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The Cardinality of Powersets in Finite Models

of the Powerset Axiom

ALEXANDER ABIAN and WAEL A. AMIN

Abstract It is shown that in a finite model of the set-theoretical Powerset
axiom a set s and its powerset (P(s) have the same number of elements. Ad-
ditional results are also derived.

Let ( ^ e ) b e a finite model of the set-theoretical Powerset axiom, i.e., in
(F,e) every set has a powerset.

For instance, let us consider the finite model (M, e) whose domain consists
of the four sets a,b,c,d and where the e-relation is defined by:

(1) a=lb], b={a}, c={a9b,c}9 d={a,b,c,d}.

It can be readily verified that (M, e) is a model of the Powerset axiom. To
this end, we have only to verify that every one of the sets α, b, c, d of the model
(M,e) has a powerset in (M,e). For instance, to show that the powerset (P(c)
of c exists in (M, e), we must show that all the subsets of c which exist in (M, e)
are collected by a set of (M,e). As (1) shows, c = [a,b,c] and therefore, from
the point of view of the standard ZF set theory, c has 2 3 = 8 subsets given by:
0 , {a}9 [b}9 {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. On the other hand, as (1)

shows, of these 8 subsets of c only 3, namely [a], [b}9 {a,b,c} are present in
the model (M,e). Again, as (1) shows, these 3 sets are respectively b,a,c and are
collected in the model (M, €) by the set c. Thus, we conclude that c is the power-
set of c in the model (M, e).

We observe that in the standard ZF set theory if a set has n elements then it
has 2n subsets. This is due to the fact that besides the Powerset axiom, ZF has
other axioms which imply the existence of 2n subsets for a set with n elements.
By contrast, here we are considering finite set theoretical models and only the
Powerset axiom, and we prove that in such models a set with n elements has n
subsets.
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Indeed, as (1) shows, in the finite model (M,e) we have:

(2) <?(a) = b, (?(b) = a, (P(c)=c, (P(d) = d

where, as expected, (P(x) stands for the powerset of x, i.e., the set of all sub-
sets (of course, which exist in (M,e)) of x.

In Abian and LaMacchia [2] it is shown that in a finite model of the Powerset
axiom the set-theoretical Extensionality axiom also holds. Thus, the notion of
"equality" and the notations introduced in (1) and (2) are justified. Moreover,
it is shown in [2] that in a finite model of the Powerset axiom, besides the ax-
iom of Extensionality, the axioms of Union and Choice also hold.

Furthermore, in [2] it is shown that in a finite model (F,e) of the Powerset
axiom, for every set x and y,

(3) x^y iff (P(x) Q(?(y)

and thus

(4) χ = y iff (P(χ) = (9{y)

and

(5) every set of (F, e) is a powerset of a unique set of (F, e) and hence there is
no empty set in (F,e).

In what follows, for every set x and every positive integer «, we define the
n-th powerset (Pn(x) of x, recursively, as follows:

(6) (Pι(x) = (P(x) and (Pn+ι(x) = (?(β>n(x)) for n > 1.

Lemma 1 Let (F, e) be a finite model of the Powerset axiom. For every set
x in (F, e), there exists a smallest positive integer m such that

(7) χ=(?m(χ).

Proof: Since (F,e) is a finite model, clearly for some positive integers n and k
we have (?n(x) = (Pn+k(x). But then, in view of (4), we have x = 6>k(x). Denot-
ing by m the smallest such k, we establish (7).

Lemma 2 Let (F, e) be a finite model of the Powerset axiom. Ifs is a set in
(F, e) then there exists SXELS such that

(8) s = (P (s{) and such that x^s{ for every x E 5.

Proof: By (5) we have s = (?(Sι), for some unique set Sγ. Moreover, since s{ G
(P(si), we have SΊ E S. Furthermore, for every / = 1,.. . , n if sx Έ. s then clearly
Sj E (P(SΊ) and therefore s,- <Ξ S\, as required.

Next, we prove a key lemma.

Lemma 3 Let (F, e) be a finite model of the Powerset axiom. Then for ev-
ery set t and s of (F,e) it is the case that

(9) t<Ξs iff(?(t)eβ>(s).
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Proof: Let / E s . But then by (8) there existsS\ such that s = 9(sγ) andx^Sχ
for every x E s. Consequently, t^Si which in turn by (3) implies (9(t) c= (P($i).
Thus, (P(0 c 5 and therefore (P(0 E (P(s). Hence we have proved:

(10) t E s implies (P(0 E (P(s).

However, from (10) it also follows that (9(t) E (S>(s) implies (P2(t) E (P2(s),
and therefore, by induction, we have:

(11) (P(t)G(P(s) implies (Pk(t) G β>k(s) for every k > 0.

Next, let us observe that from (7) it follows that there exist positive integers
m and n such that t = (Pm(t) and s = (?n(s). Let t; be the least common multi-
ple of m and n. But then, obviously, we have:

(12) t = (Pv(t) and s = β>v(s).

To prove the converse of (10), let (P(t) E (P(s ). But then by (11) we have
(Pv(t) E (Pv(s) which by (12) implies t E 5. Thus, the converse of (10) is estab-
lished and the lemma is proved.

Based on Lemma 3, we prove the following theorem where \x\ denotes the
number of elements of a set x (of course, counting from outside, i.e., in a stan-
dard model of ZF in which (F,e) resides). That is, if x E Fthen \x\ =nif and
only if in ZF the set x is equipollent to the natural number n.

Theorem 1 Let (F, e) be a finite model of the Powerset axiom. Then in (F, e)
a set and its powerset have the same number of elements, i.e.,

(13) \s\ = \<9(s)\ for every set s of (F9e).

Proof: Let s be a set with n elements, i.e., s = {s\,... ,si9... ,sn}. Then by
Lemma 3 it must be the case that (P(s) = {(P(si),... ,(P(s,),... ,Φ(sn)). How-
ever, from (4) it follows that distinct sets have distinct power sets. Thus, \s\ =
ICPίs)!, as desired.

Based on the above, we derive some additional results.

Corollary 1 In (F, e) for every set t and s we have

(14) t e s implies \ί\ < \s\.

Proof: From (9) it follows that t E s implies Θ(t) c s and therefore | (P(t)\ <
\s\, which in turn by (13) implies \t\ < \s\, as desired.

Remark The following statements which are proved in Abian and Amin [1]
can be also proved based on Theorem 1 and Corollary 1.

Let (F,e) be a finite model of the Powerset axiom. Then:

(a) Every element of a singleton of (F,e) is itself a singleton.
(b) In (F,e) at least one element of every set is a singleton.
(c) In (F,e) there exists always a singleton.

Lemma 4 Let (F, e) be a finite model of the Powerset axiom. For every set
r and t of (F,e) if r is a proper subset of(9(t) then t £ r.
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Proof: Assume on the contrary that t E r. But then, from (9) it follows that
(P(0 £Ξ r contradicting the fact that r is a proper subset of (P(O Thus, indeed,
t£r.

Theorem 2 In (F,e) let sbea set with n elements. Then s has at most one sub-
set with n — 1 elements.

Proof: Assume on the contrary that s has two distinct subsets rx and r2 such
that I rj I = I r21 =n - 1. By (5) we see that s = (P(O for some ί and by (9) we
see that |s | = |(P(O| = #. On the other hand, by Lemma 4 we have t £rx and
/ $. r2 and since | rλ \ = \ r21 = n — 1, we must have rx = r2, contradicting the fact
that r{ and r2 are distinct. Thus, Theorem 2 is proved.

Finally we have:

Theorem 3 In (F, e) for every set s

(15) ses iffs = (?(s).

Proof: Let s e s. But then by (9) we have (P(s) <Ξ s and by (13) we have
I (P(s)\ = \s\. Thus, s = (P(s). Conversely if s = (P(5) then since sG(P(s) we see
that s G s. Hence, (15) is established.
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