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THE AXIOMATISATION OF THEORIES OF MATERIAL NECESSITY

J. P. CLEAVE

A distinction is frequently made between empirical truths, the truths of
logic and a third class of truths—the "materially necessary". In this latter
category one might place arithmetic and geometry (considered as a priory
exact sciences—see Kamlah, Lorenzen [5] and Lorenzen [8]) and also some
of the propositions of set theory such as the axiom of infinity and the axiom
of choice.1 In the realm of mathematical-physical theories materially
necessary propositions frequently occur as explicitly stated or tacitly
assumed qualitative restrictions on the class of models to be used. For
instance, it is customary to formulate a physical law by a set of ordinary
or partial differential equations (Newton's equations of motion for gravitat-
ing bodies, Maxwell's equations etc.), it being assumed that the differential
calculus is the "correct" mathematical tool. One could externalise this
procedural decision by expressing it as an axiom: "the universe is a
differentiable manifold". This is a materially necessary proposition—it is
not forced on one by logical considerations only; no amount of empirical
evidence can verify or refute it. It can be justified on pragmatic grounds
and by a priori conceptions of space and time. Similarly the "dogma of
structural stability" (Abraham [1], Thorn [19]), which requires that models
of a physical theory shall have certain qualitative features, finds its
justification in some conceptions of the nature of physical enquiry.

The exact borderlines between the three types of truth is a matter of
philosophical dispute. Kδrner [6] observes however that all the various
definitions of material necessity have this feature in common:

"To assert the material necessity of a proposition is to assert that the proposition is
true and that it follows logically from a conjunction of principles which for some
reason or other have a privileged status and confer it on their logical consequences."

1. Exactly which propositions are to be classed as principles of logic is a matter of the continuing
controversy over the "logistic thesis", the fortunes of which have been clearly exposed by
Lakatos ("Infinite regress and the foundations of mathematics," Aristotelian Society Proceed-
ings, Supplementary, vol. 36, (1962)).
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In this view of material necessity, the privileged principles define the
"possible worlds" as a subclass of the totality of structures, they impose
an ontological constraint on the totality of worlds. Thus necessity is
predicated of properties of possible worlds rather than properties of
arbitrary individuals within a given world. This leads to the view that
material necessity is a de dicto modality rather than de re and hence to the
formal requirement that the "necessity operator", N, be applied only to
sentences (cf. [20], pp. 26-28).

The basic conception behind the construction of theories of material
necessity, below, is that given a language L for which a notion of logical
consequence is defined, the system L can be extended by incorporating this
notion (cf. Scott [14], [15]). In particular, we take a first order predicate
calculus L and a principle P of material necessity formulated as a set of
sentences of L. The language is then extended to LN by adjoining the
necessity operator N, treating it as a unary connective applied to closed
formulas only. The truth definition of LN is then obtained by adjoining to
the truth definition for L a clause declaring that NA is true in a given
structure if A is a logical consequence of P. The set PN of sentences of L|N
which are true in all structures satisfying P is the theory of necessity in P.
It is clear that the conception of necessity occurring here is based en-
tirely on the well-known principles of classical semantics, the class of
"possible worlds" being simply an elementary class in the wider sense, to
use the standard terminology of model theory (e.g., [17]). Our approach is
therefore closely related, in spirit at least, to the work of Montague [9] and
Lob [7].

We present some results on the axiomatisation of theories of neces-
sity. The principle result of section 2 (i.e., Theorem 3) implies that
a theory of necessity PίN is axiomatisable (and decidable) if, and only if, the
theory P is decidable. It follows from this that the theory of logical
necessity—obtained by taking P to be the set of logical truths, i.e., the set
of universally valid sentences of the predicate calculus—is non-axioma-
tisable. In section 2 it is shown that the general theory of necessity—the
set of sentences of L,N common to all theories of necessity—can be
axiomatised in a S5-like system, as is already suggested by results in
[6]? [9], [14], [15], It follows that the general theory of necessity is a
proper subsystem of the theory of logical necessity.

1 The notion of validity in the extended language Our treatment of
theories of necessity is based on a first order predicate calculus extended
to include the necessity operator applied to sentences. The question of
which rules of inference preserve validity in the extended language depends
on the original language. Usually it matters little how one formulates a
first order theory—with or with or without equality, function symbols,
individual constants etc. The same mathematical facts can be expressed in
a language without function symbols and individual constants {cf. [11]). Now
if the original language L contained individual constants, a theory of
necessity could contain a sentence HA(a), where a is an individual constant
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in the sentence A. The familiar rules of deduction of the predicate calculus
permit the deduction of (3x)HA{x) from MA(a). But (3x)HA(x) is not a
well-formed formula of LιN as A(x) is not a sentence. We therefore have
two choices: either restrict the application of the usual rules of inference,
or abandon the use of individual constants in the original language. We
adopt the latter alternative, taking the view that any individuals must be
defined by the individuating principles (universals) available in the langu-
age, and by so doing avoid problems of transmundane identification of
individuals.

By a structure we mean an ordered pair w = (\w\, R) where \w\ is a
non-empty domain and R is a sequence of finitary relations. We assume the
notion of similarity of structures; henceforth "μ" denotes a fixed
similarity class of structures. " L " denotes a first order language
appropriate for defining elementary properties of structures in μ. L is
equipped with a countable sequence x0, x19 x29 . . . ot individual variables,
the falsity sign f, the implication sign D, the universal quantifier V, and a
sequence of predicate constants appropriate to μ. The other familiar
connectives Ί, &, v, =, etc., the truth sign t and the existential quantifier 3
can be introduced as abbreviations in the usual way. The usual syntactical
notions of formula and sentence (i.e., closed formula) are assumed. 9, £
denote the sets of formulas and sentences of L. To obtain a language for
expressing necessity relative to some assumed principles we extend the
language L to LIN by adjoining a one place connective N and assuming, in
addition to the formation rules for the formulas of L, the rule:

"If A is a sentence then so is NA".

(Note: " N " can be prefixed to sentences only—if A contains a free variable
then HA is not counted as a formula of I_M.) ^N> ̂ N denote the sets of
formulas and sentences, respectively, of LN. It will be convenient below to
use the following notation of Schϋtte [13]. Let F(A) denote a formula with a
distinguished occurrence of a subformula A. Then for any formula Q9 F(Q)
denotes the formula obtained from F by substituting Q for that occurrence
of A in F .

Some standard notions of first order semantics will be assumed,
principally the notion of satisfaction of sentences in structures of μ. The
phrase "the system w satisfies the sentence A (of L)" is written as
"w\=A". For a subclass W of μ W* = {Ae £; wϊ=A for all we W}. For a
set P c S P* = {weμ; w (=A for all Ae P}. Thus W* = W*** and P* = P***;
P1** is the set of logical consequences of P.

The semantics of LιN can now be formulated. Suppose that a principle
P of material necessity is prescribed. "NA" shall mean that the sentence
A is true, not just as a matter of fact, but because A follows logically from
P. Thus, using the Tar ski-Bolzano conception of logical consequence we
have for a sentence A and w e P *

wt=lNA<-> wNA for all ue P* (1)
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More formally, the truth definition for L is extended to a truth-definition
for L|N by appending (1) to the defining clauses of the definition of the
relation N in L.2 To stress that the notion of satisfaction is relative to P
we henceforth write " . !=" instead of "\=" when referring to the satisfaction
of LN sentences, reserving the latter sign when concerned only with
sentences of the original language L. SH includes S; the above notion of
satisfaction relative to P coincides with the standard notion of satisfaction
when we consider the N-free sentences of L^ (i.e., S). Thus

for we P*, AeS, w¥A iff w \=A (2)

A sentence Ae <£N is P-valid iί w \=A for all we P*.
From the notion of truth one derives in the usual way a notion of

logical consequence. Thus, let AeS\^ and MC <£N. A is a "P-consequence
of M (written "My A") if for all we P*, w\=A whenever w \~M. The
symbol "—->" denotes the usual consequence relation on the sentences of L.
It is clear that if P, M c S and A e S then

M - ^ i iff P U M - A . (3)

It was assumed above that the principle of necessity was expressed by
a set of sentences in the language L; the theory of necessity obtained from
such a principle will be called an elementary theory of necessity. Thus,
for any P the set PN = {Ae <£N; A is P-valid} is the theory of necessity in P.
If P is a finite set of sentences of L then PN is said to be a finite theory of
necessity. We remark that for any P, PN = P**N. A particular case of
interest is the finite theory obtained from the empty set of sentences; φN is
the theory of logical necessity. This is to be distinguished from N,
the set of sentences common to all elementary theories of necessity.
N = Π {PN; P c <£} is the general theory of necessity. Later it will be
shown that N is the set of sentences common to all finite theories of
necessity.

In order to investigate the problems of axiomatisation of theories of
necessity we first record some simple facts. The following relations follow
directly from the definitions of P-validity and P-consequence. Their proofs
are omitted.

(4) For any μ- structure w and Fe <£N

w fpNFiff Fe PN.

(5) For any set P c S

P * * = p N n ^

2. This general method of introducing the necessity operator semantically is not confined to first
order logic, but could also be applied to higher order logic or type theory—in fact, any logic
for which an inductive definition of truth is available, i.e. the truth value of a formula in a
structure depends on truth values of its proper sub formulas in a class of structures.
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(6) If P c S and A, BeSN the following sentences are in P N : N A 3 A,
ΊNA 3 NΊ'NA, N(A 3 B) z> (NA 3 N£), N A & N 5 Ξ N(A & 5).

(7) If P c £ and 4 , A 3 £ e P |N then £ e PlN.
(8) If P c s then A e PN iff NA e P N .
(9) If P• c £ then ΊNA e PN iff A i PN .

From (7) it easily follows that for any P C , ? and A, Be SH

(10) A y Biff A 3 £ePl N ,

(11) A<ψB iff A s Be P'N.

Further, if F(A) is an L lN-sentence and A, B are closed formulas then

(12) if A «p> 5 then F(A) <ψ>F{B).

The basic fact upon which our analysis of theories of necessity
depends is

Lemma 1 Let F(N£) e <£|N. Then for all P c g

?{HB) s. NJ5 & F(t)vϊN£ & F (f) e PN.

Proof: Case (i). Be PN. By (8) HBe PN so N 5 « f t andΊ,NJ5«p>f. Then by
(12), F(N£)<p>F(t)<p>N£ & F(t) vΊNB & F(f). Again, by (12), F(NB) =. NB &
F(t)vTN5 & F(f)e PN.
Case (ii). Bf[?H. By (9), ΊNJBe PN. Hence NJ5<p>f a n d I N - B ^ t , Then by
(12), F'(NJ5)<p> F(f)<p>NB & F(t)vΊ NJ3 & F(f). Again, by (12), F(N£) =. HB &
F'(t)v^N5& F(f)ePΛ. Q.E.D.

It is obvious that the above Lemma can be used to "unnest" the
occurrences of the operator N in any given sentence, and, moreover,
remove them from within the scope of a quantifier, to obtain a propositional
combination of sentences of the form S or NS, where Se £. Using standard
methods of the propositional calculus we then have

Corollary 2 There exists a recursive function β: S\^ —• <£N such that for
every FeSu and P C ^ F<rp>β(F) and β(F) is a conjunction JF\ & . . . & Fn

where each conjunct F{ is a disjunction of sentences of the form S, NS, or
INS, where SeS.

Once the principles of necessity P have been fixed, the truth-values of
formulas NS, where Se S, are by (4) independent of the structure w in which
the above sentences Fj are evaluated. Hence each F e c£(N is P-equivalent to
a sentence Fr in L. This seems to imply that P|N is merely a transcription
of P;**. This conclusion, however, is not quite accurate because it follows
from Theorem 3 (below) that if P** is undecidable then the transformation
of F to F' is non-recursive.

2 Axiomatisability of theories of necessity The possibility of axiomatis-
ing theories of necessity rests upon the following relations of reducibility
between PN and P**. Below " = " denotes recursive equivalence. The
reader is referred to Rogers [12] for the basic notions of recursive
function theory.
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Theorem 3 Let P ̂  S. Then (i) P|N = P**, and

(ii) if PN is recursively enumerable, then P** is recursive.

Before embarking on the proof of Theorem 3 we draw some conclu-
sions from it and give some examples.

Corollary 4 If P** is not decidable the PN is non-axiomatisable.

Proof: If P** is not decidable it is not recursive so by Theorem 3 (ii) PN

is not recursively enumerable. Hence PN is not axiomatisable.

Corollary 5 PN is either non-axiomatisable or decidable.

Proof: Suppose PN is axiomatisable. Then it is recursively enumerable.
By Theorem 3 (ii) P** is recursive. By Theorem 3 (i) PN is recursive,
i.e., decidable. Q.E.D.

Example 1: The theory of logical necessity, 0N. Let μ be a similarity
class of structures with at least one binary relation. Then φ** is the set of
valid sentences of the predicate calculus with at least one two-place
predicate letter. By theorems of Kalmar [4] and Church [2], 0** is
recursively enumerable but non-recursive. By Corollary 4 ψN is non-
axiomatisable.

Example 2: The theory of necessity in groups. Let ©be the (finite) set of
group axioms (see Robinson [11]). The elementary theory of groups is
undecidable [18]. By Corollary 4, @N is not axiomatisable. (Being non-
axiomatisable does not make a theory unusable, as any number theorist can
testify.)

Example 3: The theory of necessity in real-closed fields. LetSW denote the
set of first order axioms for real-closed fields. In contrast to @$N, 9ίN is
not a finite theory of necessity. By a result of Tarski [16], 9Ϊ** is
decidable. By Theorem 3 (i),9ίN is also decidable.

Proof of Theorem 3 {ii): For any Ae £, by (5),

Ae PN iff Ae P**, (13)

and by (9)

ΊNL4e PN iff A/P**. (14)

Now suppose PN is recursively enumerable. From any recursive enumera-
tion of PN one can construct a recursive enumeration of those sentences of
PN of the form ΊNA, where Ae S. By (14) this is an enumeration of
g _ p**. Similarly, from a recursive enumeration of PN one can construct
an enumeration of the N-free sentences in PN. By (13) this is precisely a
recursive enumeration of P**. Thus, both P** and S - P** are recursively
enumerable. Hence P** is recursive. Q.E.D.

Proof of Theorem 3 (i): First we show that PN is Turing-reducible to P**.
Let F e % β(F) = Fι & . . . & Fn, say, where F{ is iNGjv . . . vΊNG^ v
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N # ί v . . .vNHηvHnj+i and G[, . . ., H[, . . . a r e s e n t e n c e s of L {see C o r -
ol lary 2). Then

F e P ' N iff Fi e P N , U i ^ . (15)

and, by (4), F{ e P N iff for a l l s t r u c t u r e s we P*, w 1= 1NG{ or . . . or w^HHl
or . . . or w 1= i ^ . + 1 , i . e . , F, e P N iff GίV P N or . . . H[e P N or . . . or i ^ . + 1 e
P**. A s Gΐ, . . ., fl*+1€ <S, by (5), F , e PN iff GjV P** or . . . or < ; + 1 e P**.
Then, by (15) ,

F e PN iff for 1 < i^ n, G{ i P** or . . . or ff^ + i e p ** ( 1 6 )

(16) def ines the required reduct ion of PN to P**. C o n v e r s e l y , P** i s
reduc ib le to PN by T h e o r e m 3 ( i ) . Hence a s each of P** and P'N i s reduc ib le
to the o ther , they a r e r e c u r s i v e l y equivalent . Q.E.D.

3 Axiomatisation of the general theory of necessity Although individual
theories of necessity may not be axiomatisable (examples 1, 2) the general
theory is . (6) and (8) suggest some version of Lewis' S5. The aim of
this section is to define a formal system π and to prove that it gives a
complete axiomatisation of N. π is based on the system of predicate
calculus as defined in [10]. The formal system π is defined as follows:

(a) Well-formed formulas. S^.
(b) Axioms: all formulas in <£N of one of the forms

A l . A^>. B^> A
A2. iD(βDC)3.(ADΰ)D(iD C)
A3. 11A 3 Aχ

A4. VxA D Sα M, where x and a are individual variables
A5. Vx(A ^ B) =}. A >̂ VxB, where x is an individual variable
A6. NAD A
A7. iNA 3 NΊNA
A8. N(A 3 B) 3 (NA D NB),

where, in A6, A7, and A8 A and B are closed.

(c) Rules of inference:

Rl. From A and A => B to infer B,
R2. From A, if x is an individual variable, to infer VΛA,

R3. From A, where A is closed, to infer NA.

This completes the definition of π. " ^ A" means that A is a theorem of π.

Theorem 6 Let A e <£N. # ^ A #*erc A e N.

Proof: Let "VA" denote the universal closure of the formula A, so, that if
A is already closed VA = A. Let P c <£, Then it follows directly from the
definition of validity that PN contains all the universal closures of the
axioms of π. Again, directly from the definition of validity it can be
verified that

(i) if VA, V(A 3 B) e PlN, then V£e PN,
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(ii) if V i e P N , and x is an individual variable, then V(V#A) e PN,
(iii) if A is closed and A e PN, then by (8) NA e P N .

Hence by induction on the length of proof that if \A, then VAe F N . Thus if
A is closed and ^ A then A e P N . Q.E.D.

The converse of Theorem 6 is based on a syntactical version of
Lemma 1.

Lemma 7 Let F (NB) e <£N. TTzerc

fe F (N£) =. NJ5 & F (t) v ΊKB & F (f) (17)

Proof: By induction on the number n of logical symbols in F(t).

Basis: n - 0. Then F"(N2?) is NB. Using the propositional calculus rules of
π, -te A =. A & t vlA & f for all A e <£N. In particular, ^ NB =. NB & t v
ϊ N £ & f. Thus (17) holds for n = 0.

Inductive step. Suppose (17) holds for all formulas F(N£) for which F(t)
has ^ n logical symbols. Let F(NJB) be a formula of S^ such that F(t) has
n+ 1 logical symbols. Then F(t) has one of the four forms: (i) H(t) ^ J,
(ii) J=> H{\), (iii) VΛr̂ (t), (iv) N#(t), where /ί(t) and J are formulas of <£N

with at most n logical symbols each. By the inductive hypothesis

\π H(NB) = . N ΰ & H(t) v ΊNB & #(f) (18)

case (i). F(N£) is H(NB) 3 J. (17) then follows from (18) by propositional
calculus.

case (ii). F(NE) is J^ H(NB). Similar to case (i).

case (iii). F(KB) is VxH(NB). By propositional calculus

^ NB & #(t) v l N 5 & #(f) =. (N5 D jff(t)) & (1N£ => JEΓ(f)).

Hence using (18),

.fe VxH(NB) =. VΛ ίN.B => /ί(t)) & VΛ:(ΊN^ => /ί(f)). (19)

But J5 is closed so that ^VΛΓ(N5=) H(t)) Ξ. N5 D VΛ:i7(t) and ^\/χ{iNB^
H(i)) =. ΊNB => VΛ F(f). Hence, by (18)

kV'xH(MB) =. (NB^> VxH(t)) & (ΊN£ 3 VxH(f)).

Then by propositional calculus,

te V##(N£) =. N ^ & VΛΓ̂ (t) VΊNJB & V##(f).

Thus (17) holds for V ^ N E ) .

case (iv). F(NJ5) is NH(NB). One can readily see from the rules and axioms

of 77 (see S5 results in [3]) that for all A, Be SH ^ NNA 3 NA,^ N(A & B) =.

NΛ & NB, ft N(NA D B) ^ . NA => N^, and fe N(NAv J5) =. NA vNJ5. Now, as

in case (iii), using propositional calculus we have from (18) that

fe NH{NB) =. N{{NB 3 #(t)) & (ΊNB D ίΓ(f))). (20)
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Using (20) and the theorems preceding it we have

fc N#(NJ3) s. (KJB ̂  N#(t)) & (N£v N#(f)).

Hence, kN#(N£) =. N£ & N#(t) v ΊNLB & N#(f). Thus (17) holds for N#(N£).

The case analysis for the inductive step is now complete. The theorem
may follows by induction. Q.E.D.

Since the system π contains the full classical propositional calculus,
the process of unnesting the modal operators and putting the result in
normal form as in Corollary 2 can actually be effected in π.

Corollary 8 For each F e SH, fc F = β(F).

Lemma 9 Let Gu . . ., Gn9 Hu . . ., Hm+ιeS . Let F be the formula iHG^
. . .vΊNG w vN^!v . . .vNHmvHm+1 and P = {Gl9 . . ., Gw}. Then:

(i) // F e P N , then for some j , 1 ̂  j ^ m + 1, Gx & . . . & Gn ^ Hj is a uni-
versally valid sentence of L.
(ii) If for some j , 1 ̂  j ^ n, Gx & . . . & Gn ^> Hj is universally valid,
then fe F.

Proof: (i) Suppose F e PN . Then for all we P*, w I p l N d v . . .vNHmvHm+1.
As Gl9 . . ., Hm+1 are N-free, by (2) and the definition of validity, for all
we P* Gi/P 1** or . . . o r G w / P * * or Hλe P** or . . . or Hm e P** or w\=Hm+1.
Thus one of the n+ m + 1 conditions G, i P**, 1 ̂  i^ n, Hj e P**, 1 ̂  j ^ m + 1
must hold. But Gf e P c P**. Hence one of the conditions Hj e P** holds.
Thus P — Hj for some j , 1 ̂  j < m + 1. Hence Gx & . . . & GΛ => # ; is
universally valid for some j , 1 ̂  j ^ m + 1.
(ii) Suppose Gx & . . . & Gn^> Hj is universally valid. By the completeness
theorem of the predicate calculus fc Gγ & . . . & Gn => ̂ y. By R3, bf.NKG! &
. . . & Gn=) fΓ; ). By Rl, A8 and the results quoted in Lemma 7, fo-NGi &
. . . & NGn3> NH7 . If j ^ m then |= NGX & . . . & NGW =>. N^iv . . .vNft, v ^ + 1 .
Hence |= F. But if j = m + 1, by A6, fc Niί w + 1 ^ ^ w + 1 . Hence ^ N d & . . . &
NGW 3 iJw + 1. From this, fe NGX & . . . & NGW o . N f t v . . .vN/ζ«vHΛ + 1.
Hence fc?. F. Q.E.D.

The converse of Theorem 6 can now be proved.

Theorem 10 Let F e £<H. If F e N, #z£rc fe F.

Proo/: Suppose F e N, By Corollary 2 /3(F) e N. β(F) = J?i & . . . & Fw, where
JF> is Ί'NGf v . . . v ΊNG^ vN/ίί v . . . v N ^ vfζ . + 1 , say, where Gί, . . .,
^ + 1 e ^ . As β(F)eN, ί eN for 1 ̂  i^ n. By the definition of N, F, e
{G{ . . . Gw

f.}N, 1^ i^ n. By Lemma 9 (i), (ii), fc Ff- for 1 ̂  z^ w. Hence
tej3(F'). By Corollary 8, feF. Q.E.D.

Corollary 11 Let F e <% F € N zj^ te F.

Corollary 12 N zs recursively enumerable.

Corollary 12 contrasts with examples 1 and 2.
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A slight refinement of Theorem 10, which is based ultimately on the

compactness theorem of the predicate calculus, shows that if a sentence of

<&M is not provable in π then there exists a finite "counterexample'\

Theorem 13 Let F e <% If 14 F, ί/zerc #zere exέsfc Se <£ swc/z that F /{5}N.

Proo/: β(F) = A F where F{ is iNGJv. . . vnlslG^ vNflfv . . . v N # i . v # 4 + i

Suppose b^ F. By Corollary 8 %β(ϊ). Hence for some i, 1< i ^ n , %ΐFi.

Let S be G/ & . . . & G«f. By Lemma 9 (ii), for all j , 1 ̂  j ^ iw, , G/ & . . . &

G 4 => #/ is not universally valid. By Lemma 9 (i), F{ /{Gj, . . ., G£jN={s}iN.

Hence β(F)^{s}Nso F/{S}N. Q.E.D.

The general theory of necessity is defined by quantifying over all

subsets of <£. Theorem 14 (below) enables us to reduce this definition to

first order form in a natural way.

Theorem 14 N = Π {{S}N; SeS}.

Proof: Clearly, N c f l {{5}N; Se S}. Suppose F e SH. If F/N, then, by

Theorem 6, b£ F. By Theorem 13, for some Se S, F /{S}N. Hence N => {{S}N;

Sei}. Q.E.D.,

Thus, the general theory of necessity is the set of sentences common

to all finite theories of necessity.
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