
307

Notre Dame Journal of Formal Logic
Volume 32, Number 2, Spring 1991

Theory Revision and Probability

KARL SCHLECHTA*

Abstract The problem of Theory Revision is to "add" a formula to a the-
ory, while preserving consistency and making only minimal changes to the
original theory. A natural way to uniquely determine the process is by im-
posing an order of "epistemic entrenchment" on the formulas, as done by
Gardenfors and Makinson. We improve their results as follows: We define
orders which generate unique revision processes too, but in addition, (1) have
nice logical properties, (2) are independent of the theory considered, and are
thus well suited for iterated revision and computational purposes, and (3)
have a natural probabilistic construction. Finally, we show that the complete-
ness problems of Theory Revision carry over to a certain extent to an ap-
proach based on revising axiom systems .

1 Introduction Recent years have seen an increasing interest in theory re-
vision, which has partly centered around the work of Gardenfors and his co-
authors ([1], [2], [4-6]). In [4] and [5], the problem of choice in theory revision
(more precisely: maxichoice contraction/revision) finds a natural solution in the
concept of epistemic entrenchment: An order on the formulas tells us which to
choose. The orders of [4] and [5] have, however, theoretical as well as compu-
tational drawbacks: (1) They are tailored to fit the requirements of theory revi-
sion and will not respect other natural demands like φ < ψ iff -vφ < -ιφ (if I tend
to believe more in ψ than in φ, then I might tend to believe more in ->φ than
in -iψ); (2) For each revision of a new theory (in a fixed language) we have to
find a new order, so iterated revision means iterated effort in ordering. Note that
"theory" is used here in a technical sense: a deductively closed set of fomlulas
(the deductive closure of a database). Thus two theories might be closely related,
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and are not necessarily as different as, say, a physical and a medical theory. So
iterated theory revision in this sense is a very common phenomenon for cogni-
tive systems.

The main aim of this paper is to show how to overcome these drawbacks:
(1) To prove that one order of a very simple kind will do for all theories of a
given language and thus for all revisions (Propositions 2.2 and 2.4); and (2) To
show how to construct such an order with particularly nice and natural properties
for countable propositional languages (Proposition 2.8 and 2.11).

For a different treatment of iterated revision, see Spohn's work, e.g., [7].
The last section is independent of the first part. In Sections 1 and 2, we con-

sider what Gardenfors and his co-authors call maxichoice contraction—choosing
a maximal subset K' of K, such that K' VA. As pointed out in [1], [4], and [6],
maxichoice contraction suffers from a completeness problem. Our point in Sec-
tion 3 is that Theory Revision with underlying axiom sets is plagued by essen-
tially the same problems (and some more). We consider systems (K9A)9 where
K is a deductively closed set of formulas, and A is a set of axioms for K. The-
ory Revision for (K9A) will essentially amount to the choice of a suitable sub-
set of A. Proposition 3.1 shows that there is a continuum between too coarse
axiom sets (and too coarse revision) and too fine-grained axiom sets (resulting
in full completeness at revision).

For the convenience of the reader, we now repeat the (for our purposes) main
definitions and results of Gardenfors and Makinson. But before that, we give
an example to point out the basic problem of underdeterminacy.

A problem of theory revision Let Γbe a theory, i.e. a deductively closed
set of formulas. Suppose [A,B] c τ9 thus A Λ B E Γ, and we would like to re-
vise T to a maximal theory Tf <^T such that A Λ B φ. T'. So {A, B} g T is im-
possible, and we have to withdraw A,B, or both. Leaving aside such extreme
cases as YA <-> B9 "both" is unsatisfactory, as T' should be maximal. So we
must choose A or B, but logic won't tell us which. If we have an order A < B
telling us that we like A less than B, we are finished.

This is the idea of Gardenfors' and Makinson's Solution. In the following,
we adopt Gardenfors' and Makinson's terminology to make this article more
readable for those familiar with their work. They denote by "theory contraction"
the process of removing a formula from a theory, and by "theory revision" add-
ing a formula A to a theory T so that the resulting theory T' is consistent (if A
is) and A E T'. This is made precise in the following.

Definition 1.1 Given a language <£, an inference rule h (we will not be more
specific here, and the interested reader is referred, e.g., to [4]), and a "knowl-
edge set" K, i.e. a set of formulas of £ closed under h, then

a function K-: Formulas of <£ -• Sets of Formulas of £ is called a con-
traction function for K, iff it satisfies the postulates (K-l)
to (K-8) below, and

a function K*: Formulas of £ -• Sets of Formulas of <£ is called a revision
function for K9 iff it satisfies the postulates (K*l) to (K*8)
below.
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Proposition 1.1 Both notions are interdefinable by the following equations:

K*A := (K - -u4) + A (where L + Bis the deductive closure ofL U {B})

i.e., ifK— is a contraction function, then K* so defined is a revision function,
and

K-A :=KD {K* -iΛ)

i.e., ifK* is a revision function, then K— so defined will be a contraction func-
tion.

The proofs are straightforward.

We now state the axioms for K— and K*. Some very short comments are given
at the right. The reader will find more motivation, e.g., in [4]:

Definition 1.2
(K-l) K - A is a knowledge set (i.e. deductively closed under (-)
(K-2) K-A^K
(K-3) If A £ K, then K - A = K (the desired result already applies to K)
(K-4) If \tA, then A <£ K - A (success, if possible)
(K-5) K c (K - A) + A (where L + Bis the deductive closure of

L U {B}, the "postulate of recovery")
(K-6) If \-A <+ B, then K - A = K - B
(K-7) (K - A) Π (K - B) g K - (A Λ B) (a condition of minimality)
(K-8) lίA£K- (AΛB),

then K — (A A B) C= K — A (In general, the more specific a
formula is, the less the change

necessary for revision. If
A φ K — (A A B), however,

then contraction by A A B
will do already)

and

(K*l) K*A is a knowledge set
(K*2) A G K*A (success)
(K*3) K*A <^K + A (the purpose of K*A is to "add"

A to K, if consistently possible)
(KM) If -iΛ £ K, then K + AQ K*A (see K*3)
(K*5) K*A = #j_ (î L the inconsistent theory only if h~vl;

preserve consistency, if possible)
(K*6) If YA «+ J5, then K*A = J T £
(K*7) ZT(,4 Λ £) c (ATM) + B (consider K*2 and minimality

for motivation)
(K*8) If i 5 £ # M , then (ATM) + B c ϋΓ*(^ Λ 5) (see K*4)

By the above interdefinability result, it suffices for our purposes to consider con-
traction only in the following.

As already pointed out, a suitable order on the formulas of £ will give rise
to a unique contraction function for maxichoice contraction. Gardenfors and
Makinson consider relations of "epistemic entrenchment", where A < B means
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that B is more deeply entrenched, and we are more willing to give up A than to
give up B9 if need be, and provided we have a choice. This is made precise in

Definition 1.3 Let < = <κ be a relation relative to a knowledge set K on the
formulas of £ such that

(EE1) If A < B and B < C, then A < C (transitivity)
(EE2) If A t- B, then 4̂ < B (UAhB, then we believe at

least as much in B as in A)
(EE3) For any A and 5, A < 4̂ Λ 5 (Essentially this property makes <

or B < A Λ B a total order, and gives the necessary
decision for contraction).

(EE4) When K Φ K± (the set of all formulas
of <£), then A <£ K iff A < B for all B (It is here that K matters)

(EE5) If B < A for all B9 then K4. (Only Truth is maximally
entrenched).

We then call < a relation of epistemic entrenchment for K. We may read < as
strength of belief, where everything outside K is not believed at all. Again, we
have an interdefinability result:

Proposition 1.2 The function K— and the ordering <κ are interdefinable in
the following sense:

Define K - A by B G K - A :~ B G K and {A < A v B or VA)
(A < B means: A < B, and not B <A).

If< satisfies (EE1)-(EE5), then K- so defined will satisfy (K-l)-(K-8). Define
A<B (on the formulas of <£) by A < B :<+ A £ K - (A Λ B) or VA Λ B. If
K- satisfies (K-l)-(K-8), then < so defined will satisfy (EE1)-(EE5).

As emphasized, any < satisfying (EE1)-(EE5) will depend essentially on K.
Thus, for iterated revision, as K changes, we need a new order <κ for every
step. Our Proposition 2.2 will show that, given a preference relation < for <£,
i.e. a total ordering of the formulas of £ which satisfies some very natural re-
quirements (and which correspond well with the order of the Lindenbaum-Tarski
algebra), we can construct from that <for all K an order <κ satisfying (EE1)-
(EE5). Proposition 2.3 will show the inverse: Given an epistemic entrenchment
relation, we have a preference relation too, such that the construction of Defi-
nition 2.1 will recover the epistemic entrenchment relation again.

A direct definition of a contraction function from a preference relation with
an additional property to obtain (K-7), is given in Proposition 2.4. Propositions
2.8 and 2.11 will show how to naturally define an order satisfying the prereq-
uisites of Proposition 2.2.

2 Preference relations

Definition 2.1
(a) Call a relation < on the formulas of £ a preference relation for <£ iff < is

a binary relation such that
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1. A VB-+A <B
2. < is transitive
3. < is total
4. VB,B<A-±\-A

(b) Let K be closed under h, and a preference relation < for £ be fixed.
Define A 4 B iff Dl. A h B or

D2. A <£ K or
D3. B = A Λ C and A < C and 5 e l

Furthermore, define < as the transitive closure of ̂ .

Fact 2.1 ΓΛere /s1 tf standard way of establishing A < B: let A,CeK, then
there is B such that A4AΛBbyΌ3, and AΛBlCbγΌl iff A <A-+C.

Proof: "<-": As A, C G K,A A (A -• C) G K, so A 4Ό3 A A (A -• C) ̂ D 1 C.
"-•" : As K4 Λ 5 -• C,hS -• (.4 ̂  C), and by Conditions 1 and 2 above

.4 < B < >1 -> C.

Proposition 2.2 If < is a preference relation for <£, flwd < defined as in Def-
inition 2.1, then < satisfies (EE1)-(EE5). (Thus, given one global preference re-
lation for £ , we can easily obtain epistemic entrenchment relations for all
knowledge sets K of <£.)

Proof: We first show two claims; the proof will then be trivial.

Claim 1 For no A G K9B £ K we have A <B.

Proof: Suppose the contrary. Let A = Ax < A2 4.. . 4 An = B. We have to
"cross the border between K and <£ — K" somewhere: There is Ax 4 Aι+χ such
that Aλ G K,A ι+ι £ K. Examine the cases of 4. Dl cannot be, as Ax G K,AX V
Ai+i implies, Aλ+λ G K. D2 cannot be, as A[ G K. D3 cannot be, as Ai+Ϊ £ K.
So we have a contradiction.

Claim 2 VB.B <A-*VA.

Proof: (Induction on the length of the ^-chain.) By Condition 1, it suffices to
consider B := True. True 4mA -* K4. True ήΌ2A cannot be, as True G K.
True ήmA = True Λ C -> True < C -> VC by maximality of True and 4 of <
(Definition 2.1 (a)).

We now prove Proposition 2.2:
(EE1) is trivial by definition.
(EE2) byDl.
(EE3) We have to prove A <AΛB or B<AΛB.

By 3. of <,v4 <Box B<A.
Case 1: A Λ B G K. If A < By then A 4A A Bby Ό3. B < A analo-

gously.
Case 2: AAB£K. Then A £ K or B φ K, continue with D2.

(EE4) "->": ,4 ί ΛΓ^ A « 5 by D2 for all B.
"+-": Let K Φ K±,^4 < B for all θ . Suppose A G # . By K Φ K±,
there is B φ. K9 and by prerequisite A < B, contradicting Claim 1.

(EE5) Claim 2.
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Gardenfors (in personal communication) has raised the question whether we can,
given a relation of epistemic entrenchment, define from this relation a prefer-
ence relation and recover the epistemic entrenchment relation again as in Defi-
nition 2.1. The answer is "yes" (in a simplified version due to David Makinson):

Proposition 2.3 Let <κ be an epistemic entrenchment relation for a knowl-
edge set K. Then, by definition, <κ is a preference relation and < defined for this
<κ and K as in Definition 2.1. b is equal to <κ.

Proof: "< c <^" : It suffices to prove < c <κ. Dl and D2 are trivial. D3: Let
A < A Λ B by A <κ B. If B <κ A Λ B, then A <κ B <κ A Λ B, and we are fin-
ished by (EE3). " < * c <»: Let A <κ B. If A <£ K, then A 4 B by D2. If A G
K, then B G K by (EE4), so A Λ B G K, thus A <Λ^κBA ΛB^B.

Next, we show how to define a contraction operation directly and in a sim-
ple way from a preference relation, without taking a detour via an epistemic en-
trenchment relation. To show the property (K-7), we now need an additional
assumption, which will, however, be satisfied in our final construction.

Proposition 2.4
(a) Let < be a preference relation for a language £. Define a function —: Knowl-

edge sets in £ and Formulas of £ -• Sets of Formulas of £ by

[K ifYAorA^K

liBEK :A<AvB] otherwise.

The restriction K- to K will satisfy (K-l)-(K-6), (K-8) of Definition 1.2.
(b) K - satisfies (K-7) for all K too iff the following condition holds:

(*) For all formulas A,B,C9 (AΛB)VC<AΛB implies A v C < A
or5vC<5.

(c) Condition (*) need not necessarily be satisfied for preference relations. It
holds for epistemic entrenchment relations and the construction of Propo-
sitions 2.8 and 2.11.

Proof: (a) The cases b4 or A φ K are trivial, so assume VA,A G K in the se-
quel. A < A v B is always true for preference relations, so it suffices to show
Ay Bφ A to prove B G K - A (for B G K).

(K-2), (K-3), (K-4), (K-6) are trivial.
(K-l): By compactness of h, it suffices to consider \-B-+B'. Leti?GAT —^4,

KB->£', assume B' φ. K-A, i.e. A v B ' < A. But then YA yB^A vδ ' , and by
Condition 1 of Definition 2.1, AyB < A v B ' < A, contradiction.

(K-5): Let BeK, so ^Ay Be K. Assume A v ( -ιΛ v B) < Λ, then True <
^4, and by Condition 4, K4, contradiction. So -iv4 v 5 = i4->5EA'->l , and

(K-8): We have to show that (Kr\B)y A<A r\B implies VC (Λ v C < ,4 -•
(̂ 4 Λ 5) vC < A Λ 5) . But then {A hB)y C <^Ay C < A < h (̂ 4 Λ 5) v A <

(b) "<-": If h 4̂, then ̂  Λ B ++ B, so by (K-6) K - B = K - (A Λ B), and
(K-7) is satisfied. If A £ K, then A A B £ K, and (K-7) holds, too. Likewise
for B. Suppose now C GK,C φ K — (A ΛB). Thus, by Condition 1 for pref-
erence relations, (A Λ B) V C < A Λ B. By (*), C φ K - A, or C £ K - B.
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"-•": Let A, B, C be such that (A Λ B) V C < A Λ B9 but neither A v C < A
nor £ v C < B. Consider K :=Ύh(A9B9C)9 the deductive closure of A, B9 C.
Then A9B9AΛBEK9 and M, VB9 VAsB (otherwise, A\ιC<A etc. by max-
imality of True). Consequently, C e (K - A) Π (K - B)9 but not C G K -
(AΛB).

(c) See Example 2.1 below for a counterexample. For epistemic entrenchment
relations (AvC)/\(BvC) = (AΛB)VC<AΛB^A,B, and (EE3) gives the
result. For the construction of Propositions 2.8 and 2.11, by Lemma 2.7.7,
(AΛB)VC<AΛB implies VC -• A A B9 thus VC -> A and \-C -> 5, and 4̂ v
C<Λ5vC<5.

We now turn to the task of defining such a total order on the formulas of
£ in a natural way. Let, in the following, D be the Lindenbaum-Tarski algebra
for the language £ and the empty theory. (Thus, elements of D have the form
[φ] where φ is a formula of £ , and [φ] = [φ] iff Yφ <-• φ. Moreover, [φ] Λ
[φ] := [ * Λ ^ ] , - [ * ] := [-.tf], and [?] < [0] : ~ [^] Λ [0] = [*>].) We have
a first constructive result:

Lemma 2.5 Extending the natural ordering on the formulas of £ given by
D to a total order, preserving [True] as the only maximal element, will give a
preference relation for £ , and thus, by Proposition 2.2, epistemic entrenchment
relations <κfor all knowledge sets K of £ .

Next, we assign probability values to formulas of £, i.e. each φ E £ will have
a real value v(φ)9 and the natural order of the real numbers will order the for-
mulas too. Of course, logically equivalent formulas should be given the same
probability. We proceed indirectly, assigning first probabilities to models, and
defining the probability of a formula as the sum of the probabilities of its models.
The above equivalence condition will then be trivially true. It is easily seen (Prop-
osition 2.8), that our construction will give a preference relation < for £ as
needed to define the epistemic entrenchment relations <#. We can improve our
result and the equivalence condition to obtain (φ < ψ and ψ < φ) iff Vφ ++ ψ
(Proposition 2.11). For this end, we use algebraic closure properties of the reals
(Fact 2.10). We can thus construct in a natural way a total (and natural) exten-
sion of the natural order of the Lindenbaum-Tarski algebra D, such that ([φ] <
[φ] and [φ] < [φ]) is equivalent to [<p] = [φ]. In conclusion, we remark that
the whole process can be easily relativized to a fixed theory, by considering only
models of that theory (see Definition 2.5). But first, we need some constructions:

Let A be the σ-algebra (i.e. the Nrcomplete Boolean algebra) of Lebesgue-
measurable sets restricted to subsets of the unit interval [0,1). Let μ be the usual
Lebesgue measure. (The reader unfamiliar with these notions will find definitions
and properties in any book on measure and integration theory.)

Definition 2.2 Let <X/: / E ω> be a sequence of reals in the open interval
(0,1). Define by induction:

a0 := [O,xo)9bo := {09x0A}.

Let an9 bn be defined (n G β). bn will be a set of 2n+ι + 1 elements, an a disjoint
union of 2n nonempty intervals. Let bn = [yj :j < 2n+ι + 2), the yj in increas-
ing order. Define
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0Λ+i .= U{[yj,yj+(yj+i-yj)*χn+i) j<2n+1 + i)

bn+ι := bnuiyj + (yJ+i -yj) *χ Λ +i :y < 2n+1 + l).

Finally, set α^ := [0,1) - αΛ. (See Diagram 2.1 below.)
Let IB be the tf! -complete subalgebra of A generated by {at>: / G ω).

Fact 2.6 For /Λe #,- ί/zws1 defined we have:
(1) /*(#„) = xΛ

(2) μ(<Q = 1 - μ(βΛ) (trivial)
(3) μ(Γ\{cn:neX})=U{μ,(cn):neX} where cn is either an or cΓnforX^ω

finite, by the "independence" of the construction. This property is essential
to all that follows.

In the rest of the paper, let £ = { A : * G ω ) be a countable language of propo-
sitional calculus.

Definition 2.3
(a) Define/: £-*{*,-: i e 0} b y / ( A ) := ah i.e. μ{f(Pi)) = xh

(b) Let M be the set of assignments of truth values to finite subsets of <£, t G
M, t defined on £ ' c £. (it suffices to consider finite subsets, as standard
propositional calculus admits only finite formulas.) Define g(t) := n{#/*
Pi G <£', t(pi) = true) Π Γ){aϊ' Pi E £', r(pz) = false).

Thus, μ(g(t)) = μ(n{ai:pie£',t(pi)=true}nn{ctϊ:pie£'9t(pi) = false}) =
Π {Λ:/ : A G £', t(Pi) = true} * Π{ 1 - Xi :Pi € £', / ( A ) = false), and we have de-
fined for every assignment t G M a real value μ(g(O) There is a natural way
to extend this function to formulas:

Definition 2.4 Let φ be a formula with propositional variables A G £^ ̂  £
finite.
(a) Let Val(^) :=f/GM:dom(/) = £φ9 t(φ) = true, i.e. φ is true under r}.
(b) So we can define v(φ) := Σlμ(g(t)) :t G Val(^)).

(See Diagram 2.1.)

Let £ = {p,q}, t(p) = true, t(q) = false, t'(p) = false, t'{q) = true, φ-p^ ~^q

H 1 • 1 1 V
0 *o**i ô *o+0-*o)**i 1

v y ) v J

tfi ax

g(t)

I J

g(t')

Diagram 2.1.
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Thus, μ(a0) = Xo, μ(«l) = X\, H<p) = μ(g(O) + μ(g(t')) = Xo * (1 - *i) +
(1 - x0) * χx. Our construction has the following properties:

Lemma 2.7
(1) v(φ) is independent of dom(0 in the following sense

Let£φ^£'^£ finite. Then v(φ) :=Σiμ(g(t)):teVal(φ)} = Σ{μ(g(t)):
t <E M, dom(O = <£', t(φ) = true}.

(2) By definition of Val and v, logically equivalent formulas will have the same
real value v(φ).

(3) Vφ-+Φ implies v(φ) < v(φ).
(To see this, consider £ ' = £φ U £ψ, use (1) and the fact that every assign-
ment which makes φ true will make φ true too.)

(4) p(-*φ) = 1 -v(φ).
(Usev(true) = Σ{μ(g(t)): te M, dom(0 = £'finite] = 1, t(φ) = t r u e ^
t(-ιφ) - false, and for ί , / ' e M with the same domain t Φ t' -+ g(t) C\

s(Π = 0.)
(5) Exactly the valid formulas will have real value v(φ) = 1.

(g: D -> IB (extended suitably to formulas) is an injective homomorphism of
Boolean algebras, and use the above arguments.)

(6) v(φ) < p(φ) ++ v( -iψ) < v( -Λφ) (by (4))
(7) v(φ v φ) < v(φ) <-> bψ->φ.

"^":by (3)
"-•": Suppose yψ-+φ. ThusM' := {ί: rh^} C M : = {t:t\=φvψ}, lettG
M-Mf. AsXiG (0,1), μg(t) Φ 0, thus v(φ) := Σ k ( 0 : ^ M ' ) <
Σ { μ * ( O : * e Λ / ) = : i ' ( * v ^ ) .

(8) We cannot expect v(φ /\ψ) = ^(^>) * ι (ψ) or v(φ v ψ) = (̂<,ί?) + *>(i/0. Λ<5ί
rAm/: o/<̂> = φ. These equations can only be valid ifφ and ψ are independent.
For this reason, we gave first a value to models, which are independent, and
then to formulas.

We have thus proved our main constructive result:

Proposition 2.8 Let Pji i € ω be given a probability x, E (0,1), then this
gives rise naturally to probabilities v (φ) for any formula in £, such that (1) -(6)
of Lemma 2.7 are valid, and thus to a preference relation <for £, i.e. satisfy-
ing 1-4 o/< in Definition 2.1, and thus the prerequisites of Propositions 2.2
and 2.4.

Fact 2.9 Let 0 < a < b < 1. Augment the natural order of the reals by set-
ting x<+ y for alia <x,y<b, i.e. "identify" all elements of the interval [a,b].
Let v be defined as in the construction leading to Proposition 2.8 and set φ < φ
fflv(φ) < v(φ) or v(φ) < + v(φ). Then < is still a preference relation on £.

Proof: In Definition 2.1, 1 and 3 are trivial, 4 holds by b < 1. But 2 is simple
too: consider, e.g., x<y < + z. If x> z, then a<z<x<y<b, andx < + z.

Example 2.1 Consider now £ := {A,B, C], and set μf(A) := 1/2, μf(B) :=
1/3, μf(C) := 1/5, a := 5/30, b := 10/30, and identify in the interval [a, b] as
described in Fact 2.9. Then v(A) = 15/30, v(B) = 10/30, v(A Λ B) = 5/30,
v(A v C) = 18/30, v(B\ιC) = 14/30, V((AΛB) v C) = 10/30. By identification,
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(A Λ B) v C < A Λ B, but neither >1 v C < ̂ 4 nor £ v C < £. Thus, this order is
a counterexample as promised in Proposition 2.4.C.

So far, it is quite possible that v(φ) = v(φ), but \fφ ++ φ. We now make v
injective (modulo <-•). Thus, we improve our result such that (φ < φ and φ < <p)
iff h<ρ <-» 0. Choosing the xt of Definition 2.2 above according to the following
fact on the reals will do the trick:

Fact 2.10 Let X := [Xir. i G ω} C / <Ξ 1R (the reals), I uncountable, be given.
Then there isxr GI such that xf is not equal to any real that can be obtained by
finite addition, subtraction, multiplication, division from elements o/Q UX (Q
the rationals).

Card(/) > card(Q U X) = No suffices for the proof.
We choose the JC, for the above construction of the at in Definition 2.2 ac-

cording to this fact. Suppose that ψ, φ are not equivalent, but v(φ) = v(φ). Thus,
there is an assignment t such that t(φ) Φ t(φ). So \J[g(t):t G Val(y?)} Φ
U {#(0 : t G Val(^)} (w.l.o.g. all t with the same domainp0.. .pn and n chosen
least such that the assumption is valid), but v(φ) = v(φ). Thus,

m n

'W = ΣΠΛy. "W= Σ Π 4,
ί=0 y=0 i=0,m' j=0,n

where the yij9y}j are either Xj or 1 — Xj. After multiplication, the equation
looks like this: Si + . . . + sk = t\ + . . . + th the su and tu are of the form: 1
or ±xrι * . . . * χrh and each Xj occurs at most once in each summand. After
cancelling summands of the same form that occur on both sides of the equation,
xn will still occur in at least one of the summands, as n was chosen least. So, we
can solve the equation (linear in xn) for xn and have xn =f(xo... xn-\) where
/ i s composed of addition, subtraction, multiplication, division—contradicting
Fact 2.10. As the JC, can be chosen within any distance > 0 from a desired value,
choosing xt according to this fact is no real restriction. We have thus obtained
our injectivity result and shown the following proposition.

Proposition 2.11 Let pt: / G ω be given a probability x7 G (0,1), chosen ac-
cording to Fact 2.10, then this gives rise naturally to probabilities v(φ) for any
formula in <£, such that (l)-(6) of Remark 4 are valid, and (φ-<φ and φ < φ)
iffVφ*+φ.In other words, this defines a total (and natural) extension of the
natural order of the Lindenbaum-Tarski algebra D, and, in addition, ([φ] < [φ]
and[φ]< [φ])iff[φ] = [φ].

Remark 2.12 So far, we have worked over the empty theory and its
Lindenbaum-Tarski algebra. It is easy to extend our results to nonempty theo-
ries, by considering only models of that theory in our Definition 2.4. Thus, we
can define, e.g.,

Definition 2.5 Let Γbe a theory in £ Γ g £ finite, and <£' := £τ U £φ. Set

Σ{μ(g(t)):dom(t) = £', t(φ) = true, t(φ) = true for all φ G T]
vτ(φ) := .

Σiμ(g(t)):dom(t) = <£', t(φ) = true for all φ G T}

So vτ(φ) and vτ(φ') will be equal, iff the models that make Γtrue treat φ and
φ1 in the same way.
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Remark 2.13 We can work backwards in the following sense too: Suppose
we are given a set of formulas {<?,: / G /) and preferences (probabilities) π(^/)
for all / G /. Can we find a sequence x,: / 6 ω such that, constructing as above,

The answer is trivial and canonical. We have a number of equations: τr(v?7) =
Σ [μ{xj: t(pj) = true} * Π {(1 - Xj): Hpj) = false} : t G Val(^)} and any so-
lution [xj :j G ω,Xj G (0,1)} (if there is one) of this system of equations, and
{cij:j G ω} chosen as above will do what we need.

3 Measuring theories, and an outlook for a different treatment of theory re-
vision In this section, we discuss three somewhat different approaches to the-
ory contraction. In the first two, we extend our measure from formulas to
theories, and use it to do contraction. The first attempt is very naive, and men-
tioned only for illustration. The second approach is again (i.e. as in Section 2)
"maxichoice contraction" in the sense of [1], [4], [6], and as such plagued by the
well-known completeness result: K — A U {-υ4} is a complete theory (see below
for a proof).

In the third case, we take a totally different approach and consider pairs
(K, X), where K is a theory, and X an axiom set for K. This approach suffers
from another defect: it is highly dependent on the syntactic structure of the axiom
set: The "coarser" the axiom set is (in the one extreme the conjunction of K),
the more drastic and coarse a contraction will be; the more fine-grained it is (in
the other extreme K itself), the more we approach the above completeness re-
sult. This is made precise in Proposition 3.1, which, basically, shows that splitting
an axiom φ into [ψ v φ, ψ v ~^φ] will decide φ, i.e. give completeness with re-
spect to φ.

Consider now theories Γ, T'... in some finite <£' c £ . It is natural to define
v(T) := Σ{μ(g(t)): dom(0 = £',ίl=Γ). (t\= Γ means, of course, t(φ) =true
for all φ G T, see Remark 2.12.) In other words, v(T) is the sum of the proba-
bilities of all <£ '-models t that make all φ G T true. The more specific a theory
is, the less likely it is, too: Γ ς T' -> v(T') < v(T), and the empty theory has
probability 1. On the other hand, we are interested in "good choices", i.e. we pre-
fer φ to -i<p if v(φ) > v ( ~^φ). So v will be a good measure only for theories of
the same level of specificity. In other words, K — A (here, K — A means some
contraction of K with respect to A) cannot sensibly be the z>-maximal K' <Ξ K s.
K' \tA9 as this is always the empty theory.

A better choice might be a ^-maximal one (if it exists) among KA := {K' 9
^maximal: K' \tA,K' is h-closed}, this is again "maxichoice contraction". But
there is a problem to maxichoice contraction, pointed out in [2]: For any
K' GKΆiAG K, Ίh(K' U {-̂ A}) will be a complete theory. (The proof is very
simple: Let B be given. As A G K, A v B and A v -uB are in K. Suppose A v
B <£ K\ A v -iB φ K\ As A v B £ K\ by maximality there is Co G Kf such that
Co A (Ay B) \-A9 and as A v -^B £ K\ there is Cx G K' with CXN(A\I ^B) h
A. Thus, for C := Co Λ C{ G K\ C Λ (A v B) h A, C Λ (A v ~^B) h A, conse-
quently C A B h A9 C A -i£ h A, and C h A, contradicting C G K' G KA. Thus,
AvBEK' or Av ->BeK', and K' U (-v4) \-B, oriΓU {~υ4} h -^B.)
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We now show that this problem essentially carries over to theory revision
based on axiom sets too. So far, we have examined theories without any speci-
fied axiom system generating the theory. In the following, we consider pairs
<K,X), where^is an axiom set for K. DefineΛU^:= [<K',X') Γ g l m a x -
imal, X' VA,K' = Th(.Y')} and choose K - A as a ^-maximal (K\Xf) from
KA,X Of possible). Consider now {K,XX),(K,X2), where Xx := {φ, φ->ψ, ψ],
and X2 := {φ, φ -> ψ). In both cases, we can infer ψ, and the resulting theories
are the same. Suppose we now retract φ-+ψ. In case 1, it is very sensible to up-
hold ψ, whereas in case 2, it will not be a good choice. (This example can be
found analogously in [3] and [5].) So we are highly dependant on the syntactic
form of the axioms, and this is certainly not very desirable. As another exam-
ple, consider revising a theory which is given by the axiom sets {ax,a2} or
[ai Λ a2]. So revision may give different results ([a{} or [a2] vs. the empty the-
ory), which is a doubtful outcome. To avoid this influence of the syntactic form,
we might split the axioms as far as possible to obtain optimal results. This pro-
cedure, however, approaches completeness, as the following proposition will
show:

Let Y := [yx ...ym] be minimal with YYA. Let Y' := [y2 ...ym). Split
yι into [yx v <p,yx v ~^φ}. Both Y' U [yx V φ] VA and Y' U {yx v -ιφ] VA can-
not be, since otherwise Y' Y A, contradicting minimality of Y. So Yo := Y' U
{y\ v φ} or Y1 := Γ U j ^ v ^φ] is a good candidate for Y-A, i.e. for con-
tracting Y with respect to A. So, let Y — A be Yo if Y0\f A, and Y\ otherwise.

Proposition 3.1 IfY — A is as just defined, then Ϋ := Y — A U { -*A} de-
cides φ.

Proof: We have y\ Λ . . . Λ ym Y A, thus ~^A Λ y2 Λ . . . Λ ym I—\yx. Conse-
quently, ΫY -ιylm If Y-A is Yo, then (by yx v φ E Ϋ) Ϋ Y φ9 if 7-v4is r l 5

then yf- -i^.
This is further illustrated by the following point of view: We may consider

"maxichoice contraction" as theory revision with axioms—taking the full theory
as axiom set, and choosing a maximal subset from which A does not follow —
resulting in full completeness.

4 Conclusion We first have shown how to construct, from a simple order
on all formulas of a given language, orderings suitable for theory revision in the
style of Gardenfors/Makinson. Next, we have shown how to define naturally
such a simple order with some additional very nice properties. In the end, we
have reconsidered theory revision more generally. Roughly speaking, it turns out
that, for theory revision, every axiom set is in a sense a compromise between
completeness (too fine-grained) and over-reaction to revision (too coarse). In
other words, we should consider to make the choice of the axiom set part of the
revision process itself.
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