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ON THE EQUIVALENCE OF SYSTEMS OF RULES AND SYSTEMS
OF AXIOMS IN ILLATIVE COMBINATORY LOGIC

M. W. BUNDER

The most useful systems of illative combinatory logic contain the
primitive Ξ for restricted generality with the rule:

Rule Ξ ZXY, XV h YV,

or alternatively the primitive F or the primitives P and Π with their
appropriate rules.1'2

In addition they have for (combinatory) equality:

Rule Eq // X = Y, then X h Y,

and a deduction rule for Ξ (or for F or for P and Π) such as for example
that of [1]:

DTΞ If Δ,XV*\-YV

where Δ is any sequence of terms and V is not free in Δ, X or Y, then

Δ, FAHX^ZXY.3

Often however, such systems are set up using in addition to Rule Ξ and
Rule Eq, a set of axioms, and the deduction rule is derived as a theorem.

The curious thing is that no system (other than some proved incon-
sistent) has been found in which these axioms are in turn derivable from
the deduction theorem and the other rules. This is unfortunate particularly
as investigations into consistency are simpler for systems of rules. The
system of rules corresponding to Curry's system of axioms J 2 2, for
example, was proved Q-consistent (see [8] and [9]), but this system is not
equivalent to 922. In this paper we examine this problem by looking at a
system strong enough for first order predicate calculus (that of [1]) and a
generalization of this (that of [4]) which is strong enough for the develop-
ment of a predicate logic of arbitrarily high order. We then suggest a
weaker version of [4] to bring the goal of equivalence between the two kinds
of systems nearer, but find that only a radical addition—the allowance of
quantification over theorems as well as over various functions over
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theorems—allows us to reach the goal. Although this may seem to make
the system excessively strong, it is in fact provably consistent. (This was
shown in [6].)

1 The first order theory The system of [1] on which first order
predicate calculus can be based (see [2]) consists of Rule Ξ, Rule Eq and
the following axioms:

Axiom Q HWQX whenever X is a primitive or X is an indeterminate*

(We take the primitives to include at least K, S, Ξ, A, H, and Q).

Axiom 1 I-WQΛΓ =>X. WQ y =>y WQU y)5

Axiom 2 HFAHΛΓ =>* Ξxx

Axiom 3 HFAH# =>* (WQ y ^>y :xu^>u. yuv ^>v xu)
Axiom 4 HFAH1* ^* :.\NQt =>,: (xu ^u yu(tu)) 3 y .

(xu ^>u (yuv ^>v zuv)) ^>z (xu ^>u zu(tu)).
Axiom 5 HFAHΛ: D* Ξ#(WQ)
Axiom 6 KΞIH
Axiom 7 HFAHH
Axiom 8 HFAHΛ: ^x.?xHy ^y H(Έxy)
Axiom 9 f-FAHA

(DTΞ can be derived from Axioms Q, 2, 3, 4, 5,6, and 7).

In the corresponding system of rules DTΞ replaces Axioms 2, 3, 4,
and 5,

Rule H XhHX,

replaces Axiom 6, and

RuleHΞ FAHX, FXHFhH(ΞXF),

replaces Axiom 8. (A rule could also replace Axiom 1 if required.)

It is clear that unless we also have HFAH(FAH) (which is not provable)
none of the axioms is derivable from the rules. This extra axiom as well
as Axiom 7 lead to inconsistency if we have A = WQ (see [7]) and even
without A = WQ it leads to inconsistency if >H(QIF) for all X and F, is
present (see [3]). However, even with these axioms we still cannot derive
Axiom 6 from Rule H and DTΞ (as we do not have i-FAHl) and more
seriously we cannot derive Axiom 4 as we do not have:

FAHX, WQT \-FAH(λy.Xu ^u yu(lu))

or

FAHX, WQT, Xu Dtt Yu(Ίu) hFΔH(λz.Xu =)«. Yuv ^v zuv).

Also, we cannot derive Axiom 8. We therefore look to a stronger system,
but preferably one where Axiom 7 and h-FAH(FAH) are not required.

2 The higher order predicate calculus The higher order predicate
calculus of [4] allows us to quantify over H and FAH, but does not require
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these two axioms. It has Rules Ξ Eq, Axioms Q, 1, and 6 and replaces

Axioms 2, 3, 4, 5, 7, and 9, and 8 by:

2H \-FUHx D X . xu ^>u xu,

3H \-FUHx D x . Hy ^y (y D. xu =>« y),

4H hFUHx ^x /. \NQt D , : (XU ^U yu(tu)) =>y.

(ΛΓW 3 M . ytw; D V zuυ) ^>z (xu ^>uzu(tu)),

5H hFt/H*=>xΞ*(WQ)

7H HFC/HC/,

8H HFC/HΛΓ D X FΛ:H3; 3 y H ( Ξ ^ ) ,

where C7e W = {A, H, FAA, FAH, FHA, FHH, FA(FAA), . . .}.

We then have as deduction theorems:

„, If Δ, XV HFF where V is not free in X, F, or Δ,

then Δ, FUHXϊ-ZXYwhere C/e W.

As for each UeU, FUHeU we can quantify over U and over FC/H for

each U in W and so we can prove Axioms 2H, 3H, 5H, and 7H using DTΞ',

Axiom Q and Rule H. Axioms 4H, 6, and 8H remain unprovable. We note

however, that for a higher order predicate calculus the full strength of [4]

is not really required. For example we use DTΞ only when

(i) X= KZ and Y = KT to give the deduction theorem for P (implication),

and

(ii)whenXeW to allow generalization over individuals (A), propositions

(H), predicates (FAH, FHH, F(FAH)H, . . .) and functions (FAA, F(FAH)A,

. . .).

Thus appropriate deduction theorems would be:

DTP //Δ,IHF,toΔ,HlHlDF

and

DTΞ" If Δ, UV\~YV where V is not free in Δ or Y and U e U,

then Δ \-ΈUY.

In the same way Rule Ξ can be restricted to:

Rule Ξ' EUX, UV hXV for Ue U

and

Rule P X^>Y9X\-Y.

Amending the proof of DTΞ in [1] to one of DTΞf based on Rules P and

Ξ' we find that we require only the following axioms in addition to Axiom 6:

2R hUu Dα Uu

3R HHΛ; =>*: x => Uu D « X

4R \-(Uu ^u V(tu)) 3 f . (Uu =>„ (Vv =)*, zuυ)) ̂ z (Uu 3« zu(tu))

where U} V eU.
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Similarly to prove DTP we require, besides Axiom 6:

2P \-Hx ^>xx o> x

3P hUx 3*: H y Dy. (y 3 . x 3 y)
4P HHΛΓ DX: (* => y) =?y. M p s) =>z (# 3 *)

Note that now Axiom 7H becomes superfluous as does 8H at this stage.
However we want the following restricted forms of 8H for the development
of propositional and predicate calculus:

8 R h F C / H * = > * HCEUx) f o r U e U
8P HH*=>X. (x D \\y) =>yH(* => y).

Note also that now that we no longer require WQ (or some other
universal class) in the statement of any of the axioms, Axioms Q, 1 and a
restricted version of Axiom 5H

5H' HΞE/(WQ) for UeU

become "optional extras".

In order now to prove 4R using DTΞ" we require λt(Uu ^>u V(tu)) which
is ΨUV to be in U which is the case, but we also require λz .(Uu 3M (Vv Dv

zuυ)) = FU(FVΊ) e U which is not the case, in fact, we require this even if we
only want to prove using 8R that the term given in 4R is a proposition. We
can make the term in 4R a proposition if we alter 4R to:

*-(Uu =>« V{tu)) D , : (Uu o>u. Vv =)„ H(zuv)) =>z.

(Uu ^u (Vv ^>v zuυ)) o (Uu^u zu(tu)),

but then although this can be proved using DTΞ" and DTP, it is no longer
strong enough to prove DTΞ" with 2R and 3R. We would require in addition:

Uu 3K (Vv =>*, zuv) H Uu^u (Vv ^v H(zuv)) for all U, VeU.

The axiom corresponding to this however, is not provable by DTΞ" and
Rule H and if this rule is added as a primitive rule further axioms are
required for the proof of DTΞ" which are not provable from DTΞ". If we
note further that H-ΞIH is still not provable using DTΞ" and Rule H, we have
a clue to a solution. We can simply add I as well as FAI, FIA, FHI, FIH,
F(FAA)I etc. to U. We can then prove 4R from DTΞ" and Axiom 6 from
DTΞ" and Rule H.

We still have the problem of 4P, however. This is provable using DTP,
8P, and DTΞ', but not using DTΞ". The only solution seems to be to weaken
Axioms 4P, 8P, and DTP as follows:

DTP' / / Δ , l H 7 , f a Δ , H I , H F H l D F
4P' \-Hx 3 x : : H y =>y.vHs 3 2 : (x D y) D (X D (y D Z)) 3 (x D Z)
8P' HH*3X. Hy^yH(χθy).

Axioms 2P, 3P, 4P', and 8P' then clearly give DTP and DTP', DTΞ"
and

HP HX, H7hH(ID Y)

allow us to prove the four axioms.
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e will now summarise the equivalent systems:

System of Axioms

!q and:

:f ΈUX, uτ\-xτ

s \-Hx ̂ xx ^ x

^ H A : D X . Hy =>yCyD x^ y)

^Hx = \ : : Hy Dy Λ HZ 3 z : (x D y) D. (x D y D 2) D (x D ^)

HHΛ: =>χ. H3; 3 y HU 3 3;)
H x^xHx

hFUVt -DtΛϋu ^u (Vv ^y zuv)) 3.z (C7w 3 W ̂ (/w))

\-ΨU\λx^x H{ZUx)

U, Ve U

)ssibly Axioms Q, 1, and 5Hf for Q).

System of Rules

Eq and Ξ' and

7/Δ,XHF, ί/zβn Δ, HX, H F h I D F, HX? H F h H ( Z ^ F).
If Ay Uu H I M where u is not free in Δ or X, ί/zew Δ f- ΞίZX',

FC/HXi-H(Ξί/X),

ossibly Axiom Q and Rules for Q corresponding to Axioms 1 and 5H'

throughout U= {A, H, I, FAA, FAI, FAH, FIA, . . .}

we want to have U formally within the system we require axioms
s

hUA, HWH, \-U\

\~Ux 3*. Uy =>y U(Fxy).

n have a finite set of axioms instead of an infinite set. (For example,
5 2R becomes \-Ux ̂ >x. xu ^>u xu). Our problems, moreover, arise

If we want to be able to quantify over U to prove our new (finite set
Dms we need as axioms:

\-Uu^>uUu
\-Hy ^y(y D. Uu^uy)
\-FUVt 3/ F2UVIz D Z (Uu ̂ u zu(tu))
\-FUHx^xH(ΈUx)
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for Ve U

which will give us a deduction theorem:

If Δ, Ux t-Vx where x is not free in Δ and V, then Δ f- ΈUv.

However, this deduction theorem is now not strong enough to prove the
last two of the above axioms and we have a situation similar to the one we
struck earlier even if we assume ι-UU.

NOTES

1. The systems whose equivalence is discussed in this paper are also called "natural deduction"
and "Hilbert-type" systems respectively.

2. The results in this paper can easily be adapted to systems based on F and probably to one
based on P and Π. F (functionality), P (implication) and Π (universal generality) are defined in
terms of A by:

F = λxλyλz &x(Byz),

PΞλjcλy Ξ(K*)(KjO

and

Π = λx Ξ(WQ);t, where Q stands for equality.

3. As in [ 1], [2] and [4] A stands for the class of individuals and H for the class of propositions,
FAH then represents the class of first order predicates.

4. The Axiom HWQX where X is indeterminate was left out in [ 1 ] but is in fact necessary there.

5. Xu^>u Yu is an alternative notation for ΈXY, similarly X D Y is an alternative for PXY.
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