Notre Dame Journal of Formal Logic Volume XX, Number 1, January 1979 NDJFAM

AXIOMATICS FOR IMPLICATION

DAVID MEREDITH

This paper presents a basic axiomatic and two increments thereto, for propositional systems with implication as the sole functor. The basic axiomatic gives exactly the set of Modus Ponens formulae (defined below); addition of the first increment gives Positive Logic; and with addition of the second increment we reach the complete Classical Logic.

After some preliminaries in section 1, the axiomatics are presented in section 2. Section 3 establishes their properties.

1 Preliminaries. Modus ponens formulae Lower case Greek letters, with and without subscripts, are used for well-formed propositional formulae whose only functor is implication. Braces- $({}^{\prime})$ and $({}^{\prime})$ -form ordered sets of such formulae. $({}^{\prime})$ denotes a relationship between an ordered set of formulae and a single formula which is defined below.

Definition 1 $\{\alpha_1, \ldots, \alpha_n\}$ closes β (written $\{\alpha_1, \ldots, \alpha_n\} \sim \beta$) is defined inductively in two steps.

I. Let there be some α_i $(1 \le i \le n)$ such that $\alpha_i = \beta$: then $\{\alpha_1, \ldots, \alpha_n\} \sim \beta$.

II. Let there be some γ such that $\{\alpha_1, \ldots, \alpha_n\} \sim C\gamma\beta$ and $\{\alpha_1, \ldots, \alpha_n\} \sim \gamma$: then $\{\alpha_1, \ldots, \alpha_n\} \sim \beta$.

Definition 2 $C\alpha_1 \ldots C\alpha_n\beta$ $(n \ge 1)$ is a Modus Ponens formula iff β is elementary and $\{\alpha_1, \ldots, \alpha_n\} \sim \beta$.

Examples of Modus Ponens formulae are: *Cpp*, *CpCqp*, *CCpCqrCCpqCpr*. Formulae which are not Modus Ponens formulae are: *CCCpqrCqr*, *CCCprsCCCqprs*.

2 Axiomatics The three axiomatic systems are based on a single axiom, and—including substitution—six inference rules. Axiom and rules are as follows.

Axiom. Cpp

Rule 1. Where $[x/\beta]\alpha$ is the result of replacing every occurrence of the variable x in α by β . $\alpha \vdash [x/\beta]\alpha$

Received October 1, 1974

DAVID MEREDITH

 $(n \ge 1)$

Rule 2. $C\alpha_1 \ldots C\alpha_n C\beta_{\gamma} \vdash C\alpha_1 \ldots C\beta C\alpha_{n\gamma}$ Rule 3. $\alpha \vdash C\beta \alpha$ Rule 4. $C\alpha C\beta_{\gamma} \vdash C\alpha CC\alpha\beta_{\gamma}$ Rule 5. $C\alpha\beta, \alpha \vdash \beta$ Rule 6. $C\alpha\beta \vdash CCC\alpha_{\gamma}\alpha\beta$

System 1 is defined by the axiom and rules 1 through 4. System 2 is obtained from system 1 by the addition of rule 5. System 3 is obtained from system 2 by the addition of rule 6.

3 Properties of the systems The following theorems establish the properties of the three systems.

Theorem 1 α is a thesis of System 1 iff α is a Modus Ponens formula.

Proof: (1) All theses of system 1 are Modus Ponens formulae: Cpp is a Modus Ponens formula, and this class of formulae is closed under the operations in rules 1 through 4.

(2) Every Modus Ponens formula is a thesis of system 1:

Let $C\alpha_1 \ldots C\alpha_n\beta$ be a Modus Ponens formula, then either there is some α_i $(1 \le i \le n)$ such that $\alpha_i = \beta$, or there is some $\alpha_i = C\gamma_1 \ldots C\gamma_m\beta$, where for every γ_i $(1 \le j \le m)$, $\{\alpha_1, \ldots, \alpha_n\} \sim \gamma_i$. In the former case we can use rule 1 to obtain $C\beta\beta$ from the axiom, and then by means of rules 3 and 2 insert and order all the remaining α -antecedents. In the latter case we obtain $CC_{\gamma_m}\beta C_{\gamma_m}\beta$ from the axiom, and then for each γ_i $(1 \le j \le m)$ in decreasing succession, using rules 3 and 4 when there is no $\gamma_k (k > j)$ such that $\gamma_i = \gamma_k$ and rules 2 and 4 otherwise, we obtain $C\gamma_i C C\gamma_i C\gamma_{i+1} \ldots$ $C_{\gamma_m}\beta C_{\delta_1}\ldots C_{\delta_l}\beta$ where every $\gamma_p (j+1 \le p \le m)$ is identical with some δ_q $(1 \le q \le l)$ and there is no δ_r $(1 \le r \le l$ and $q \ne r)$ such that $\delta_q = \delta_r$. From this, rule 2 yields $CC_{\gamma_j}C_{\gamma_{j+1}}\ldots C_{\gamma_m}\beta C_{\gamma_j}C\delta_1\ldots C\delta_l\beta$. When j = 1 we will have $CC_{\gamma_1} \ldots C_{\gamma_m} \beta C\delta_1 \ldots C\delta_l \beta$ where every γ_p $(1 \le p \le m)$ is identical to some δ_q $(1 \le q \le l)$ and there is no δ_r $(1 \le r \le l$ and $q \ne r)$ such that $\delta_q = \delta_r$. From the fact that for every γ_i , $\{\alpha_1, \ldots, \alpha_n\} \sim \gamma_i$, it follows that for every δ_q , either there is some $\alpha_i = \delta_q$ or there is some $\alpha_i = C\epsilon_1 \dots C\epsilon_s \delta_q$ where for every ε_k $(1 \le k \le s)$, $\{\alpha_1, \ldots, \alpha_n\} \sim \varepsilon_k$. In the former case no action is required. In the latter case we proceed with each ε_k exactly as we proceeded with each γ_i $(1 \le j \le m)$. When for every δ_{q} every ε_{k} has been dealt with, the number of α -antecedents in our formula will have increased by $t \ge 0$. The reasoning applied to δ_a applies to any such new antecedent ξ , and we can use on every ξ the procedure we used for each δ_q . Since $C\alpha_1 \ldots C\alpha_n\beta$ is finite, the process must eventually terminate, and we can use rule 3 to insert any remaining α -antecedents, and rule 2 to order the formula.

Theorem 2 α is a thesis of system 2 iff α is a thesis of Positive Logic.

Proof: (1) All theses of system 2 are theses of Positive Logic: *Cpp* is a thesis of Positive Logic, and rules 1 through 5 are valid Positive Logic rules.

(2) Every thesis of Positive Logic is a thesis of system 2:

90

Both CpCqp and CCpCqrCCpqCpr are Modus Ponens formulae and, a fortiori, theses of system 2. These two formulae with rules 1 and 5 constitute a known Positive Logic base.

Theorem 3 α is a thesis of system **3** iff α is a thesis of Classical Implicational Logic.

Proof: (1) All theses of system **3** are theses of Classical Logic: Cpp is a thesis of Classical Logic, and rules 1 through 6 are valid rules in that system.

(2) All theses of Classical Implicational Logic are theses of system 3: From the axiom we can obtain Cpp which by rule 6 gives CCCpqpp. This thesis and the two Modus Ponens formulae CCpqCCqrCpr and CpCqptogether with rules 1 and 5 constitute the Tarski-Bernays base for Classical Implicational Logic.

It is perhaps worth pointing out that the proof of CCCpqpp just given illustrates a general mechanism for replacing an axiom $C\alpha\beta$ by the axiom Cpp and the rule $C\beta\gamma \vdash C\alpha\gamma$, in any system where Modus Ponens holds, and both Cpp and CCpqCCqrCpr are theses.

Information International, Inc. Culver City, California