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The Elementary Theory of the Natural Lattice
Is Finitely Axiomatizable

PATRICK CEGIELSKI

Introduction It is well known that the set of positive integers with the divisi-
bility relation is a lattice, indeed the prototype of lattices. Here we call it the nat-
ural lattice. What are the differences between this lattice and other lattices? What
are the particular properties (in the language of lattices, defined below) of this
lattice? How should it be characterized?

Some linear orders have been studied (the natural order of the positive
integers by Dedekind in [5], the orders of rationals and of reals by Cantor in
[2], see also [9]). But no characterizations exist for particular lattices.

A mathematical characterization exists for (IN*,/). It is a partial order with
a least member, 1, a denumerable set of atoms (the prime numbers), each mem-
ber x has a p-successor for each atom p (the product p-x), and the following
multi-induction principle: a subset A of IN* which contains 1, and is such that
if x belongs to A then p-x belongs to A for all atoms p, is IN*. But this char-
acterization is not in the hierarchy of logical languages (first-order, second-
order, . . .). (In particular, this characterization is not expressible in a second-
order language because of the denumerability of the set of atoms).

The logical language of the theory of lattices is naturally the first-order lan-
guage of partial order, with only a binary predicate, denoted by <. Our aim is
to characterize (i.e., to axiomatize) the first-order theory DIVof the structure
(N*,/). DIV is consistent, complete, but not Ko-categorical (the standard model
is not the only countable model). This theory is decidable (stated by Skolem in
[13], but proved first by Mostowski in [12]), thus recursively axiomatizable. But
the computational complexity of the axiomatization given by this method is very
awkward. We show that this theory is finitely axiomatizable, giving an explicit
finite axiomatization. This fact seems prominent because relatively few theories
of structures are finitely axiomatizable. The theory of addition and the theory
of multiplication are not (see [3]).
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/ The axiomatization We present the axiomatization in two parts. In the
second part axioms are stated in the first-order language with the binary predi-
cate < (which represents / for the standard model) and immediate extensions
by definitions. In the first part we present the axioms informally and give rea-
sons for their choice. The axiomatization cannot be a mere translation of a nat-
ural characterization. After obvious axioms we add, one by one, first-order
properties which can complete the theory, while trying to verify that it is com-
plete (roughly by the method of elimination of quantifiers).

We hope to arrive at a simple and natural axiomatization and to eliminate
the axioms introduced solely in order to have elimination of quantifiers.

/ . / Comments (IN*,/) is a lattice (Axioms Al to A5, Pierce's definition).
We don't say that the lattice is distributive because this follows from other
axioms. The lattice has a least element (A6). Warning: This element is denoted
by 0 because the order relation is denoted by <, but this element is obviously
1 in the standard model.

Any element x of the standard model is the join of the primary numbers
(i.e., powers of a prime number, join irreducible in the theory of lattices) less
than x (A7). We say that a lattice is pre-F-decomposable iff it satisfies this con-
dition A7. This name is used because A7 is a condition for decomposability by
fibers. The lattices shown in Figure 1 and 2 are not pre-F-decomposable.
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Figure 1.
Figure 2.

An element of the standard model is characterized by its valuations (for any
prime /?, the p-valuation of x is the greatest /7-primary number pa which divides
x; it is not the usual valuation, but we cannot define a in this language). For
a given p, the set of/7-primary numbers is & fiber (an equivalence class for com-
parability of join-irreducibles in a general lattice). A lattice is fibered iff it deter-
mines fibers (A8).

If (F/)/G/ is the set of fibers of a fibered pre-F-decomposable lattice (F, <)
and x an element of F, then x determines a cut on any fiber Fj (the set of elements
of this fiber less than x). This cut does not necessarily have a greatest element (cf.
Section 1.3), but this holds in general for lattices decomposable by fibers (A9).
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Such a lattice is (modulo an isomorphism) a part of H ^ . Then VAL(x,a)
i(Ξl

says a is a join-irreducible, the greatest element less than x in a fiber.
In the standard model if VAL(x,a), VAL(y,β) and a and β belong to the

same fiber then we have: VAL(x vy, a v β) and VAL(x Ay, a Λ β). But this
is false in the lattice (shown in Figure 3) decomposable by fibers: e — ay b,

ύ
0

Figure 3.

VAL(a,a), VAL(b,0), VAL{e9c) but c Φ 0 v a. Then we add an axiom of
regularity (A 10). The formulation of this axiom is difficult because fibers have
no canonical representatives.

This kind of formulation is simpler if the lattice is atomic (All, i.e., any
integer has a prime divisor in the standard model). But we have given the gen-
eral definition of an F-decomposable lattice because this new notion seems to
us very interesting, and regular F-decomposable lattices exist which are not
atomic; for example, (R + ) 7 U IN7 with functional order (i.e., / < g iff Vx G
If(x)<g(x)).

The next step is to express that the set of atoms is infinite. It is generally
impossible by a first-order formula, but here the elements x we are interested
in have finite supports (in the standard model, only a finite number of prime
integers divide x). Thus we can say: for any x there exists an atom a not less
than x (A12). The axiom A12 means more than "to have an infinite set of
atoms" because if E is an infinite set then ((?(£),£=) is an atomic regular F-
decomposable lattice with an infinite set of atoms but which does not verify
Axiom A12.

We can say that any element x has a support (A 13, in the standard model
the set of prime numbers which divide x, or the product of those elements
because we cannot speak of the set). We shall see in Section 1.3 that this axiom
is independent. Axiom A12 shows that supports are pseudo-finite.

An element of such a lattice is a (total) map / over an infinite set / which
at / assigns an element of a chain Fj with a least element. The element/has a
pseudo-finite support (the set of / such that/(/) ^ 0). In the standard model the
set of these mappings also satisfies the following stability properties:

(1) The restriction of such a mapping to the support (of another element)
is such a mapping (A 14).
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(2) Fibers are discrete (A15) and those mappings are incrementable, i.e.,
we can add 1 at any nonnull valuation (A 16).

(3) Given such mappings/and g, there exists a mapping h whose support
is the set of / such that /(/) < g(i) (A17).

1.2 The axioms

Al (Reflexivity) Vx(x < x).

A2 (Antisymmetry) Vx,y((x <y&y<x)->x = y).

A3 (Transitivity) Vx,y,z((x < y & y < z) -+ x < z).

A4 (G.L.B.) VxVy3z(z < x & z < y & Vt ((t < x & t < y)-+t < z)). (This

z, which is unique by A2, is denoted by x A y.)

A5 (L.U.B.) vxVy 3z{x < z & y < z & vt ((x < t & y < t) -* z < t)). (This
z, which is unique, is denoted by x v y.)

A6 (Least element) 3xVy(x < j ) . (This element is denoted by 0.)

Definition 1 An element x of a lattice is join-irreducible iff it satisfies: V#, 6
(x = #vZ?->(jt = tforjt = b)).

This is denoted by SI(x) (or 5/*(x) if x is not zero).

A7 (Pre-F-decomposability) Vx,^(Vz((5/(z) &z<x)-+z<y)-^>x<y).

Proposition 1 In a pre-F-decomposable lattice an element is characterized
by the set of join-irreducible elements less than it: Vx9y (x — y <-» Vz(5/(z) -•
(z<x^z< y))).

A8 (Fibered lattice) Vx,y,z((SI*(x) & SΓ(y) & SI*(z) & ((x < z & y <
z) or (z < x & z < j))) -> (x < y or y < x)).

Proposition 2 77ze relation (x < y or y < x) is an equivalence relation on SI*
in a fibered lattice, denoted by x ~ y. An equivalence class plus 0 is a fiber (it
is a chain with a least element).

A9 (F-decomposability) Vx9a((SI*(a) & a < x) -> lb(SI(b) & 6 < x &
a<b 8ι Vc((SI(c) & c < x & α < c ) - > c < 6))).

Then Z? is called a valuation of JC and we denote this by Fy4Z(x,ό).

Proposition 3 In an F-decomposable lattice we have:

(1) VX,^(JC< y^ Va{VAL(xfa) -+a <y)).
(2) Vx,y(x = y <+ Va(VAL(x,a) <-> FAL(j,tf))).

A10 (Regularity) v^,^,α,6((K4L(jc,Λ) & Kv4L(j,Z?) & ((cr = b = 0 or
(α = 0& bΦO & vc((SI*{c) &b~ c)-+cφ x)) or (0 < a < b)))-+(VAL(x Λ

y,a)& VAL(xvy,b))).

Proposition 4 A regular F-decomposable lattice is distributive.

Proof: For example we show that:

Vx,y,z(x Λ (y v z) = (XΛy) v ( # Λ Z))
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Let a,b,c be members of the same fiber so that: VAL(x,a), VAL(y,b),
VΛL(z,c) and, for example: 0 < a < b < c.

Then, using A10 we have: VAL(yv z>c), VAL(x A (y v z),a)y VAL(x A
y,a), VAL(x AZya), VAL((x Ay) v (x Az),a). Hence x A (y v z) and (x Ay) v
(x A z) have the same valuation in each fiber, and then are equal by Proposi-
tion 3.

If a is an atom, i.e., a Φ 0 & Vx(x <a-+(x = 0oτx = a)), we denote this
by A(α).

All (Atomicity) Vx(x Φ 0 -> 3β(A(α) & α < x)).

Proposition 5 /^ afibered atomic lattice there exists at most one atom divid-
ing a join-irreducible, i.e.:

vx(SI*(x) -+3la(A(a) & a < *)).

Consequences: In a fibered atomic lattice we can easily characterize fibers:
(1) x is zero or a join-irreducible greater than the atom a is denoted by

SI(a9x).
(2) A fiber is Fa = {x/S7(tf,x)} for an atom α. Fa is called the fiber with

base a.
(3) An atomic fibered pre-F-decomposable lattice is F-decomposable iff:

Vx,a(A(a) -> 3a(SI(a,a) & a < x & Vβ((SI(a,β) & 0 < x) -> /3 <
α))). This α is a valuation of x and is denoted by V(a9x).

(4)An atomic F-decomposable lattice is regular iff: Vx,y,a(A(a) ->
(V(a,XAy) = F(α,x) Λ F(α,j) & F(α,x v j ) = F(α,x) v V(a,y))).

A12 (Infinite base) Vx(x Φ 0-+ 3a(A(a) &aφx)).

Proposition 6 A lattice with an infinite base has a (standard) infinite set of
atoms.

A13 (Supportability) Vx3sVα(A(α) -> {(V(a,x) Φθ-> V(a,s) = a)
& (V(a,x) =0^ V(a,s) = 0))).

This s, which is unique, is the support of x and is denoted by SUPP(x).

A14 (Truncability) VxVy3zVα(A(α) -> ((a φ x-+ V(a,z) = V(a,y))

&{a<x-+ V(a,z) = 0))).

This z, which is unique, is denoted by T(x,y) and is called the inverse truncate
ofy by x.

We then have:

Proposition 7 VxVy3zVa(A(a) -• ((a < x-> V(a,z) = V(a,y))
& (tf^x-> K(α,z) = 0))).

77z/5 z, wΛ/cΛ is unique, is denoted by T{x,y) and is called the direct truncate
ofy by x.
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A15 (Discrete fibers)
(1) Va,x(SI(a,x) -> ly(SI(a,y) &x<y &yΦx& Vz((SI(a,z) &x<

z)-+y< z))). This y, which is unique, is denoted by Sax and is called
the a-successor of x.

(2) Va,x((SI(a,x) & x Φ 0) -* 3y(SI(a,y) & Say = x)). This y, which is
unique, is denoted by Pax and is called the a-predecessor of x.

A16 (Incrementability) Vx3yVa(A(a) -> ((a φ x-+ V(a,y) = 0)
&(a<x-*V(a,y) = SaV(a,x)))).

This y, which is unique, is denoted by Ix and is called the increment of x.

A17 (Selection) VxVy3yVa(A(a) -> (V(a,z) = 0 or a and V(a9z) = a <->
((a < x or a < y) & V(a,x) < V(a,y))). This z9 which is unique, is denoted by
SLCT(x,y).

Note: We have SUPP(x) = SLCT(x,x), thus A13 is not necessary.

1.3 Independence of axioms The axioms are independent or, at least, Axiom
A/+1 is not a consequence of Axioms Al to A/ (although sometimes of Axioms
Ay tor j Φ i + 1). We already showed this for all axioms except A8, A9, A13,
and A17. We skip the proof for A8.

Independence of Λ9: E is a subset of the set of (partial) functions from IN to
JN = IN U {oo j . / i s an element of E iff:

• either / : / ~ IN with / finite,

• or / : / -> {oo) with / = 2n 3 m N (then we say / is an infinite element).

The order is the ordinary functional order:

f<g~(Df<^Dg and Vx G Df f(χ) < g(χ)).

(E,<) is a lattice. Join-irreducibles are functions whose domain is a set with one
element and whose value is in IN (an infinite element is not a join-irreducible
because: 2" 3 m N = 2/I+1 3 m lN v 2Λ 3 m + 1 N). This lattice is fibered, pre-F-
decomposable but not F-decomposable.

Independence of A13: E is the set of mappings from IN to IN with [x/f(x) = 1}
finite, with functional order. This is an atomic regular F-decomposable lattice.
Supports are mappings from IN to {0,1} with finite [x/f(x) = 1). Then the con-
stant mapping 2 has no support.

Independence of A14: E is the set of subsets A of IN with A finite or A —2n.
IN U F with n G IN* and F finite. (E,Q) satisfies Al to A13 but not A14
because f({2},2 lN) is not an element of E.

Independence of A15:

(1) The set (9/(1) of finite subsets of an infinite set /with inclusion
satisfies Al to A14 but not A15.
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(2) The set of mappings/from IN to the subset {0} U [l,oo) of E with
finite support, with functional order, satisfies Al to A14 but not
A15.

(3) The set of mappings / from IN to ω + ω with finite support, with
functional order, satisfies Al to A14, A15(l) but not A15(2).

Independence of A16: E is the set of mappings / form IN to IN satisfying:

Vn E F, no condition on f(n),
vn G (2 IN\4 IN) VF, 2 divides/(/i),
Vn G 4 IN\F, 3 divides f(n),
otherwise, f(n) = 0,

where F is a finite set. E with the functional order satisfies Al to A15 but not
A16.

Independence ofA17: E is the set of mappings / from IN to ω + (ω* + ω) φ (a
nonstandard denumerable model of ω) satisfying:

Wz G F, no condition on/(/?),
card(/[(2 lN\4 ]N)\F] Π IN) < 1,
card(/[4 NVF] Π IN) < 1,
otherwise, /(«) = 0,

where F is a finite set. ii with the functional order satisfies Al to A16, but not
A17.

2 The main theorem

Theorem Lattices satisfying Al through A17 are the same as lattices elemen-
tarily equivalent to (IN*,/).

It suffices to prove that the theory with Axioms Al to A17 (the theory
denoted by DIV) is complete. We use elimination of quantifiers, taking inspi-
ration from the method of Feferman-Vaught.

2.1 The theory of natural order An axiomatization of the theory of (1N,<)
is well known [10]: the order is total, discrete, with a least element, but with-
out a greatest element, i.e., it satisfies Axioms Nl, N2, N3, N5 (= Al, A2, A3,
A6) and:

N4 Vx,y(x < y or y < x).

N6 Vxly(x <y & y Φ x & VZ((JC < z Si z Φ x) -> y < z)). This y, which is
unique, is called the successor of x and is denoted by Sx.

N7 Vx(xΦ 0-> 3ly(x = Sy)).

A proof that the theory with Axioms Nl to N7 is complete is in [6], pp.
184-187, but with a slightly different axiomatization. The language (0,<,5),
without =, permits elimination of quantifiers.
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2.2 The lattice of finite subsets of a set The theory F of the class of struc-
tures (P/(/),<Ξ) is known [7] to be axiomatized by: the lattice is distributive,
relatively complemented, with a least element and is completely atomic, i.e. satis-
fies Axioms Fl, F2, F3, F4, F5, F7, F10 (= Al, A2, A3, A4, A5, A6, A12) and:

Γ6 vx,y,z x/\ (y v z) = (XΛ)Ί V (XΛZ), X V (y ΛZ) = (x vj>) Λ (X V Z).

F8 VxVy3z(z <x&x<zvy&zs\y = O). This z, which is unique, is denoted
by x\y.

F9 (Characterization by atoms) Vx9y(Va(Ά(a) -> (a < x <-» a < y)) -> x =

y).

This theory is complete. We even have elimination of quantifiers in the lan-
guage (/\,\,(An)n<EJN*)9 without =, where An is the unary predicate "to have
at least n atoms" defined by:

3 β i , . . . , β Λ ( /A ci^ajSc />\ ( A ( 0 f ) & £ * , < * ) ) .
\l<ι<ς/</i l</<« /

The author has verified these claims in 1979, in an unpublished work, using
Karp's method. The proof is too long to appear here.

2.3 Interpretation of ω and F in DIV

Definition 1 Let 21 be a model of DIV, A its domain, a an atom of 21 (i.e.,
a E A and 21 1= A(a)). We denote by 2ίfl the structure (Aa,<) where: Aa =
{x G A/% V Sl(a,x)} and < is the restriction of < to Aa.

Proposition 1 %a is a model ofω, the theory with Axioms Nl through N7.

Definition 2 We denote by 21/7 the structure (AF,<) where AF is the set of
supports, i.e.:

AF= {x<Ξ A/% N Va(A(a) -* V(a,x) = a or 0)}.

Proposition 2 %F is a model of F, the theory with Axioms Fl through F10.

Proof: Distributivity follows from Section 1.2, by Proposition 4. We have
x\y= T(y9x).

2.4 A first elimination of quantifiers

Definition 3 Let φ(X\,... ,xn) be a formula of the language (<) with its
free variables among xx,... ,xn. Then we denote by φp the formula of the lan-
guage (<,F(.,.)), with supplementary free variable;?, defined by: φ(V(p,Xι),
...,V{p,xn)).
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Proposition 3 Let % be a model of DIV, p an atom of%au...,an elements
of A and bi = V(p,ai) for 1 < / < n. Then:

%£φp(al9...9an)tfΠίp\=φ(bl9...9bn).

Proof: By induction on the rank of the formula φ.

Definition 4 If 0 is a formula of the language (<) we denote by Ak(θ)
("there are at least k atoms/? whose/?-adic valuations satisfy 0") the formula:

3A,. . ,P*( /A Pi*Pj& /A <A(A ) & 9 A ) V
\l<i<J<k \<i<k I

Theorem 1 The language C4*(0))*eisff0€=F/(<,o,s) permits elimination of
quantifiers for DIV.

Proof: We show by induction on the rank of the formula that: DIV h φ <-> ψ,
with φ a formula of the same language but without quantifiers.

We easily have:

x < y <* v/7 <ΞA(V(p,x) < V(p,y))
++ -i>4i(-i(^<^)).

We must note that x < V(p,γ) does not occur. Then the main case is φ = 3x

Ψ(x,y), where ψ is:

/A Akt(θi(x9y)) & /Xv ^Aki(θi(x9y)).
l<i<m w+l</</7

Definition 5 Formulas (0/(x,ĵ ))i</<« are independents iff for / Φj, 0/ & 0y

is contradictory.

We note that Sk(θ) for Ak(θ) & -υ4Λ:+1(0) (meaning there exist exactly k
atoms p such that the /7-adic valuations satisfy 0).

Lemma 1 We can suppose that ψ is of the form: fl\ Aki(θj(x,y)) &

ff\ Sk{θ,(x,y)) & yXv -*Akι{θi(x,y)), with independents θ,.

Proof: Begin with equivalences such as: if /: < r then

^ ( 0 ) & Ar(θ') ++ W (5«(^ & θ') & ̂ - Λ ( » & ^ ^ ) & Λ - « ( - 0 & β'))-

Then use the distributive law for 3 and disjunction. There are n formulas 0Z in
the input and 2n in the output.

Remarks: To understand the formula of Lemma 3 it is necessary to note the fol-
lowing facts:



THE NATURAL LATTICE 147

(1) If ω N 0/(0,0) for / E [n + l,q] then 3xψ(x,y) is false because the
number of atoms is (standard) infinite.

(2) But we can have: ω 1= 0/(x,O) if x Φ 0.
(3) If θ is a sentence, ω t= θ is expressible in Z>/F using 0P, the choice of

atom p is irrelevant.

Definition 6 If 2t is a model of DIV and # = (a\,... ,an) is an element of
An then the support of α is: supp(ά) = L.U.B. (supp(#i),... ,supρ(αrt)), i.e.,
is the set of atoms dividing at least one #,.

Lemma 2 Let Θ(X\9... ,xn) be a formula of the language (<), with free
variables among xu . . . ,xn9 n> \,%n a model of DIV and a = {au... ,an)
an element of A. Then: 3s, V/? E A(F(/?,5) = 1 or p and V(p,s) = p ++ (p <
supρ(^) & θp(ά))). This unique s is denoted by supp(0(5)). // is the set of
atoms whose valuations satisfy θ.

Proof:

• If θ is a formula without a quantifier (which is the only case to consider
because theory ω admits elimination of quantifiers), θ is a Boolean com-
bination of atomic formulas: Skx < Sry, where negation does not occur
because the negation of such a formula is an atomic formula.

• If supp(φ(x)) and supp(^(x)) exist, then supp(φ(jf) v ψ(x)) and
supp(φ(i) Λ φ(x)) exist with: supp(φ(x) v ψ(x)) = supp(ψ(i)) v
supp(vH f)) and supρ(0(x) Λ ψ(x)) — supp(φ(x)) Λ supp(\^(jf)). If we
have φ(x) and ψ(y) with x Φ y then expressions are a little more elab-
orate.

• The problem is to show that suppίS^x < Sry) exists, with x,y variables
or constant 0. Let a,b E A. Then:

fsupp(α) if/:<r,
(1) supp(/: < r) = \

\\ ήk>r.

I sλXΌΌ(a\b') if k > r,
(2) supp(S*a < r) = ^

[supp(a'9b
f) v Γ(α,supp(α)) if /:</*,

with a' = Ika (i.e., αr = //.. .la), b' = /r(supp(α)).

/: times

c^ x (supv(b',a') if k<r,
(3) supp(r < Ska) = ^

l^suppίZ?',^') v Γ(#,suρp(<3)) if /: > r.
. ίsuppί^',*') if k > r,

(4) supp(5^ < Srb) = \
[supp(a'9b') v T(a v Z?,supp(<5)) if k < r,

wither' = / V b' =Γb.
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Lemma 3 If we denote S, = supp(3x0,(;t,j>)) and S = supp(j) then we
have:

3xφ(xJ)~( y)(V -<(0,0)

& W f/Λa^UO)
σC[l,p] \/Gα

&3Si,...,s,( /ftv s,nsy = 0

& yXy 5 / C S / & 5 I U J 2 U . . . U 5 9 = S

& ^ α?rtf 5, > ki & fj\ card 57 < A:,-
l</<m m+l<i<q

& y^ cardsi = ki& /f\ cards,<k\\\.
i£σ i£σ III

m + l<i<n n+l<i<q

(The identity 5i U . . . U sq = S is necessary only if (0/) is a complete system,
i e., W 0/ is a tautology, if no inclusion is sufficient.)

Proof: Obvious when we have the good expression.

Proof of Theorem 1: Because ω is a complete theory, 3xθf(x,0) is equivalent
to 0 Φ 0 or to 0 = 0.

By elimination of quantifiers for the theory F we have only expressions
such as: card (±S{ Γ\.. .Γ\ ±Sg Π ±S) = (respectively, >,<) k, i.e., Sk (respec-
tively, ^4^,-1^4^+!) (±3xθι(x,y) & . . . ) . Hence there is no quantifier because
of elimination of quantifiers for theory ω.

Corollary Theory DIV is complete.

Proof: Because any sentence of DIV is equivalent to a Boolean combination of
sentences Ak(θ), with 0 a sentence of theory ω. We know how to decide sen-
tences of theory ω and ^4^(0) is true iff 0 is true.

2.5 Elimination of quantifiers

Definition 7 We denote by Ek(x) (meaning x has at least k atoms) the fol-
lowing formula:

3Pi,...,P*( /A Pi±Pj& /A (MPi) & Pi ̂  x)) -

Theorem 2 The languageL = (0,/,supp( , ),LUB( , ),GLB( , ),(£* ) Λ e κ )
admits elimination of quantifiers for the theory DIV.

Proof: It is sufficient to show that a formula Ak(θ), k G IN*, where 0 is a for-
mula of the language (<,S,0), is equivalent to a formula without quantifiers
in the language L, using Theorem 1.

We can suppose that 0 is without quantifiers, because the language (<,S,0)
admits elimination of quantifiers for the theory ω.
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Obviously we have:

k

Lemma 4 Ak{θ v 0') ~ W (Ar(θ) & Ak_r(θ')).

Hence we can consider θ as a conjunction of formulas:

Skx < Sr.y (1)

with x,y variables or constant 0.
Let θ = θx &.. .& θn.
If θj is (1) with x,y variables, set tt = supρ(Ikx,Iry).
If θj is (1) with, for example, x a variable and y = 0, set:

Γsupp(//\*:,/Γ(supp(x))) if /: > r9

]^supp(lkxjr(supp(x))) v supp(x) if k < r,

where supp(x) = supp(x,x), supp((*i,... ,xn)) = LUB(supρ(^),... ,supp (*„)).
If (9/ is Sk0 < 5r0 then θ is equivalent to £Ί (0) for k>r, and is not impor-

tant for k < r.

Then: ^^(6>) <̂  Ek(GL&(tu. ^ J )
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