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MODAL INTERPRETATIONS OF THREE-VALUED LOGIC. II

MICHAEL J. DUFFY

Intrvoduction* The present paper continues the investigations reported in
[1] and [7]. The reader unfamiliar with [7] is advised to consult it before
proceeding in the present paper.’ Our purpose here is to find a modal
interpretation of Slupecki’s functionally complete version of E? by con-
structing mappings from the wffs of % into those of a modified version of
S5.° The preference for mappings that preserve semantic equivalence will
guide our efforts.

1 The functionally complete version of L and a modification of S5 To
obtain the functionally complete version of 1. we add to the conditions on
well-formedness given in [7] the condition that Tp is a member of the set of
wffs whenever p is. We also stipulate that I(7p) = 3 for every interpretation
Iand every wif p of .. To S5 we add a sentential constant, which we refer
to as w, and which behaves syntactically like an atom. An interpretation
for S5 in an arbitrary set & now satisfies all the requirements given in [7]
plus the following: % must have at least two members; one member, w, is
distinguished; and I(w) = {w}. (For convenience, we refer to {w} as W.) As
we pointed out in a note above, some modification of S5 is necessary so
that we become enabled to translate the Stupecki ‘7’ operator. The reader
familiar with [1] may recall that Woodruff’s solution to this problem was to
add the ‘7" operator to S5 also, requiring of every interpretation 7 in a set
% for S5 that both % have at least two members and @ # I(TH) +# % for every
p. An adequate translation® @ of . into this modified version of S5 would
now be given as follows: @Tp = T@p. But notice that while 7p = TT) in L,
T@p # TT@p in S5, according to the way this new operator of S5 is
interpreted. And since we are here concerned to discover mappings that
preserve semantic equivalence, this way of modifying S5 does not meet our
needs. Thus we modify S5 by adding the sentential constant, which, we
noted, was inspired by remarks in a footnote of {1].

*The first part of this paper appears in Notre Dame Journal of Formal Logic, vol. XX
(1979), pp. 647-657.
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Henceforth the reader should take ‘}’ and ‘S5’ to denote, respectively,
the functionally complete version of ¥, and S5 with the sentential constant w
added as per above. In addition to the definitions of [7] for L and S5, we
adopt the following for both systems:

Op =4y KMpMNp .°

2 3042 mappings from L to Sb In this section we develop 3042 mappings
from % to S5 and show of each that it yields a semantic interpretation of L.
in modal terms. We later show, after the style of [7], that in a strong sense
we have exhausted the possible mappings; and we finally show that two (and
two only) of the mappings preserve semantic equivalence. In what follows,
we use ¢/’ as a variable over the 3042 mappings. For reasons which will
become clear, it will be convenient for us to first present 1,024 of the
mappings. We do so by means of the following ‘‘gappy’’ formulas, the
numbered wiffs in brackets above each blank indicating the range of choices
for filling in that blank (the p’s and ¢’s are of course variables for wifs
of L):

Where p is an atom, /p = p.

(1) /p
(2) Nfp
(3) w

(4) Nw
N —

/Np = ANMfPKO /.

(1) /p (1) 7q
(2) Nfp (2) Ntq
(3) w (3) w
(4) Nw (4) Nw
/Cpq = AAAANMIPLIGKO fpOfaKO£D KO/q . .. ...
(1)
(2) Nyp
[(1) w ] [(1) w ] (3) w
(2) Nw (2) Nw (4) Nw
— — N — —
/T = AAKL/p KNMfp . .. ... KOfp--===---

If we let # and ¢ be variables over the integers 1 and 2, and j, 4, m, n be
variables over the integers 1 through 4, then we may think of each mapping
as an ordered triple (f, (£, m), {(4,é,n)), the jth choice having filled the blank
in translating negations, the #th choice having filled the first blank in
translating conditionals, the »th choice having filled the second, etc. Note
that in instantiating the variables we may obtain 1,024 triples, and so we
have presented that many mappings. (Matrices presented below will show
that no two of these mappings are equivalent.) We are thus using ¢/’ as
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short for (4,(#£,m), (,i,n))’, and we will indicate partial instances of this
schematic triple by suffixing ¢’ with instances or partial instances of the
first, second or third member. So, for example, we may use ‘/{(2,m)’ as
short for «7,(2,m), ¢, i, n))’.

As in [7] we provide schematic S5 matrices for our translations, # and
# again being arbitrary proper non-empty subsets of X and p and ¢q being
arbitrary wifs of L: (See pages 661-662).

We now justify the above matrices, but the reader uninterested in these
details may omit the material within the asterisks without loss of
continuity.

For the sake of economy, we treat the gappy formulas given above,
filling the blanks only as the exposition demands. As will become clear,
this will enable us to treat all of the translations of a given connective at a
stroke. In general,

I({Np) = LANM/PKOLp )
= I(NMfp) UK/ )
= I04gp) U [KOfp) N K )]
= xI(/p) UKO/p) NI )]

Suppose first that I(/p) = %#. Then *I(/p) = (Ofp) = P, and hence I(/Np) = D
in this case. Suppose next that I(/p) = ©. Then *I(/p) = %, so I(/Np) = % as
well. Suppose finally that I(/p) =£. Then *I(/p) = @, so I(/Np) = ICfp) N
I ). But I(Ofp) = % in this case, so I(/Np) =I(__). Hence I(/1Np) =
I(fp) = p, I{2Np) I(Ntp) = F, I(f3Np) = I(w) = W, and I(/4Np) = I(Nw) = W.
Thus the matrices for I(fNp). Again in general,

1(/Cpq) = HAAAANMYPLIGK Ofp OfaK Ofp__ KO/q - - )

= NAAANM/PLIGK Ofp OfqK Ofp_ )UK Ofg . . )

= HAANMEPLYGK Ofp Ofa) U (K S/ ) U KK Ofq - - )

= (ANMfpLY{q) UIK Ofp Ofq) UK Sfp ) UIKOfg . . L)

= (I(NMfp) UI(L{q) U [I(Ofp) N I(OLe)]) U ([1(Ofp) N
I(__)Julrcfg) nIC. . ))

= (*1(/p) U *I(/q) U [I(Ofp N I(OLg)]) U (I(O4p) N
K )ulio/a) ni. . )

As the reader may verify, the left side of this union equals % if either
I(/p) = O, or I({q) =%, or both I(/p) = § and I({q) = %, so I({Cpq) =% in
these cases; note also that the left side of the union is empty otherwise, and
so I({/Cpq) = [I(O/p) NI )] UI(Ofg) NI(. . .)] in the remaining cases. It
is fairly obvious, then, that if I(/p) = % and I({q) = @, then I(Ofp) = I(Ofq) =
@ = I(/Cpq). Two cases remain. For the first, suppose I(/p) = % and
I(/q) =%. Then KO/p) = P, so I(fCpq) = (Ofq) NI(. . ). But [(Ofq) =% in
this case, so I(/Cpq)=I(. . .). Hence I(/{£,1)Cpq) = I(fq) =%, Kf{#,2)Cpq) =
INfq) =%, I({$#,3) Cpq) = I(w) = W, I(/{#,4) Cpq) = (Nw) = W. Finally, sup-
pose I(fp) = fand I(/q) = ©. By reasoning similar to that employed in the
last case, I(/Cpq) = I(___ ) in this case. So now I(/(1,m)Cpq) = I({p) = #,
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bdo (% ‘zy/ bdo (g ‘2) / bdO (g ‘) / bdD (1 ‘2) / bdO (¥ ‘1) / bdD (€ 1)/ bdD (2 1)/ hdD (1 ‘1) /

(SUEIPN

27
M
3

(SULNRN

SR

IR NS

ane/ | anes | dnz/ | ant/

X X XN |\X X KXK|H X X |X X x|X X% %|X% X% XH|XN X X|XH X X 0)
M % Z2|M % (M % % |M % Z|M % M % Z|M % %|\M % x| 4
M 2|3 M %| Db A % | D A % M | F M X Db A X|F A K| X
&&&&“«&‘&&&‘&&&_&&&_&&&‘&3&_&“«& d/
by
bdo (v ‘%) 64O (g ‘¥ / 4O (g %)/ bdO (1 ‘¥) / bAO (¥ ‘8) / bdD (8 ‘e) / bdD (2 €)Y/ hdD (1 ‘8)/
X XN K| X X X |KX X K| KX X K| KA X% X |HX X X |KX X X |HX% X% X @
4 % %| 4 % 2|4 % 2|4 % 2|4 % 2|4 % 2|4 % 2|4 % x| 4
M X M XS X X B A XM XM XS XX E v K| X
&&&7&“«&7&&&_&&&‘&&&7&“«&_&&&_&&& @/
by
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M M M M M M M M @
m M 4 4 M M 4 4 4
M M M m M m M M %
dLw‘z‘e)/ dre‘c‘es)/ dr@‘ze)y/ dra‘zey/ |dLE 1D/ Qim;é\_ﬁﬁhimv\_ﬁc;,mv\ d/
m M M M M M M M &
M m £ 4 M M 4 4 £
M M Mm M M M M M 2%
drwen/ dr‘ens dr@‘e1/ dr‘en/ dLw 11/ drEe‘1n/ @a;;v\#ﬁc;hs\ d/
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K/(2,m)Cbq) = KNfp) = @, K{(3,m)Cpq) = Kw) = W and I(/(4,m)Cpq) =
I(Nw) = W. Thus the matrices for /Cpg. For the last,

I(/Tp) = KAAKL{p  KENMfp . . . KOfp-_L)
= RAKL/p  KNMfp . ..)UIKO/D--o)
=KKL{p YU IKKNMfp ...)UKKO/D --2)
=[KLfp) N K_ )Ju[KNMfp) N K. . )] U[KO/D) N K--2)]

=[*I(/p) NI DJU[*I(p) N I(. . )]U [KOfp) NI(--2)]

Suppose first that I(/p) = %. In this case *I(/p) = %, but *I(/p) = P = I(O);
hence K/Tp) = I( ). Thus, I(/(1,i,n) Tp) = W and I(/{2,¢,#) Tp) = W. Sup-
pose next that I(/p) = @. Then *I(/p) = %, but *I(fp) = P = KO/P); so
I(/Tp) =K. ..). Thus, I(f{#h,1,m) Tp) =W and I(/{#,2,n) Tp) = W. Finally,
suppose I(/p) = f. By reasoning similar to that in the last two cases,
we now have I(/Tp) = K___), so Kfh,i, 1)Th) = ¥, I(f#,é,2)Th) = §,
I(/#h,é,3) T) = W, and I(/ {4, ¢, 4) Tp) = W. Thus the matrices for /Tp.

The presence of the sentential constant w in S5 has allowed us to
construct more translations for the connectives ‘N’ and ‘C’ of L than we
were able to produce in [7]. We will now show that as a result of the
presence of this constant there are also more ways of translating the
atoms of % into S5. Consider the following three ways of translating the
atoms:

(1) p
(2) w
(3) Nw

Where p is atomic, /p = ALPpKO p

The first translation is of course semantically equivalent in S5 to p. The
second and third, however, are wifs of S5 that take the values ¥ and © when
and only when p takes those values, and that respectively take the values of
W, W when and only when X # Kp) # ©. These features will make the latter
two translations suitable candidates for our purposes. Moreover, mappings
that translate the atoms in these different ways will not differ trivially.®
Henceforth our mappings will employ all three of these translations of the
atoms (and no others), the translation any particular mapping employs
being indicated by a numerical superscript ‘@’ where 1 < @ < 3. (As the
occasion demands, we may also superscript ¥’ to indicate that we are
speaking only of the mappings that translate the atoms in a certain way.)

It would now appear that we have 3 x 1024 = 3072 mappings from % to
S5, but this is only apparent since 16 of the /* mappings are equivalent to
one another, and so are 16 of the / ® mappings. This may be seen from the
following considerations. The matrices we presented earlier characterize
all of the mappings we have discussed. (In particular, the /? and /°
translations of ‘N’, T’ and ‘C’ have the same form as the /' translations
of these connectives, so the matrices characterize these new mappings.)
But where the /? and /* mappings are concerned, the F#’s and #’s of the
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matrices can only be placeholders for W or W.” For those /2 ( /%) mappings
in whose matrices none of #. %, and W(W) occur, the only possible value for
fand ¥ is W(W).® Thus, in each of the following two lists, every mapping

in the list is equivalent to every other in that list:

LIST I

(3,(3,3) (1,1,3)*
(3,(3,3 (1,1,1))*
<3)<3’1>)<1’1)3>>2
(3,(3,1) (1,1,1))*
(3,(1,3) (1,1,3)?
(3,(1,3),(1,1,1))*
(3,(1,1) (1,1,3)*
(38,(1,1) (1,1,1))®
(1,3,3),(1,1,3))?
(1,(3,3),(1,1,1})2
(1,(3,1) (1,1,3))*
(1,48,D (1,1,1)*
(1(1,3) (1,1,3))*
(1,(1,3),(1,1,1))?
(11,1) (1,1,3))*
(1,(1,1) (1,1,1))?

LIST II

(44,9 ,(2,2,4)°
(4,(4,9,42,2,1))°
(4,(4,1),(2,2,4))°
(4,(4,1),(2,2,1))°
(4,(1,4)42,2,4)°
(4,1,9),(2,2,1))°
(41,1),(2,2,4))°
(4,(1,1) (2,2,1))°
(14,9 ,(2,2,9)°
(14,4 (2,2,1))°
(144,1)42,2,4)°
(1,4,1),(2,2,1))°
(1(1,49),(2,2,9))°
(1,(1,4),42,2,1))°
(141,1),42,2,4))°
(141,1),(2,2,1))°

Henceforth we consider the first entry in each of these lists to number
among our mappings, the other fifteen in each list being discarded (which
means we have eliminated thirty mappings from consideration). Thus we
have 3042 official mappings. Note also that in the matrices for the /* and
/° mappings we retain, any ¢ or % may have either W or W as its value,
and no two of our 3042 mappings are equivalent.

By means of the following definitions and theorems, we now show that
each mapping yields an interpretation of £ in modal terms.

For any interpretation I of S5 (in a given set%), let If be the function
from wifs of L to {1,%,0} defined as follows:

1, if I(fp) = %
Ifp) =10, if I({p) = D
% otherwise.
Theorem 1 I/ is an intevpretation of L.

Proof: It suffices to show:

(a) AND) = 1 - Hp);

(b) HCpg) = min(1, (1 - (F(D) - H()));

(c) ATH) = 3.

The proofs of (a) and (b) are like the proofs of Theorem 1 (a) and (b) in [7]
with ¢ in place of ¥n’. For proof of (c): WATp) =3 iff %+ K/Tp) + P; but
the matrices show % # I(/Th) # ©, hence (Th) = 3.
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Theorem 2 For any intevpretation I of L., theve is an intevpretation L of Sb
such that I = Af.

Proof: The proof is like that of Theorem 2 of [7] with ¢/’ replacing %’ and
the proviso that w = 0.

Theorem 3 For every wff p of L:

(a) p is valid (in L) iff fp is valid (in S5);
(b) p is contravalid (in L) iff fp is contravalid (in S5);
(¢) p is indeterminate (in L) iff fp is indeterminate (in S5).

Proof: Like that for Theorem 3 of [7] with ¢/? in place of /n’.

3 A sense in which the mappings ave exhaustive As in [7], we consider
at this point whether there are other mappings for which the results of the
preceding section may be obtained. Our vocabulary is that of [7], except
that where ‘(p, . . ., q)’, ‘B(p, . . ., q)’, etc. denote wifs of S5, they denote
wffs compounded from only p, . . ., g, and w.

Now let @ be a mapping from wffs of % to those of S5, with @ presumed
to satisfy both of the following conditions:

Condition 1: @ has a definition of the following form: For all wffs p, q of L:

(i) if p is atomic, @p = ALPKCp . (Where the blank may be filled by
P, ‘w’, or ‘Nw’.)

(ii) @Np =a(@p)

(iii) @ Tp = #(@P)

(iv) @Cpq = c(@p,@q).

Condition 2: @ is such that the following definition, in which p is a variable
for wffs of . and I is an arbitrary interpretation for S5 in an arbitrary %,
guarantees that the appropriate analogues of Theorems 1-3 hold true of @°:

1, if 1@p) =%
1Q(p) = 10, if I(@p) = P

+ otherwise

We now show that @ is equivalent to some /. In the lemmas and theorem
that follow, I and % are arbitrary, and £ and % are, as before, arbitrary
non-empty proper subsets of .

Lemma 1 Let I(p) = . Then one of the following is sure to hold fov @(p):

(i) 1ap) =% (viii) [2®)) = U W
(i) Iap) =9 (ix) Ia®p) =fUW
(iii) 1) = F (x) IHap)=guwW
(iv) Ha®) = g (xi) Kap) =gnwW
(v) Ia@p) =W (xil) I&@p)) =pgnW
(vi) Ia®)) =W (xiii) Iaz®)) =fgnNW
(vii) I&(p)) =fUW (xiv) Ia®)) =fnwW

Proof: By strong induction on the length of Z(p). Details left to the reader.
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In the basis, &Z(p) = p or &(p) = w. In the inductive step there are three
cases: &(p) =NAB(p); c(p) =MB(p); a(p) = CA(p)C(p). (In effect, the induc-
tive step establishes that the list of values for £Z(p) in the lemma is closed
under the operations ___ , *, and U.)

Lemma 2 Ifp<pq, then(...p .. )<pd(...q...).
Proof left to the reader.

Lemma 3 Let Kp) = % and Kq) = H. Then one of the following is sure to
hold for a(p, q):

() Ka,q)=% (viii) Ka(p,q)) =% UW
(i) Ha(p,q) =P (ix) Iap,q9)=%UW
(iii) I(&(p, q) = *# (x) Kap,q)=%UW
(iv) Kap,q) =% (xi) Ka&p,q) =%nW
() Kap,q) =W (xii) Kalp,q)) =%nNW
(vi) Ka(p,q)=W (xiii) I&(Pp,q)) =¥ NW
(vii) K&, q)) =2#U W (xiv) Ialp, q)) =% N W.

Proof: Since I(p) = % and I(q) =%, I(Mq) = *%=%=I(p). Hence p <7>Mq,
so A(p, q) <> &(Mgq, q) by Lemma 2. But &(Mgq, q) qualifies as a compound
#(q) of ¢, and hence Lemma 3 by Lemma 1.

Lemma 4 Let I(p) = g and I(q) =P. Then one of the following is sure to
hold for &(p, q):

(i) Kap,q))
(i) K&, q)
(iii) Ka(p, q))
(iv) I, q)

(viii) Xealp, q) =FUW
(ix) I&p,q) =fgUW
®) &b, 9) =FUW

nm w n n n
SISO R

(v) Hap,q)=W
(vi) I&(p,q) =W
(vii) @, q) =fUW

(xi) Iap,q)=fNW
(xii) Ka&p, ) =pnW
(xiii) N&p,q) =pNW
(xiv) K&(p,q) = FNW.

Proof like that for Lemma 3.
Lemma 5 Let Kp) =%. Then one of the following is sure to hold for &(p).

(i) Ka®) =%
(ii) Ra&(p)) =9
(ii) He(p)) = W
(iv) I&(p)) = W.

Proof: By strong induction on the length of &(p). Details again left to the
reader. In the basis @(p) = p or &(p) = w, and in the inductive step we have
the same cases as the proof of Lemma 1. (To establish the inductive step
it would suffice to show {%,?, W, W} closed under , *, and U.)

Lemma 6 LetI(p) = D. Then one of the following is surve to hold of &Z(p):

(i) Rap) =%
(i) Iap)) =9
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(iii) H(p))
(iv) 1a(p)

Proof like that of Lemma 5.

w
W.

Lemma 7

(a) If 1@p) = P, then I(@NP) =%.
(b) If I@p) =%, then I(@Np) = D. 3
(¢) If I@p) = §, then I(@Np) = § or I(@Np) = # or I(@Np) = W or I(@Np) = W.

Proof: (a) Suppose I(@p) = ©. Then I@(p) = 0, in which case I@(Np) = 1 by
Theorem 1. But I@(Np) = 1 iff I(QNp) = . Hence, (a). (b) Proof like that
of (a). (c) Suppose I(@p) =#. Then IQ(p) = 3, in which case IQ(Np) = 3 as
well, this last holding iff & # I(@Np) # ©. Furthermore, given the supposi-
tion that I@p) = £, then one of (i)-(xiv) of Lemma 1 holds of @Np.
Obviously, (i) and (ii) fail to hold. Moreover, since the present argument is
to hold for every I and so every g, (vii)-(xiv) fail as well (because where
fF=Worpg-= W the values in (vii)-(xiv) sometimes become X or ©). Hence,
one of (iii)-(vi) holds; hence, (c).

Lemma 8

(a) If I(@p) = % and 1(@Qq) = P, then I(@Cpq) = P.
(b) If any of the following obtain:

(i) I@p) =9
(i) 1(@q) =%
(iil) I(@p) + % and I(@q) + @

then I(@QCpq) = %.
(¢) If both I(@p) = % and I(@q) = ¥, then one of the following obtains:

(i) I@Cpq) =%
(i) I@Cpq) =%
(iii) /(@Cpq) = W
(iv) 1(@Cpq) = W.

(d) If both I(@p) = F and 1(@q) = P, then one of the following holds:

(i) H@Cpq) =/_’
(ii) K@Cpq) = ¢
(iii) I(@Cpq) = !V_
(iv) I(@Cpq) = W.
Proof: Proof of (a) and (b) like proof of Lemma 7 (a) and (b). Proof of (c)

like proof of Lemma 7 (c) using Lemma 3 in place of Lemma 1. Proof of
(d) like proof of (c) using Lemma 4 in place of Lemma 3.

Lemma 9

(a) If K@p) = %, then either I@Tp) = W or I@Tp) = W.
(b) If @p) = D, then either (@Tp) = W or I@Tp) = W.
(c) If K@QTp) = #, then one of the following holds:
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(i) 1@rp) =p
(i) K@Tp) =
(iii) H(@TpP) = W
(iv) 1@Tp) =W

Proof: (a) Suppose I(@p) = 2. I@(Tp) = 5, and hence ¥ # I(@Tp) + ©. Thus,
(a) by Lemma 5. (b) Proof like that of (a) using Lemma 6 in place of
Lemma 5. (c) Proof of (c) like proof of (b) using Lemma 1 in place of
Lemma 6 (and relying on the fact that 2 must be arbitrary, thus ruling out
(vii)-(xiv) of Lemma 1.)

Theorem 4 @ is equivalent to some f.

Proof: By condition 1 on @, @ has the same values for atomic arguments
as, say, /& By Lemma 7, the possible matrices for @Np are the same as
for /, so let the actual matrix for @Np be that given for /+. Similarly, by
Lemma 8, the possible matrices for @Cpq are those given for /Cpq, so let
the matrix for /(s,/) Cpq be the actual matrix for @Cpq. Finally, in light of
Lemma 9, let the actual matrix for @7p be identical to that given for
/{w,»,0) Tp. A straightforward 1nduct10n (easily supplied by the reader)
then shows that @p = (2,{s,),{w,», w)) p for every wif p of L, and hence
shows the mappings to be equivalent.®

4 The presevvation of semantic equivalence In this section we will
prove that (3,(3,3),(1,1,3))* and (4,(4,4),(2,2,4))°, which we henceforth refer
to as F? and F® respectively, preserve semantic equivalence; and we
further show that no other of the remaining 3040 mappings does so.

Theorem 5

(a) p=qink iff F°p = F3q in S5.
(b) p=qink iff F°p= F’q in S5."

Proof: (a) Suppose p # g in £.. Assume for reductio that F?p # F2¢in S5. It
is clear in the atomic case, and the matrices make it clear in the
remaining cases, that for every I of S5 and every wif p' of L, I(F?p') =% or
I(F?p") = W or I(F?p") = @. Thus, the assumption that F?p # F?q is equivalent
to the assumption that for some I, one of the following holds:

(i) I(F?) =% and I(F?q) = W
(i) IKF®) = % and I(F%g) = ©;
(iii) I(F?p) = W and I(F%q) = %;
(iv) I(F?%) = W and I(F?%q) = $D;
(v) I(F?) = @ and I(F?q) =
(vi) I(F?p) = @ and I(F%g) =

But these are respectively equivalent to:

(i") IF%p) = 1 and IF*q) = 3;
(ii") IF*p) = 1 and IF?*(q) = 0;
(iii’) IF?(p) = £+ and IF%q) = 1;
(iv’) IF3(p) = % and IF%(q) = 0
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(v") IF*p) =0 and IF%(q) = 1;
(vi") IF%(p) = 0 and IF%(q) = 3.

And since we know IF? to be an interpretation of ¥. by Theorem 1, each of
(i")-(vi") contradicts the supposition that p = ¢ in L. Hence, if p=gqin L,
F?p = F?q in S5.

Suppose conversely that F?p = F?g in S5, and assume for reductio that
p#qin L. Letd be an interpretation of L such that (p) # A(g), in light of
the assumption. By Theorem 2, there is an interpretation I of S5 such that
J =IF?. Thus the assumption that p # ¢ in L is equivalent to assuming the
disjunction of (i’)-(vi’) above for some I, which is equivalent to assuming
(i)-(vi) above, which contradicts the present supposition that F?p = F?g in
S5. Hence, if F? = F?%q in S5, p = ¢ in L. Hence, (a). (b) Proof of (b) just
like proof of (a) with ‘F*’ in place of ‘F*’ and ‘W’ in place of ‘W’.

Corollary Where p and q ave non-atomic wffs of L., then for each a from
1 through 3:

(a) p=qinkiff (3,(3,3),(1,1,9)°p = (3,(3,3),(1,1,3))°q in $5;
(b) p=qink iff (4,4,49),(2,2,4)° = (4,(4,4),(2,2,4)% in 5.

Proof: Proof of the corollary is identical to the proof of the theorem with
the atomic case eliminated.

Theorem 6 If/ preserves semantic equivalence, thenf = F* or { = F>.

Proof: We suppose that / preserves semantic equivalence, and adduce
considerations that reduce the possible values of / to the two given in the
theorem. It is well known that Tp = Tq in L for every wif p and q. Thus
we have /Tp = /Tq in S5 for every p and q of .. The matrices indicate that
there are exactly two translations of ‘7’ for which the equivalence is
guaranteed, viz. £(1,1,3) and /{2,2,4).> Moreover Tp = NTp in L for every
D, so we can eliminate translations of ‘N’ that would obtain the complement
of the value of /Tp for /NTp. This leaves us with the following possible
values for /: (1,(#,m),(1,1,3))",(3,{£, m),(1,1,3))% (1,{#,m),(2,2,4))° and
4, (#,m), (2,240 "

We recall at this point the argument of [7] designed to show that
certain translations of ‘C’ do not preserve the equivalence between Apg and
Agp holding in £." Since the argument applies to the translations in virtue
of the matrices that characterize them, the argument eliminates the
following translations of ‘C’ presented here (since these are characterized
by the same matrices as their counterparts in [7]): A(1,1), /(1,2), /{2,1),
and /(2,2). We now run the same test case on the remaining translations of
‘C’. We first provide matrices for the translations of Cgp, and then for
each mapping’s translations of Apq (=4y CCpqq) and Aqp (=4s CCqpp). (The
method for arriving at these matrices is given in [7].) The matrices show
of all but two of the translations of ‘C’ that they fail to preserve semantic
equivalence.
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£{1,3)Cqp /{1,4) Cqp £(2,3) Cqp /(2,4 Cqp {£(3,1) Cqp /(3,2) Cqp

l%x&Q)l%M@IMMQ)lz%@I%MQDI%MQ

/b

£(3,3)Cqp /(3,4 Cqp /<4,1)Cqp /{4,2) Cqp /{4,3) Cqp {(4,4) Cqp

'z&%gb'stz)l%%@’%%gbl%%@l%%@

174

7€1,3) Apq /1,3) Aqp /{1,4) Apq /{1,4) Aqp /(2,3) Apq {(2,3) Aqp

M%@‘M%¢|7é%¢‘2§%¢'7é%@%%@

/P

/(2,4 Apq /2,4 Aqp /(3,1) Apq /(3,1) Agp /<3,2) Apq /(3,2) Agqp

%%¢‘7é%¢|70%¢’70%¢|76%¢|%%¢

rq

/P

£(3,3)Apq /(3,3) Aqp /<3,4) Aqp /(3,4) Aqp /(4,1) Apq /(4,1) Aqp

7&%@‘7&%@'%%¢'%%¢|%%¢‘%7&¢

fq

N as
RN
DRI
Qe
XA
RN
NJEEST
NE =
EIRNIN
NS
NIEES
A JRNIRN
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Nz
QX
RT
XS
RRQ

NS

/b
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/(4,2) Apq /{4,2) Aqp /(4,3) Abq / (4,3) Aqp /4,4) Apq /(4,4) Agp

rq

/b v % Dl ¥ Dl » Pl ¥ Dl ¥ Pl ¥ @
AR A A A A A A 2 A A AR 7
Jy % Wix g fleWWrxrWWr wwxrww
2 | % Q|x WPlx WP |x WPlx WP|x W 9D

These matrices indicate that the only mappings that might preserve
semantic equivalence translate ‘C’ as the /(3,3) and /(4,4) mappings do.”
Employing the further consideration that Tp = CCppTp in L., we narrow the
above possible values for / to these: (1,¢3,3),(1,1,3)%(3,(3,3),(,1,3)%
(1,(4,4),(2,2,4)", and (4,(4,4),(2,2,4)%. The possible values for e are easily
narrowed by the consideration that where p is an atom, p = CCppp in L.
Thus if / preserves semantic equivalence, @ = 2 when the second member of
the triple is (3,3), and @ = 3 when the second member is (4,4). Thus / must
be one of the following: (1,(3,3),(1,1,3)),

(3,(3,3),(1,1,3))%(1,(4,4)(2,2,4))°, or (4,(4,4),(2,2,4))°.

But note that the first and third of these were removed from our official
list of mappings in section 2 (the reason, worth noting here, being that they
are equivalent to the second and fourth, respectively). The remaining two
mappings are of course F* and F°. Hence, if / preserves semantic
equivalence, /= F? or /= F°.

NOTES

1. Familiarity with [7] is necessary because we make use here of its vocabulary and its results;
but we should not fail to note that [1], because it both opened discussion of the present
subject and provided exemplary strategies for obtaining results, remains of paramount impor-
tance.

2. See Stupecki’s [4]. As was noted in [1], the provision of modal interpretations of this version
of £ yields modal interpretations of every truth-functional three-valued calculus.

3. The modification of S5 that we adopt below was inspired by the remarks of [1], p. 438, n.7.
The reader should realize that some modification of S5 is required so we may translate the
‘T operator of £ into S5. Normally, there is no wff p of S5 such that ¢ # I(p) # % for
every interpretation / of S5, and just such a wff is what is needed for our translation.

4. By ‘“‘adequate translation” we mean translations for which the analogues of Th1-3 of [2]
hold.

5. So I(Op) =xif X+ I(p) # Q;1(Op) = O otherwise.

6. We are referring here to the remark in [7] p. 657, n.8. The restrictions on how the constant
is to be interpreted guarantee that the triviality mentioned in [7] will not infect translations
of the atoms of £ that make use of the constant as ours do. We attempt to make the point
clearer. Let $7 be the set of wffs of S5 that translate the atoms of £, according to either one
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10.

11.

12.

14.
15.
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(but not both) of the suggested translations making use of the constant w. Then let S be the
set of wffs of S5 that can be compounded from the members of S# according to the usual
formation rules, including the members of 84 themselves. If the fragment S were synony-
mous with the whole of S5 in the sense intended in [7], we could do all of the following. We
could construct a mapping m from S to the set of wffs of S5 that was one-one onto, mapping
the members of S4 onto the atoms and reducing the other members accordingly. And we
could then show both that for every interpretation I of S5 there is an interpretation I' such
that for every p € 8, I(p) = I'(mp); and for every I there is an /' such that for every wff p of
S5 (p = mgq for some g € S) I(p) = I'(g). It is on the last mentioned point that the program
breaks down, as is readily seen when p is chosen to be atomic, and I is chosen so that X #
I(p) # @ and W # I(p) # W. Hence the fragment represented by S is not synonymous with
the whole of S5, due to the role of the constant.

. Proof of this claim can be provided as follows. In L1 of [7] we proved that if an interpreta-

tion assigns £to a wff p of S5, then that interpretation must assign %, @,ﬂor; to any wiff
compounded from only p. The inductive step we described is equivalent to establishing that
{%,(D,ﬂ’,,a’} is closed under —, *, and U. This last is equivalent to claiming that any function
¢y compounded from *, —, and U has values in {%,(D,ﬂf,,@} when its arguments are drawn
from that set. Associated with every wff of S5 is such a function ¥ whose arguments are
fixed on a given interpretation by the values that interpretation assigns the components of
the wff. In the /2 and /3 mappings, the translation of the atoms of X. are always assigned
values in {%,(D,W,V_V}, and the other translations are compounds of the translations of the
atoms. Thus the values an interpretation assigns these translations are all from {76,(Z>,W,W},
and so if the value of a given wff is neither Z nor @, it must be W or W.

Consider that for such /2 translations the values for the atoms on any interpretation are
always in {%,(Z), W}. Suppose inductively that where p is a non-atomic wff of £, the value of
I({%q) is in {%, D, W} if /%q is less complex than /?p. The induction runs easily because the
relevant matrices show that when & # I(/?p) # @, then either I(/?p) = I(/*q) where /%q is
a component of (and hence a less complex wff than) /?p, or else I(#*p) = W. The same argu-
ment with /% in place of /% and ‘W’ in place of ‘W’ establishes our claim about the /3 trans-
lations whose matrices have the characteristics we described.

By “appropriate analogues” is of course meant the result of substituting ‘@ for /” in Th1-3.

It might turn out that {¢,{s,), («,#,@)?® is one of the mappings we eliminated earlier in sec-
tion 2, but there is nothing vicious in this since we’ve retained a mapping to which @ is still
sure to be equivalent, equivalence of mappings being a transitive relation.

Note that the theorem says more than just that F? and F? preserve semantic equivalence; it
also claims that no semantic equivalences are “‘generated” (i.e., if p£q int, F?p % F2q in S5;
ifpFqgint, F3p # F3g in S5).

We are deliberately assuming here that the variables in the matrices for our 3042 official
mappings are not just placeholders for only, say, W.

. Unfortunately, the consideration that the,@in the matrix for the /1 translation of ‘N’ can

take on more than one value, is not enough to eliminate the /1 mappings on our given
premises, because 1(/1Tp) = I(/1NTp) according to the matrix, once it is given that I(/1Tp)
is a constant other than Zor ¢.

See [7], section 4.

This again makes use of the assumption mentioned in note 12 above.
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