation of many-one degrees by decision problems of Turing machines," Proceedings of the London Mathematical Society, vol. 26 (1973)., pp. 167. 183.
[4] Overbeek, R., "The representation of many-one degrees by the word problem for Thue systems," Proceedings of the London Mathematical Society, vol. 26 (1973), 184-192.
[5] Post, E. L., "Recursive unsolvability of a problem of Thue," The Journal of Symbolic Logic, vol. 12 (1947), pp. 1-11.
[6] Shepherdson, J. C., "Machine configuration and word problems of given degree of unsolvability," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 11 (1965), pp. 149-175.
[7] Thue, A., "Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln," Skrifter utgit av Videnskapsselskapet i Kristiania, I. Matematisk-naturvidenskabelig klasse 1914, no. 10, 34 pages.

Department of Computer Science
The University of Tennessee
Knoxville, Tennessee 37916

