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Logical Constants as Punctuation Marks

KOSTA DOSEN*

Abstract This paper presents a proof-theoretical approach to the question
"What is a logical constant?" This approach starts with the assumption that
logic is the science of formal deductions, and that basic formal deductions
are structural deductions, i.e. deductions independent of any constant of the
language to which the premises and conclusions belong. Logical constants,
on which the remaining formal deductions are dependent, may be said to
serve as "punctuation marks" for some structural features of deductions; this
punctuation function, exhibited in equivalences which amount to analyses of
logical constants, is taken as a criterion for being a logical constant. The
paper presents an account of philosophical analysis which covers the pro-
posed analyses of logical constants. Some related assumptions concerning
logic are also considered. In particular, since a logical system is completely
determined by its structural deductions, alternative logical systems arise by
changing structural deductions while having constants with the same punc-
tuation function. Some other approaches to the question "What is a logical
constant?", grammatical, model-theoretical, and proof-theoretical, are
briefly considered.

/ Introduction It is clear that an answer to the question "What is a logical
constant?" would provide us with the means to answer the question "Where are
the limits of logic?" Since the latter question is obviously very close to the ques-
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tion "What is the subject matter of logic?" one could legitimately assume that
our question "What is a logical constant?" is among the central questions of the
philosophy of logic.

Apart from its intrinsic philosophical interest, the problem of the demar-
cation of logic is obviously of crucial importance to the logicist program in the
foundations of mathematics. However, no definite criterion for this demarca-
tion seems to have come out of the work of the logicists, with which modern
logic started. On the other hand, one of the main reasons why logicism was
abandoned was that at some point it was felt that the limits of logic must have
been transgressed in the logicist reconstruction of mathematics. The problem of
the demarcation of logic is also in the background of the discussion concern-
ing the status of second-order logic, which started with Quine's attack upon
second-order logic (see [6]).

In spite of all that, it doesn't seem that logicians, even those who are phil-
osophically inclined, are trying very hard to answer the question "What is a log-
ical constant?" A much more characteristic attitude in modern logic is that of
a certain skepticism as to whether the distinction between logical and nonlogi-
cal expressions can be clearly drawn. Most logicians, like so many followers of
Protagoras, are content with just listing what they take as logical constants. A
clear exponent of this skepticism, and probably one of those who made it the
accepted position, is Tarski, in his famous paper on the notion of logical con-
sequence [40]. It is interesting that Bolzano anticipated Tarski not only in his
definition of the semantical notion of logical consequence, but also in the belief
that it is doubtful that a criterion can be found for drawing the distinction
between logical and nonlogical expressions (see [5], Section 148, and [23], p. 366).

Occasionally, however, attempts do arise to find this criterion. Without try-
ing to ascertain their merits, let us just mention some of these attempts.

In [36] Quine proposed to distinguish logical constants from other expres-
sions (his terms are respectively "particles" and "lexicon") by saying that the
grammatical categories of the latter are "infinite and indefinite" (see pp. 28-
30, 59). In [43] Wang examined some proposals, including a grammatical one,
linked with Quine's, but in general he was in a rather skeptical mood (see pp.
143-165). It is interesting that in a lecture from 1966 [42] Tarski seems to have
abandoned his skepticism up to a point, and to have found a criterion for the
demarcation of logic by elaborating ideas suggested by Klein's Erίange Pro-
gramm, and some model-theoretical results of Lindenbaum and Tarski [25].
Chief among these results is that " . . . every relation between objects (individ-
uals, classes, relations, etc.) which can be expressed by purely logical means
is invariant with respect to every one-one mapping of the world (i.e., the class
of all individuals) onto itself . . ." ([41], p. 385; a reference to Tarski's lecture
of 1966, and a critique of his views, can be found in [28]). The proposal for
the demarcation of logical constants found in [14] (pp. 21-22), which is in prin-
ciple grammatical (essentially, it takes as logical constants functors from sen-
tences and predicates to sentences and singular terms), also has a footnote deal-
ing with identity, in which a view very similar to Tarski's conception of 1966 is
propounded. Finally, Lindstrδm in [26] and [27] suggested a rather technical
model-theoretical criterion for the demarcation of logic, by showing that the
Lδwenheim-Skolem Theorem together with the Compactness Theorem for de-
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numerable sets of sentences cannot be extended to first-order logics with gener-
alized quantifiers which properly extend ordinary first-order logic.

The purpose of this paper is to give a summary of the philosophical part
of [9], which represents yet another attempt to answer the question "What is a
logical constant?" This attempt is neither grammatical nor model-theoretical, but
proof-theoretical. In principle, it is not impossible that such a proof-theoreti-
cal approach be at least extensionally equivalent with another approach, gram-
matical or model-theoretical, in the sense that the same constants will be selected
as logical in both approaches. However, we shall not investigate here the pos-
sible connections between these various approaches. After presenting our
approach in the next four sections of this paper, we shall briefly consider in the
last section some similar proof-theoretical programs for the demarcation of
logic.

2 Thesis [I] Our proof-theoretical attempt to answer the question "What is
a logical constant?" starts with the following assumption about logic:

[A] Logic is the science of formal deductions.

This conception of logic, despite its aura of antiquity, is neither the only
possible nor the dominant conception of logic. There is a strong tradition in
modern logic, which starts with Frege, and pervades not only model theory, but
also Hilbert-style proof theory, which assumes that logic is the science of a cer-
tain kind of truths, rather than deductions. A clear assessment of the role that
this conception, and the alternative conception expressed by [A], have played
in modern logic can be found in [14] (pp. 432-435; cf. also [21]).

It is also rather unclear how the logic mentioned in [A] could cover the vast
number of mathematical subjects studied in model theory, recursion theory, set
theory, or category theory, which all go today under the label of logic. So,
"logic" in [A] should probably be taken as referring only to a certain traditional
core of logic. In modern logic, the conception of [A] is clearly present only in
Gentzen-style proof theory: the comparatively narrow, but doubtless important,
tradition which starts with Gentzen's seminal thesis in [18].

Sometimes [A] is expressed by saying that logic is the science of valid for-
mal deductions. This use of "valid" is slightly misleading, since separating valid
formal deductions from invalid ones obviously involves considering both.

Assumption [A] does not leave any room for an informal logic. If some-
one insists (often without much reason) upon using the word "logic" for the
description of the function of all sorts of words (in principle, philosophically
interesting), then we must emphasize that the "logic" of [A] should be under-
stood as "formal logic" (a subject which does not have many things in common
with, for example, "the logic of color words").

However, this leaves us with the task of specifying what the formal deduc-
tions we appeal to in [A] are. To accomplish this task, we first assume the fol-
lowing:

[B] Basic formal deductions are structural deductions.

The term "structural" in [B] should be understood in the sense this word has in
Gentzen's sequent-systems in [18]. Structural deductions are deductions which
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can be described independently of the constants of the object language, i.e., the
language from which our premises and conclusions come. In other words, in
describing structural deductions, everything in the object language is schematic.

With the apparatus of Gentzen's sequent-systems a description of structural
deductions is obtained as follows. Let A,B9 C,.. . be schemata for formulas of
an object language, and let Γ,Δ,... be schemata for finite collections of for-
mulas of this language: these collections can be either sets, multisets (i.e., col-
lections with possibly more than one occurrence of each element, in which order
is irrelevant), or sequences. (The most general approach is to consider Γ as a
term made up of formulas of the object language with the help of a binary
comma, which need not even be associative; cf. [3] and [12].) Then we can inter-
pret a single-conclusion sequent Γ h A as saying that there is a deduction from
the premises in Γ to the conclusion A. If Γ is empty, Γ h A amounts to the
assertion that A is a theorem. A multiple-conclusion sequent Γ h Δ, where Δ
has more than one member, can be understood as referring to a deduction where
in each line we have a finite collection of formulas, rather than a single formula.
In classical logic, these collections can be sets, in which formulas are tied by an
implicit disjunction (cf. [7]). Another possibility is to understand multiple-
conclusion deductions in the style of Shoesmith and Smiley [39]. Multiple-
conclusion sequent s can also be related to a natural generalization of Tar ski's
semantical notion of consequence (cf. [38], pp. 413-418).

That the appropriate form of deductions in classical logic is given by
multiple-conclusion deductions does not seem to be generally acknowledged.
Though, on the technical side, these deductions have some clear advantages, as
was demonstrated by Gentzen in [18], intuitively they may well look like an
invention of logicians, not to be found in ordinary usage. But perhaps we shall
find them in ordinary usage too, if we assume that there they occur in an
enthymematic form. Usually, a deduction is enthymematic if some true premises
are omitted; but we could just as well say that a deduction is enthymematic if
some false alternative conclusions are omitted. For example, the single-
conclusion deduction of A from -i ~^A may be matched by the enthymematic
multiple-conclusion deduction obtained from:

T

A -1.4 -i-vl

_L

by omitting the true premise T and the false alternative conclusion 1 the for-
mulas A and ~^A are derived as alternative conclusions from T.

Structural deductions can now be described by restricting the sequent-
language to structural sequents, i.e. schematic sequents in which no constant of
the object language occurs. Valid structural deductions will be codified by retain-
ing in a sequent-system only axiom-schemata like AY A, and structural rules
like permutation, contraction, thinning, and cut. Another structural rule (not
mentioned by Gentzen) which may be added to these is the rule of substitution
for variables'.

Γ h Δ

S*ΓhΔ|



366 KOSTA DOSEN

where the lower formula stands for the sequent obtained from Γ h Δ by substi-
tuting uniformly a for the free occurrences of x; the schematic letter a stands
for an expression of the same grammatical category as x, which, as usual, con-
tains neither a free variable which will become bound after the substitution, nor
a variable-binding operator which will bind a free variable of Γ V Δ.

It seems clear that deductions which are described independently of any
constant of the object language may legitimately be called formal. These are the
basic formal deductions, by which all other formal deductions are determined
according to the following assumption:

[C] Any constant of the object language on whose presence the description of
a nonstructural formal deduction depends can be ultimately analyzed in
structural terms.

In the next section we shall explain in more detail what we mean by "ulti-
mately analyzed in structural terms". For the time being, we shall explain [C]
only by reference to a metaphor.

Assumption [C] enables us to get a uniform picture of logical form. Log-
ical form is primarily exhibited by structural deductions, and when logical con-
stants are introduced they serve, so to speak, as punctuation marks of the object
language, for some structural features of deductions. Which structural punctu-
ation function pertains to the customary logical constants of first-order logic
(implication ->, conjunction Λ, disjunction v, the constant true proposition T,
the constant absurd proposition ±, the universal quantifiers VJC, the existential
quantifiers 3x, and identity =), and to the necessity operator of the modal sys-
tems S4 and S5, was mentioned in [10]. Here we shall consider as our main
examples the punctuation function of implication and of the universal and
existential quantifiers; the rest will be mentioned only briefly.

The connective of implication in A -> B says that A and B are connected
in this formula of the object language like a premise and a conclusion in a
deduction. This means that for implication we have assumed a deduction the-
orem and modus ponens. In a sequent framework, this corresponds to the
assumption of the following double-line rule:

T,A^A,B

Γ\-A,A-+B

where the double line means that we have two rules, one going downward and
the other upward, and T,A stands for the collection obtained by taking the
union of Γ and {A}, or by concatenating A to Γ, or something analogous. The
downward rule clearly corresponds to the deduction theorem, whereas the
upward rule is equivalent to A -• B, A h B, in the presence of the axiom-
schema C\- C and cut.

The double-line rule (->) can serve to characterize various sorts of impli-
cations: classical, intuitionistic, and relevant. What in these characterizations dis-
tinguishes various implications is not (-•), which is always the same, but
assumptions concerning structural deductions. For example, intuitionistic impli-
cation can be obtained from classical implication by abolishing thinning on the
right:
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Γ hΔ

which has the same effect as permitting only single-conclusion sequents (this is
analogous to the way Gentzen obtains his intuitionistic sequent-system from his
classical sequent-system in [18]). Relevant implication, i.e. the implication of the
relevant system R of Anderson and Belnap, is obtained by further abolishing
thinning on the left:

Γ h Δ

T,A h Δ '

The situation is analogous for the other logical constants of first-order
logic, and for the necessity operators, mentioned above: they can all be charac-
terized in alternative logical systems by fixing double-line rules for them, and
changing only structural assumptions. (Various families of alternative logical sys-
tems, obtained in this way, are investigated in [10], [11], and [12].)

What we want to stress here is that in the upper sequent of (-•) everything
from the object language is purely schematic, so that this sequent is structural.
According to (->), implication is a kind of substitute in the object language for
the turnstile h, i.e. for the deducibility relation. Implication can reduce a
sequent like A Y B, which says that B can be deduced from A, to a theorem of
the object language A -> B: with (->), we have that AY B and YA -> B are
interdeducible. The logical form of A -> B mirrors a structural feature of deduc-
tions, viz. the relation between a premise A and a conclusion B, independently
of any constants which A and B may have.

The universal and existential quantifiers can be characterized by the fol-
lowing double-line rules:

Γ Y Δ, VJ&4

Γ,3x4 hΔ

with the following proviso: the variable x does not occur free in either Γ or Δ.
As with implication, by varying structural rules the same double-line rules (V)
and (3) can serve for various alternative logical systems, provided we have
assumed the structural rule of substitution for variables (see [10]). And as with
(-•), the upper sequents of (V) and (3) are structural. Since the rule of substi-
tution for variables permits us to read the x which may occur free in A as "any",
according to (V) and (3), the two quantifiers express something about the place
of "any" in deductions. If "any" is in a conclusion, and nowhere else, it becomes
"every", and if it is in a premise, and nowhere else, it becomes "some". So the
logical form of Vx4 and ixA mirrors a structural feature of deductions, viz. the
presence of a variable in a conclusion A, or in a premise A, a variable which
doesn't occur free anywhere else in the deduction.

For the remaining constants of first-order logic, mentioned above, we have
the following double-line rules:
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, T\-A,A T\-A9B
(Λ) = = = = = = = = = ^ ^

Γ hΔ, A ΛB

, , TfA\-A Γ , θ h Δ
(v) = = = = = = = = = = = = = = = = =

Γ,^ v 5 h Δ

(T, _t*., u> Xi=
T hΔ Γ h l

( = ) S*ΓhΔ[

Γ,x = a\-A'

The double-line rules (Λ) and (v) should be interpreted as if the pairs of upper
sequents were tied by a conjunction; so, for example, the upward direction of
(Λ) gives two rules, one with the conclusion Γ h A, A and the other with the
conclusion Γ f- A9B. According to (Λ) and (v) conjunction and disjunction
serve to economize: they reduce to one deduction two deductions which differ
only at one place in the conclusions or in the premises. The constant T is a sub-
stitute for the empty collection of premises ( h Δ can be understood as refer-
ring to a demonstration of one of the conclusions in Δ), and i. is a substitute
for the empty collection of conclusions (Γ h can be understood as referring to
a refutation of one of the premises in Γ). Identity serves to indicate substitu-
tion possibilities in a deduction: what holds for a also holds for whatever is
assumed to be identical with a.

The double-line rule for the necessity operator D of S4 and S5 is based on
sequents of higher levels, i.e. sequents which have collections of sequents on the
left and right of the turnstile (see [10]; cf. [11]). Without entering into details,
let us only mention that ΠA can be understood as indicating that A is assumed
as a theorem.

The connective of equivalence <-> can either be explicitly defined by A <-•
B =df (A -+ B) Λ (B-+A), or we can give the following double-line rule for it:

, . T9A\-A,B Γ,Z?hΔ,Λ

T\-A,A^B

The assumptions [A], [B], and [C] naturally yield the following thesis con-
cerning constants of our object language:

[I] A constant is logical if, and only if, it can be ultimately analyzed in struc-
tural terms.

In the next section we shall try to explain what we mean by the expression
"ultimately analyzed in structural terms," which occurs in assumption [C] and
in thesis [I].

3 Analysis Let us first settle what "ultimately" means in "ultimately ana-
lyzed". An expression is ultimately analyzed if and only if it is either analyzed
or it can be explicitly defined in terms of analyzed expressions. Next, we must
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say what we mean by "analyzed". This is a more difficult matter. It presupposes
a general account of philosophical analysis, which we proceed to sketch.

In the philosophical tradition which continues to be called "analytical", but
which has gone through many significant changes in this century, it seems that
the most precise account of analysis which can be found, and to which many
accepted opinions can still be traced, is in the writings of G.E. Moore. On the
other hand, this account, which ultimately treats analysis as a kind of explicit
definition, cannot be supported by many examples of significant philosophical
analyses which conform to its standards. Our account of analysis will differ from
Moore's by drawing a distinction between analysis and explicit definition. (In
that, and in some other respects, it follows [24], which contains a detailed cri-
tique of Moore's account of analysis and of those accepted opinions that can
be traced to his account.)

Let us suppose that we have an expression α of a language L and that we
want to analyze a. Then we must specify a language M, to which a does not
belong, in which we shall formulate the analytic equivalent of a, i.e. the analy-
sans. Below we shall consider more closely the relation between L and M; for
the time being it is enough to say that M, as a vehicle of our analysis, must be
a language which we understand. Our first condition concerning analysis spec-
ifies the form an analysis should take; it says that

(1) An analysis consists in establishing that a sentence A in Mplus α, in which
a occurs only once, is equivalent to a sentence B in M.

The second condition concerning analysis specifies that an analysis must
be sound and complete: it says that

(2) From the equivalence of (1), and from the understanding of M and L minus
a, we can infer every sentence of L which is analytically true in L and no
sentence of L which is not analytically true in L.

Here "analytically true in L" means "true in virtue of the meaning of the expres-
sions of V\

Our third condition concerning analysis says that an analysis must char-
acterize uniquely the expression analyzed, in the following sense

(3) The expressions a\ and a2 can receive the same analysis if, and only if, cxx

and a2 have the same meaning.

An equivalence can satisfy our three conditions for analysis without
amounting to an explicit definition. There are at least two additional conditions
which an explicit definition is normally assumed to satisfy, and which need not
be satisfied by an analysis.

The first of these additional conditions, which we may call Pascal's con-
dition, says that:

The definitional equivalence should enable us to find for every sentence of
M plus a a sentence of M with the same meaning.

If M is equal to L minus a, this amounts to the requirement that in every sen-
tence of L we must be able to eliminate a defined expression by its definiens,
without changing the meaning. (Such a requirement is implied by Pascal in [29],
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pp. 244, 279-282; cf. [4], pp. 504-505. A similar implication might be found in
Aristotle's Topica, Z.4, 142 b.) Pascal's condition implies that for A in (1) there
will be a B with the same meaning.

The second condition for explicit definitions we shall call the conservative-
ness condition; it says that

Every sentence of L minus a which is analytically true in L is analytically
true in L minus a.

This implies that from the definitional equivalence, and from the understand-
ing of M and L minus α, we should not be able to infer a sentence of L minus
a, analytically true in L, but not analytically true in L minus a.

Strengthening our weaker notion of analysis to explicit definability of some
sort, which should presumably satisfy Pascal's condition and conservativeness,
threatens to exclude most philosophically interesting analyses, and may reduce
us to the recording of more or less lexicographical facts, like the fact that "α is
a brother" is equivalent to "a is a male sibling".

To illustrate this, consider first Ramsey's analysis of the predicate "is true",
given by the equivalence:

M " is true if, and only if, A.

Here, L is a fragment of English, a is "is true", and M is our fragment of
English without a, extended by the schema A for sentences of L (our fragment
of English presumably contains quotation marks, or a similar device, transform-
ing expressions of the grammatical category of sentences into expressions of the
grammatical category of nouns; A is of the grammatical category of sentences).
It is plausible to hold that Ramsey's analysis satisfies (l)-(3), and even conser-
vativeness (provided we have restricted our fragment of English so that Liar-
type paradoxes cannot be derived). However, it will not satisfy Pascal's condi-
tion, since we are unable to eliminate "is true" from a sentence like "Socrates
said something true" (at least not without introducing in M further logical
paraphernalia, such as propositional variables and propositional quantifiers
binding these variables). It can plausibly be argued that the point of having "is
true" in ordinary English is to enable us to say things which cannot be said with-
out this predicate (cf. [19]).

Consider now Russell's analysis of the definite description "the king of
France", given by the equivalence:

The king of France is P if, and only if, there is a single individual which
is a king of France and that individual is P.

Here, L is again a fragment of English, a is "the king of France", and Mis our
fragment of English without a (but with the predicate "is a king of France"),
extended by the predicate schema P. Granted that Russell's analysis satisfies
(l)-(3), and even Pascal's condition, it is clear that it does not satisfy conser-
vativeness, since on Russell's analysis the analytical truth "The king of France
is equal to the king of France" yields "There is a king of France", which can-
not be analytically true in L minus a.

Let us call an expression a inconsistent, relative to a language K without
a, if in K not every sentence is analytically true, but in K plus a every sentence
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is analytically true. Some expressions, like the predicate "is a round square",
which it would be natural to call inconsistent, are not inconsistent in our sense.
An example of an inconsistent expression in our sense is Peano's μ (see [30] and
[2]), the analysis of which is given by the equivalence:

a c a + c
- μ - = e if and only if = β,
b d b + d

where α, b, c, d, and e are schematic letters for rational numbers. The opera-
tion μ is inconsistent, relative to the language K of the arithmetic of rationals:
introducing μ into this arithmetic would give rise to inconsistencies, and since
an inconsistency implies everything, every sentence will be made analytically true
in K plus μ.

Can an inconsistent expression be analyzed? As we have just seen above
with μ, the answer is yes, provided we have assumed we have such an expres-
sion in L. No doubt, inconsistent expressions are to be avoided, and languages
containing them should not be constructed for actual use. But constructing a lan-
guage is something we do before trying to analyze the expressions of this lan-
guage, and if we have been so unreasonable, or unfortunate, as to construct a
language with inconsistent expressions, the fact that these too can be analyzed
is not a defect in analysis. There is no reason to require that the conditions for
analysis should single out inconsistent expressions as unanalyzable, so that anal-
ysis should be impracticable with unreasonably constructed languages. On the
contrary, analysis can sometimes help us in investigating an unreasonably con-
structed language, and in locating the source of the trouble.

Since we can analyze inconsistent expressions, a fortiori we can analyze an
expression that does not satisfy the conservativeness condition. A language L
with such an expression α, even if it does not give rise to inconsistencies, is also
unreasonable in some sense. Such is, indeed, our L which contains the expres-
sion "the king of France". The possibility of ascertaining in L supposedly ana-
lytical truths like "There is a king of France" (obtained from "The king of France
is a king of France") makes L unreasonable. Russell's analysis can help us in
locating the source of the trouble.

The situation is different with definitions. In this case there will be no pre-
existing language L in which a has a meaning, but the definitional equivalence
will add a to L minus a, and give meaning to a. And if we want L to be rea-
sonable our definition must define only a, and not also something in L minus
a. Hence, the conservativeness condition should be satisfied, even if Pascal's
condition is not. If the definition is to be counted as explicit, it should also
satisfy Pascal's condition. Of course, analysis will satisfy conservativeness when-
ever we deal with a "reasonably constructed" language L. (For a related discus-
sion of conservativeness in the theory of meaning see [14], pp. 453-455,
396-397.)

Some other remarks should be made concerning condition (1). In it we
require that a occurs in A only once. We think that this requirement is justified,
since otherwise it could not be said that we are analyzing a, rather than a series
of occurrences of a. However, a more relaxed view of analysis may perhaps be
envisaged, in which this restriction is lifted. In another respect, condition (1)
could be strengthened, viz. we could require that the same schematic letters
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should occur in A and B, or something more elaborate of this kind. (There is
no absolute necessity that schematic letters occur in A and B, but in general they
will, as our examples show too.) This requirement would presumably make the
analytic equivalence resemble a kind of relevant mutual implication, since "vari-
able sharing" conditions are typical for relevant implication.

Though an analysis doesn't give the meaning of an expression, as an explicit
definition would, it follows from conditions (2) and (3) that an analysis is very
closely tied to the meaning of the expression analyzed, and that the analytic
equivalence should presumably be a kind of relevant equivalence. But this pre-
sumed relevant equivalence need not yield an equivalence as strong as identity
of meaning, or propositional identity: otherwise we would be in danger of ex-
cluding practically all philosophically interesting analyses. However, it is unclear
how the relevance involved can be explained formally, and simple sharing of
schematic letters need not capture it. Consider, for example, Church's Thesis:

An arithmetical function/is computable if, and only if, /is Turing com-
putable.

It may well be held that this equivalence gives an analysis of the predicate "is
computable", L being mathematical English and M the language of the theory
of Turing machines. Some relevance condition is presumably satisfied by this
equivalence, but the relevance involved is not exhausted by the sharing of the
schematic letter /.

In general, when the relevant analytic equivalence does not amount to prop-
ositional identity, this has to do with a difference in grammatical form between
A and B. Analogously, we have that A and A Λ A are, no doubt, relevantly
equivalent, but they do not stand for the same proposition. In our examples of
analyses, save in Church's Thesis, there is a difference in grammatical form
between A and B. (It seems plausible to say that Church's Thesis satisfies not
only (l)-(3) but also Pascal's condition and conservativeness; hence, this thesis
might be taken not only as an analysis but as an explicit definition as well. And,
indeed, this is how it is sometimes understood.)

It seems that (l)-(3) cannot represent all the necessary conditions for a phil-
osophically significant notion of analysis. In particular, they say nothing about
the clarificatory value of an analysis. It is not enough merely to assume that the
language Mis a language we understand. It is usually, and rightly, further
assumed that M is of a different order than L, in that it is more basic, in the
sense that it makes fewer assumptions, and that the understanding of L is some-
how dependent on a previous understanding of M, and not the other way round.
If we are allowed to use the term "basic" without further explanation, a fourth
condition for analysis can be stated as follows:

(4) The language M should be more basic than the language L.

Do the examples of analysis we have mentioned up until now satisfy this
condition? In these examples, M differed from L in lacking a certain problematic
expression we wanted to analyze, but, on the other hand, we supposed that M
contained schematic letters, and it may seem that the presence of such techni-
cal devices as schematic letters makes this language less basic. However, in our
understanding of "basic", M should be taken as more basic, because schematic
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letters serve only to make explicit certain grammatical regularities which are very
elementary, and are indeed presupposed by the understanding of ordinary
English. The possibility of generating an unlimited number of sentences like
"The king of France is bald", "The king of France is brave", etc., as soon as we
have figured out that "the king of France" functions as something in the gram-
matical category of nouns, amounts to an implicit understanding of the sche-
matic letter P for predicates. The fact that in M these implicit features are made
explicit does not mean that Mis less basic. In the same sense, we could say that
a book of English grammar is more basic than a novel in English. It may seem
less basic to a native speaker of English, but not so to a foreigner: the book of
grammar makes fewer assumptions, and the understanding of the novel is in a
certain sense dependent on a previous understanding of the grammar, and not
the other way around.

So we suppose that condition (4) is satisfied in all of our examples of anal-
ysis, including Church's Thesis, where M, the language of the theory of Turing
machines, is more basic in a mathematical sense.

Finally, note that nothing in what we have said excludes the possibility that
two literally different equivalences both represent an analysis of the same expres-
sion a.

Even if we cannot pretend that (l)-(4) are all the necessary conditions that
a certain notion of analysis should satisfy, it can still be argued that they are a
plausible approximation, and that they could be strengthened to yield a suffi-
cient condition by developing something which they already contain implicitly.

What we have tried to do here is to give necessary conditions only for a cer-
tain notion of analysis, and not for all possible notions. Many philosophically
interesting analyses are not given exactly in the form of a single equivalence.
Indeed, they need not be given in the form of equivalences at all, but, presum-
ably, analysis in the form of equivalence has a certain primacy among all pos-
sible notions of analysis.

Let us see now, in the light of this account of analysis, how we can ana-
lyze logical constants in structural terms. We shall concentrate only on the anal-
ysis of implication given by the double-line rule (-•). Here implication is directly
analyzed, whereas in [10] other constants are only ultimately analyzed, i.e. ex-
plicitly defined in terms of analyzed constants: for example, negation -ι is
defined in terms of implication -> and the absurd _L by ~^A —df A -» _L, and ->
and ± are directly analyzed.

In the analysis of implication given by (->) the language L is the language
of propositional, or first-order, logic, and Mis the deductive metalanguage in
which we speak about structural deductions; more precisely, Mis the language
of structural sequents. The sentence A is the lower sequent of (-»), and B is the
upper sequent of (-•). Since the double line stands for an equivalence our anal-
ysis has the form prescribed in condition (1). In [10] it was shown that (->) serves
to characterize implication, soundly, completely, and uniquely, in classical, intui-
tionistic, and relevant logical systems; i.e. conditions (2) and (3) are satisfied.
Finally, we suppose that our structural analysis of implication satisfies condi-
tion (4), since we suppose that the language M of structural sequents is more
basic than the language L of propositional, or first-order, logic. This last sup-
position can be justified by referring to our assumptions [A] and [B]. If formal
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deductions are the subject matter of logic, and basic formal deductions are struc-
tural deductions, the language M is indeed more basic than a language L in
which formal deductions are not explicit anymore, and where we get only non-
structural truths based on logical constants. (Some further remarks on M and
L will be made in the next section.)

On the other hand, the structural analysis of implication given by (->) need
not satisfy Pascal's condition, since in a single-conclusion sequent-system we may
be unable to eliminate implication from the sequent A -» B h C. Conservative-
ness can also fail in some cases: for example, if we add (-») to a sequent-system
with thinning on the right only, we can derive thinning on the left, and this may
make L nonconservative with respect to L minus -•. However, in the analysis
of classical, intuitionistic, and relevant implication, conservativeness will be
satisfied.

4 Assumptions [D] and [E] We shall now consider two further assumptions
concerning logic, relevant to the discussion of Section 2. The first assumption
is the following:

[D] Logic is independent of subject matter.

Though this is an assumption which is found quite often in the philosophy of
logic, it is far from being clear. A possible paraphrase of at least part of the
import of [D] is that only logical constants are essential for a logical system —
everything else can be schematic. In this sense, [D] seems uncontroversial, almost
a truism. But sometimes [D] is meant to express more: it is meant to imply that,
independently of what we are dealing with, we should rely on the same logical
laws. It is very questionable to what extent this stronger version of [D] can be
sustained.

Of course, [D] cannot mean that logic is independent of the subject mat-
ter of logic, and if we are right in assuming by [A] that formal deductions are
the subject matter of logic, we can claim that the same logical laws are always
in force only if a single type of formal deduction is recognized as valid. Since
by [C] all formal deductions are determined by structural deductions, the ques-
tion arises whether only one type of structural deduction is valid. Without trying
to answer this question with precision, we surmise that the type of valid struc-
tural deductions may depend on the object language, and on the subject mat-
ter of that language.

For example, consider an object language where sentences can be asserted
if and only if they are provable. Presumably, the corresponding valid structural
deductions should be codified by a single-conclusion sequent-system. And if sen-
tences of our object language can be asserted if and only if they are true, the
corresponding valid structural deductions should be codified by a multiple-
conclusion sequent-system. Whereas the connection between proof and single-
conclusion sequents seems to be rather clear, the connection between truth and
multiple-conclusion sequents involves an element of discovery (a discovery which
should be ascribed to Gentzen). In some other cases, for example, the language
of quantum phenomena, where a sentence can be asserted if and only if it is ver-
ifiable with existing instruments, it is not clear that any corresponding form of
valid structural deductions can, or indeed should, be discovered.
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Sometimes [D] is invoked to justify the introduction of quantificational log-
ical systems free of existential assumptions, i.e. whose theorems are valid in
the empty domain too. Now we have seen in Section 2 that first-order quanti-
ficational logic can be understood as the logic of "any", or, semantically, as the
logic of arbitrary individuals. The assumption that there are some individuals
can then be understood as proceeding directly from the subject matter of this
logic. Presumably, quantificational logic cannot be independent of its own sub-
ject matter. The producing of a free logic, though it need not involve an actual
contradiction, may well seem unreasonable: on the one hand, we want a logic
whose subject matter consists of arbitrary individuals, but on the other hand,
we want this logic to be applicable even when its subject matter is missing. (To
make an analogy, it is like giving library rules that are meant to be applied even
in libraries without books: the question whether an empty domain is a domain
is like the question whether a library without books is a library.) Since logic can-
not be independent of the subject matter of logic, [D] understood in such a way
that it justifies the introduction of free logics does not seem warranted.

The second additional assumption concerning logic which we shall consider
is the following:

[E] The level of discourse of logic is higher than the level of discourse in which
we treat of a particular subject matter relying on logical principles.

Part of what [E] can mean is contained in the uncontroversial part of [D], which
says that in a logical system everything except logical constants is schematic, i.e.
made of meta-variables. But another ingredient of [E] may be that a logical sys-
tem is formulated properly in a higher language, a deductive metalanguage, like
the language of sequents, whereas we treat of a particular subject matter in a
lower language, an object language from which we draw our premises and con-
clusions.

Understood in this latter sense, assumption [E] probably expresses the les-
son taught by Achilles and the Tortoise in [8]. The Tortoise (its head low on the
ground) is unable to see anything above the lower language. Disregarding [E]
is the misleading aspect of the picture of language in Quine's "Two Dogmas"
[35], and of the general conception that logic is the science of logical truths of
the object language (cf. [14], p. 596, and [15], p. 353). (However, [E] seems to
be assumed by Quine in his critique of conventionalism in [34].)

Assumption [E] is in perfect harmony with [A], [B], [C], and thesis [I].
Logical constants are expressions of the lower language which have their raison
d'etre in some features of the higher language. When we treat of a particular
subject matter, some structural features of the higher language are only implicit
in the activity of making deductions. Logical constants serve to make explicit
these features in the lower language: they help us to reduce structural truths of
the higher language to truths of the lower language. In other words, they reduce
truths of the language M of structural deductions to truths of the language L
of propositional, or first-order, logic. This is why we can say metaphorically that
logical constants are punctuation marks for some structural features of deduc-
tions. This metaphor underlies thesis [I].

The analogy between logical constants and punctuation marks should be
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taken with a certain reservation. Ordinary punctuation marks usually directly
exhibit certain features of the activity of speech in all contexts in which they may
occur, whereas logical constants directly exhibit certain structural features of the
activity of deducing only when they occur in a particular way in a deduction,
viz. as the main constant of a conclusion or of a premise. Some logical constants
are analyzed by double-line rules in which they occur on the right-hand side of
the turnstile, and others by double-line rules in which they occur on the left-hand
side of the turnstile; for some other constants, like V, 3, T, _L, and =, there
may be additional conditions concerning the respective double-line rules. When
a constant occurs in the lower language, or in a context of the higher language,
where it cannot be eliminated by using the respective double-line rule, we may
still say that it mirrors the corresponding punctuation function, but only in a
derived sense. Generalizing condition (2) for analysis, we may assume that what-
ever holds for this constant, in any context of the lower or higher language,
should be derivable from the corresponding double-line rule. The fact that log-
ical constants cannot always be eliminated, i.e. the fact that they need not satisfy
Pascal's condition, indicates that there might be a real gain in introducing them
not only in the lower language but also in the higher language: they may enable
us to say things which cannot be said without them.

To conclude our discussion of thesis [I], let us examine how effective the
criterion which it provides is. It can be inferred from [10] and [11] that the cus-
tomary logical constants of first-order logic with identity, and the modal con-
stants of classical and intuitionistic S4 and S5, are all logical. (It is also not
difficult to give an analysis in structural terms of some other constants, like the
Hubert eoperator.) In general, thesis [I] can effectively be applied to show that
a constant is logical: if it is ultimately analyzed in structural terms we can claim
that it is logical. On the other hand, this thesis does not seem to be effective in
showing that a constant is not logical, for it is not clear on what grounds we
could claim that an ultimate analysis in structural terms is impossible. So the
effective use of thesis [I] in settling disputed cases may be limited, if we don't
state more precisely what form a structural analysis can possibly take. But, even
in this imperfect form, thesis [I] can serve to show what is common to all the
constants which are usually accepted as logical without dispute, and which are
logical according to this thesis too. Moreover, together with the underlying
assumptions about logic which we have discussed it shows that this common
characteristic of logical constants proceeds from a certain conception of logic.

5 Thesis [II] We stated in Section 2 that the double-line rule (->) can serve
to characterize implication in various logical systems: classical, intuitionistic, and
relevant. In these characterizations (-») is always the same: only assumptions
concerning structural deductions are changed. We also mentioned that the sit-
uation is analogous for other logical constants we have considered. This situa-
tion naturally leads us to postulate the following thesis:

[II] Two logical systems are alternative if, and only if, they differ only in their
assumptions on structural deductions.
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This thesis can also be viewed as a consequence of assumptions [A], [B],
and [C]. According to these assumptions, different systems of formal deductions
can arise because they have either

(i) different structural deductions and logical constants ultimately ana-
lyzed in the same way, or

(ii) the same structural deductions and logical constants ultimately ana-
lyzed in different ways, or

(iii) both different structural deductions and logical constants ultimately
analyzed in different ways.

We suppose that the situation is best described by saying that in case (i) we
are confronted with alternative logical systems, in case (ii) with logical systems
that are supplements, and in case (iii) with logical systems that are both alter-
natives and supplements. For example, classical first-order logic and intuitionistic
first-order logic are alternative logical systems, whereas the first-order modal
logics S4 and S5 are supplements of classical first-order logic.

If the language M used for giving an analysis of a. can be understood in
two different ways (as happens when we assume different structural rules to be
valid in M), so that in fact we have two languages, Mx and M2, then the anal-
ysis based on Mx cannot be the same as the analysis based on M2. However, it
is clear that these two different analyses will have a common core. The expres-
sion cq with the analysis based on Mx will not have the same meaning as the
expression a2 with the analysis based on M2 (according to condition (3) for
analysis, in Section 3), but we can say that a{ and a2 are analytically identical.
This analytic identity is a kind of identity of function; in the case of logical con-
stants this is identity of structural deductive function. This identity may be taken
as the "common denominator" of alternative logical systems. For example, we
are justified in saying that both classical and intuitionistic implication are impli-
cations, because for both of them we assume the same structural deductive func-
tion, i.e. we assume a deduction theorem and modus ponens. Usually, this
"common denominator" of alternative logical systems is not clearly character-
ized, and a more or less vague resemblance between the alternatives is consid-
ered sufficient.

Two logical systems can "differ only in their assumptions on structural
deductions" not only when these assumptions are explicit, as in sequent-systems,
but also when these assumptions are only implicit, as in Hilbert-style axiomati-
zations.

We shall summarize our discussion of thesis [II] by considering how it pro-
ceeds from thesis [I]. The import of thesis [I] is that a logical system is com-
pletely determined by its assumptions on structural deductions. Hence, to change
logic, and not merely to supplement it by new "punctuation marks", we must
change structural deductions. An alternative logical system is obtained when the
same "punctuation marks" work in a different structural context.

6 Similar programs Our attempt to analyze logical constants and thesis [I]
should not be confused with the program of defining logical constants by syn-
tactical means. First, the main goal of this program is to show that the mean-
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ing of logical constants can be given syntactically, whereas our analyses are
neutral with respect to this claim, and are equally compatible with the view that
the meaning of logical constants is to be given in a more conventional seman-
tical framework. Second, the search for a criterion for being a logical constant
does not always have a very important place in this program. If the problem of
finding this criterion is considered at all, it is usually taken that logical constants
will be just those expressions whose meaning can be given by syntactical means,
which makes the search for a criterion dependent upon the main goal of the pro-
gram. Thesis [I] is an attempt to formulate such a criterion without tying it to
a thesis on the meaning of logical constants. On the other hand, it is clear that
our analyses of logical constants and thesis [I] are congenial to this program.
Presumably, the "deductive structural function", which we think is demonstrated
by our analyses, must be closely tied with the meaning of logical constants, even
if we need not assume that it coincides exactly with this meaning.

The origins of this program can be traced to Gentzen, who made the fol-
lowing remark concerning the introduction and elimination rules of his natural
deduction systems: "Die Einfϋhrungen stellen sozusagen die ,,Definitionen" der
betreffenden Zeichen dar, und die Beseitigungen sind letzen Endes nur Konse-
quenzen hiervon, . . ." ([18], Section 5.13).

In a series of papers (which he later called "bad and ill fated") Popper
attempted to use a certain sort of sequent-system to define logical constants, and
to find a criterion for the demarcation of logic. (For references see [37], which
reconstructs in great detail Popper's theory by divorcing it from the attempt to
define logical constants syntactically, and tries only to derive from Popper's
work a syntactical criterion for the demarcation of logic; it also contains an
extensive bibliography on matters related to the program we are considering.)
A program similar to Popper's was formulated by Kneale in [22] (see also [23]),
who tried to formulate for that purpose a natural deduction multiple-conclusion
system. The program has been more recently pursued by Hacking in [20]. Hack-
ing is concerned in principle with standard Gentzen-style sequent-systems with
rules for introducing constants on the left and on the right of the turnstile, but
he also tries to introduce a certain notion pertaining to the parametric parts of
these rules which apparently makes it impossible for him to deal with modal con-
stants. One of Hacking's aims is to show that quantum logic is logic.

That part of the proof-theoretical program of Prawitz (see [31] and [32])
which is relevant to our discussion is not so much concerned with the demar-
cation of logic, as with pursuing the idea expressed in Gentzen's remark on nat-
ural deduction introduction rules. This also holds for the relevant views of
Dummett (see [16] and [17], pp. 389-403).

Prior criticized this general program by giving in [33] natural deduction
rules for what we would call "an inconsistent constant" (see Section 3). In the
reply by Belnap [2], the requirements of conservativeness and uniqueness are
stated for rules which pretend to define a constant (cf. [13]).

Our replacement of the term "definition" by the term "analysis" in the
above program is not merely a verbal move. One substantial difference is that
the requirement of conservativeness ceases to play for us the role it has to play
in the former program. We don't want our double-line rules to give the mean-
ing of the logical constants, but only a philosophically significant analysis. It
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is possible that something not very far from our notion of analysis was on Gent-
zen's mind when he made his brief remark on the sozusagen Definitionen.

The metaphor we have used to describe the function of logical constants
is reminiscent of the following remarks of Wittgenstein from [44]: "Die logischen
Operationszeichen sind Interpunktionen" (5.4611). ". . . in der Logik ist jeder
Satz die Form eines Beweises" (6.1264). However, one would probably have to
take these remarks out of their immediate context in order to connect them with
the views we have expressed here.
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