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On the Structure of De Morgan Monoids with

Corollaries on Relevant Logic and Theories

JOHN K. SLANEY

A De Morgan monoid is constant iff it is generated by its identity alone.
It is shown that the only nontrivial proper homomorphic image of a prime De
Morgan monoid in a constant one is the 4-element algebra C4. Moreover, the
only element mapped by such a homomorphism to the lattice 0 of C4 is the lat-
tice 0 of the original. These facts are used to obtain results on De Morgan
monoids with idempotent generators. The paper concludes with some applica-
tions to the relevant logic R and particularly to the arithmetic R#.

1 A De Morgan monoid may be taken to be a quadruple D = <S,°,v/>
where 5 is a set, ° and v are binary operations on S, and ' is a unary operation
on S. The postulates are:

pi There exists an e E S such that for all a E 5 ea = a.
(Notation: note juxtaposition for "°")

p2 abc = a (be) (Association normally to the left)
p3 ab = ba
p4 a < a2 (a < b —dj a v b = b)

{a2 =df aa)
p5 a\/byc = a\/(bwc)
p 6 αv b = b v a
p7 a v a = a
p8 a" = a
p9 ab < c iff ac' < b'

plO ((a v b)f v c)' = (a' v c)' v (bf v c)'.
pll a(b v c) = ab v ac

De Morgan monoids (DMMs) were introduced by Dunn in [3]. He gives an
equational definition with slightly different primitives in [1]. It is usual to enter
the following definitions:
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dl f=dfe'
d2 a*b=4f(a'vb')'
d3 a:b =df {a'b)f

d4 av.b =df a:b Λ b:a
d5 a + b=4f(a'b')'.

Then <AS,V,Λ> is a distributive lattice on which ' is an involution. a:b is the
residual of a by Zλ Clearly, #:& is in the positive cone iff b < #, and a::b is
positive iff # = b. For an exposition and elementary results on DMMs, see [1].
D is prime iff for no elements a and b is a v b in the positive cone unless at
least one of a,b is in the positive cone. D is normal iff for every a in S, ex-
actly one of a, a' is in the positive cone. It is quite easy to show that the prime
DMMs are as a set polynomially free. Less trivially, the same goes for the nor-
mal ones (see [4]). The finite DMMs as a set are not polynomially free, since
the word problem for free, finitely generated DMMs is in general unsolvable
(see [10]).

A De Morgan monoid D is constant iff D is generated by {e}. There are
exactly 8 prime constant DMMs, viz.:

Cl a a' o I o
o o — \ —

+ o o o I o

C2 a af o 0 1
n 1

0 1 0 0 0

ύ 0

+ 1 0 1 0 1

C3 a I a' o I 0 1 2 3

/^\ 0 3 0 0 0 0 0
1 \ y°2 + 1 2 1 0 1 2 3

Vθ 2 1 2 0 2 3 3

+3 0 3 0 3 3 3

C4 3 a 1 a' Q I 0 1 2 3

0 3 0 0 0 0 0
? ^

+ 1 2 1 0 1 2 3

[ +2 1 2 0 2 3 3

0 +3 0 3 0 3 3 3
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C5 a I a' o I 0 1 2 3 4 5

P 5 0 5 0 0 0 0 0 0 0

I4 1 4 1 0 1 1 3 3 5

. / \ . +2 3 2 0 1 2 3 4 5

\ X 3 3 3 0 3 3 5 5 5

J +4 1 4 0 3 4 5 5 5

+ 5 0 5 0 5 5 5 5 5

C6 a I α
r
 Q | 0 1 2 3 4 5 6 7 8 9

0 9 0 0 0 0 0 0 0 0 0 0 0

99 1 8 1 0 1 1 1 1 5 5 5 5 9

«,8 +2 7 2 0 1 2 3 4 5 6 7 8 9

6
 c( 1 4 \ 7

 3 6
 3 0 1 3 4 4 5 7 8 8 9

p \ X | +4 5 4 0 1 4 4 4 5 8 8 8 9
2 <

 V
5 > 3

X X 5 4 5 0 5 5 5 5 9 9 9 9 9

+6 3 6 0 5 6 7 8 9 9 9 9 9

7 2 7 0 5 7 8 8 9 9 9 9 9

+8 1 8 0 5 8 8 8 9 9 9 9 9

+9 0 9 0 9 9 9 9 9 9 9 9 9

C7 a I a' Q | 0 1 2 3 4 5 6 7 8 9

0 9 0 0 0 0 0 0 0 0 0 0 0

p9 1 8 1 0 1 1 1 1 5 5 5 5 9

λδ +2 7 2 0 1 2 3 4 5 6 7 8 9

6X \ 7 3 6 3 0 1 3 3 3 5 5 8 8 9

Ay/ \/$ +4 5 4 0 1 4 3 4 5 6 8 8 9

2
\ /3

 5 4
 5 0 5 5 5 5 9 9 9 9 9

γi +6 3 6 0 5 6 5 6 9 9 9 9 9

I 0 7 2 7 0 5 7 8 8 9 9 9 9 9

+8 1 8 0 5 8 8 8 9 9 9 9 9

+9 0 9 0 9 9 9 9 9 9 9 9 9
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C8 a a'

0 13

1 12

j 1 3 +2 11

Λl2 3 10

10 J/' \ l l +4 9

s/JθV9 5 8

\ / + 8 5

j 1 9 4

^° +10 3

11 2

+ 12 1

+ 13 0

o 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 7 7 7 7 7 7 13

2 0 1 2 3 4 5 6 7 8 9 10 11 12 13

3 0 1 3 3 3 3 3 7 7 7 7 12 12 13

4 0 1 4 3 4 5 6 7 8 9 10 12 12 13

5 0 1 5 3 5 6 6 7 9 10 10 12 12 13

6 0 1 6 3 6 6 6 7 10 10 10 12 12 13

7 0 7 7 7 7 7 7 13 13 13 13 13 13 13

8 0 7 8 7 8 9 10 13 13 13 13 13 13 13

9 0 7 9 7 9 10 10 13 13 13 13 13 13 13

10 0 7 10 7 10 10 10 13 13 13 13 13 13 13

11 0 7 11 12 12 12 12 13 13 13 13 13 13 13

12 0 7 12 12 12 12 12 13 13 13 13 13 13 13

13 0 13 13 13 13 13 13 13 13 13 13 13 13 13

Elements in the positive cones have been marked ' + ' . For a proof that these are
all the prime constant DMMs there are, see [9].
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Apart from C7, C2, and C3, all of which are Boolean algebras under the
operations v, Λ, and ', these structures show some striking similarities. Most
obviously, they are all roughly the same shape, with isolated top and bottom ele-
ments and with the rest falling into two "blocks" related in certain simple ways
by the operations ° and :. The purpose of this paper is to generalize these regular-
ities and make them precise. The results are then applied to obtain a complete
description of DMMs with one idempotent generator and to yield observations
on the structure of models for theories based on the relevant logic R of Anderson
and Belnap.

As is usual, we may define the kernel of a homomorphism from a DMM
D into a DMM D* with identity element e to be the pre-image of e. The kernel
will not in general be a sub-DMM of D, since it need not be closed under '. Of
some interest is the subalgebra generated by the kernel. Clearly this is contained
in the pre-image of the constant subalgebra of Z>* (i.e., of the subalgebra of £)*
generated by {e}). Less trivially, in a large and central class of cases it will prove
to be exactly that pre-image. In studying it, it matters little whether we think in
terms of homomorphisms into constant DMMs or of DMM congruences whose
quotient algebras happen to be constant. Let a Constance be defined as such a
congruence. That is, a given congruence on a DMM D is a Constance iff (where

a\ is the congruence class of the element a) D is generated by \e\. The two
degenerate congruences on D are identity (setting each element congruent only
to itself) and triviality (setting every element congruent to every other). Now we
may prove some rather easy theorems about Constances.

Theorem 1 Let D be a prime DMM, let ~ be a Constance on D, and let C
be the quotient algebra under ~. Then, unless ~ is degenerate, C is (isomorphic
to) C4.

Proof: Suppose « is nondegenerate. Then there are distinct elements a and b of
D such that \a\ = \b\. Since D is prime and a::b is not positive, (a::b)' is posi-
tive. Hence both \a\:: \b\ and ( | α | : : \b\)' are positive, so Cis not normal, hav-
ing e < /. The only constant DMMs with e < / are C4 and Cl. But ~ is not
degenerate, so C is not C7, so C is C4.

Definition A prime DMM D is crystalline iff there is an epimorphism from
D onto C4.

So the crystalline DMMs are C4 itself and those prime DMMs on which there
is a nondegenerate Constance. It may readily be established that all of the con-
stant DMMs C4-C8 are crystalline. Crystalline DMMs (named after the "crys-
tal lattice" C5) are in fact quite common. To suggest how common, let us define
a secondary equation of D to be an element a such that a < e. Then

Observation Let D be a prime DMM generated by a set G of secondary
equations, G Φ {e}. Then D is crystalline unless ΛG = 0.

Proof: Setting a ~ b iff 1H g G. ΛH < a::b gives a nondegenerate Constance
onZλ
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Theorem 2 Let D be a crystalline DMM and for each element a let \a\ be
the congruence class of a under an epimorphism to C4. Then D is bounded with
f2 as lattice I and e\f as lattice 0. Moreover, \I\ = {1} and | 0 | = {0}.

Proof: Suppose b E \a\ and \a\ is the 0 of C4. Then \b'\ is the element 3 of
C4. Clearly, \e\ is the identity element 1. Hence, \e\ φ \a\ ° \b' |, so e φ ab''.

Since D is prime (as given in the definition of "crystalline"), therefore,
e < (ab')\ i.e., e < b:a, i.e., a < b.

Similarly, b < a. Therefore \a\ = {a}. For any element c, a Λ C < a, so
|έ/Λ c\ = \a\, so a AC = a. That is, a is lattice 0 of D. It is easy to see that \e:f\

is the 0 of C4f concluding the proof of the theorem.

Theorem 3 Let h 1 and hi be homomorphisms from a prime DMM D into
C4. Then h\ = hi.

Proof: The only proper subalgebra of C4 is that with elements 0 and 3, which
is isomorphic to C2. By Theorem 1, if either h\ or hi is not onto then D is iso-
morphic to C2 and h\ = hi. Suppose h\ and hi are epimorphisms, making D
crystalline. By Theorem 2, the pre-images of 0 and 3 are the same under h\ as
under hi. If h\ and hi differ, therefore, there is some element a of D such that
Al(flr) = 1 and hl(a) = 1. But then h\{a:af) = 1:2 = 0, while hl{a:af) =
2:1 = 2 . This again contradicts Theorem 2, so h\ = hi.

Theorem 4 Let D be a prime DMM and let G be a set of its elements such
that k = /\{g::e\g E G] exists. Define a ~ b to mean k < a::b and define \a
as {b\a ~ b}. Then
(1) ~ is a congruence on D.
(2) \e\ is the interval [k,k:k].
(3) If G generates D then ~ is a Constance.

Proof: (1) is routine, given that k is a secondary equation. (3) is immediate from
(1) and the fact that G <Ξ \e\, which is evident from the definitions. As for (2),
note first that since k ~ e and e = e:e, obviously [k,k:k] Q \e\. Next note that
k is idempotent since all secondary equations are. It follows that e:k < k:k
(e:k < k:k:k = k:k). Suppose a E \e\. That is, k < awe. Then trivially k <
a:e = a. Moreover, since k < e:a, a < e:k (apply postulate p3 and residuation).
Hence a < k:k, which is all that is needed.

As a couple of asides appropriate at this point, note that where k exists as
defined above: (i) all the congruence classes under ~ are intervals, and (ii) if G
is a set of secondary equations then k is ΛG.

2 The next aim is to use the results pertaining to crystalline DMMs to gain
some control over DMMs with idempotent generators. The easiest case is that
of a DMM generated by a singleton {#} where g is idempotent (i.e., g2 = g, or
equivalently g < g:g). In any DMM generated by a finite set G, the identity e
is Λ{g:g\g E G}, so in the one-generator case e = g:g. Consequently, in that
case g is a secondary equation and g = k as k was defined for Theorem 4. Hence,
where ~, etc. are as in Theorem 4, \e\ is the interval [k,e]. In what follows,
let D be a prime DMM generated by k. Clearly, either k — e or D is crystalline
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(and perhaps both). If k Ψ e then, by the primeness of A k </ . There are there-
fore just the following possible configurations.

1-8 k = e
9 k<e k=f

10 k<e k<f k = eΛf
11 k<e k<f k<eΛf e<f
12 k<e k<f k<erκf e<£f.

In all of 1-10, k is a constant, so these cases have already been covered above.
Case 9 is just C2 considered as generated by 0, while Case 10 is C5 with 1 as its
chosen generator. Cases 11 and 12 are exemplified by the following.

111 5 a 1 a' ° 1 0 1 2 3 4 5

0 5 0 0 0 0 0 0 0
r 4

I 1 4 1 0 1 1 3 3 5

I 3 +2 3 2 0 1 2 3 4 5

f2 +3 2 3 0 3 3 5 5 5

I 1 +4 1 4 0 3 4 5 5 5

l θ +5 0 5 0 5 5 5 5 5

k=l e = 2 / = 3 .

112 a 1 a' Q I 0 1 2 3 4 5 6 7

ϊ 7 0 7 0 0 0 0 0 0 0 0 0

f6 1 6 1 0 1 1 1 4 4 4 7

Is 2 5 2 0 1 2 2 4 4 6 7

3 / ^ X 3 4 +3 4 3 0 1 2 3 4 5 6 7

X / 4 3 4 0 4 4 4 7 7 7 7
Y2

+ 5 2 5 0 4 4 5 7 7 7 7

ί 1
+6 1 6 0 4 6 6 7 7 7 7

° +7 0 7 0 7 7 7 7 7 7 7

fc= 1 e = 3 / = 4 .

Evidently, 111 results by imposing a congruence on 112 —the only congruence
not making it constant. To show that 111 and 112 are the only examples of Cases
11 and 12 it therefore suffices to demonstrate that given configuration 12, the
following set of 8 elements generated from k is closed under the operations °,
v, and ':

0 = e:f l = k 2 = e A f 3 = e = k : k
4 = / = < ? ' 5 = e w f 6 = k ' l=f2.
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The stipulations of configuration 12 together with the fact that the DMM is crys-
talline ensure closure under v. Closure under ' is trivial. It remains to show clo-
sure under °. Well, ° is commutative, so it suffices to consider the ab where
numerically a < b. 0 is lattice 0 by Theorem 2, so any Oa = 0. Similarly, if a Φ
0. al = 7. 1, 2, and 3 are secondary equations and hence idempotent, and 3 is
the identity. All ab for a and b in {1,2,3} are therefore fixed as shown in the
table. Where 4 < a and 4 < b, ab = 7 by crystalline properties. It remains only
to justify the ab for a in {1,2,3} and b in {4,5,6}. 3 is e9 justifying all entries 3b.
1 © 6 is 4 by definition and since 4 is kk' and k is idempotent, 104 = 4 also.
5 = 3 v 4, so by lattice ordering, a5 is a3 v aA. That leaves only 2 ° 6 - /:' (e Λ
/ ) . By crystalline properties, 4 < 2 ° 6 < 6. Also, since 1 < 2 as part of config-
uration 12, 1:2 is not in the positive cone, so by primeness (1:2)' is positive. That
is, 3 < 2 o 6. Consequently 5 < 2 ° 6. But 5 is 2', and as a general fact about
DMMs, if a' < ab then b < ab. So 2 ° 6 = 6.

Theorem 5 77zere are, w/? to isomorphism, just 12 prime DMMs with one
idempotent generator: 10 constant ones, 111, and 112.

Proof: By inspection.

It is easy, using the methods of [9], to describe the free DMM with one idem-
potent generator and to calculate that it has 36,986 elements. Obviously, not only
does every prime DMM have one of C1-C8 as a subalgebra, but every prime
DMM contains at least one (and usually several) of the above ^-generated
DMMs. For example, any finite subset of the elements generates a subalgebra
and serves as a G to yield a local k as above.

To approach the two-generator case, we need first the notion of a Dunn
monoid. This we define as a quintuple M = <S,°,:,V,Λ> where S is a set and all
of °,:,V,Λ are binary operations on S such that:

1. <5,Λ,V> is a distributive lattice
2. <S,°> is a commutative monoid with an identity e
3. a(b v c) = ab v ac
4. a < b\c iff ac < b9 where < is the lattice order
5. a < aa.

Thus every De Morgan monoid can be reconstrued as a Dunn monoid under the
obvious operations. In particular, the kernel of any DMM-homomorphism is
a sub-Dunn monoid. There is a simple way to embed any Dunn monoid in a De
Morgan monoid which shall here be called its "crystallization".

Crystallization fact Let D be a Dunn monoid. Then D occurs embedded in
a De Morgan monoid D* such that D is the kernel of a morphism from D* to
C4.

Proof: See [1], pp. 371-373, due to Meyer.

Theorem 6 There is an infinite idempotent Dunn monoid with two gener-
ators.

Proof: Nishimura in [8] notes that there exists an infinite Heyting lattice with
one generator, attributing this fact to McKinsey and Tar ski. By dropping the
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relative pseudo-complement operation from those generating the algebra and
instead taking lattice 0 as an additional generator, this may be regarded as an
infinite Brouwerian lattice (in the sense of Birkhoff, [2] p. 45) with two gener-
ators. From the present perspective a Brouwerian lattice is just a Dunn monoid
in which the identity is lattice I, thus identifying the operations Λ and °. The
structure given by Nishimura may therefore be reconstrued to yield Theorem 6.

The infinite Dunn monoid given by Theorem 6 can be crystallized to give
an infinite DMM with two idempotent generators, ending any hopes that fini-
tude might extend beyond the one-generator case. Interestingly, we can do better,
finding an infinite Dunn monoid (though not an idempotent one) generated by
the two very special elements e and 0. This too will crystallize to give an infi-
nite DMM generated by its identity e and the element k described in Theorem 4.

The Brouwerian lattice given by Nishimura looks like this:

y I Generators are 0 and 1.

7 > ( ' \β 2 = 0:1
/ \ / 2 x + 3 = (2x+ l ) v ( 2 x + 2)

6 / \Λ 2X + 4 = (2X+ 1 ) : ( 2 X + 2 )

X X X I = 0:0.

/ \ / 4

u

When this is construed as a Dunn monoid, ° is conflated with Λ and the top ele-
ment I is taken as the identity e. One of the generators, 0, is already as required.
The other, however, is not e or anything like it. Therefore, we add new elements,
including a new e, in such a way that both they and the generator 1 are gener-
able from e and 0. The result looks like this:

f I Generators are 0 and e.

X ! X <\ ί 1 = 0:0

6<3Vχ5\4* 2 = 0 : l

X \ζ \/ 2x + 3 = (2x + 1) v (2x + 2)
•̂ X 7 1 * /> 4 2JC -h 4 = (2JC + 1) : (2x + 2)

/ ^ \ / ( χ + 3 ) * = e v ( x + 3)
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It is necessary to define ° and : on the enlarged structure. Let x and y be old
(unstarred) elements. Then

χo y — x Ay

if x* exists then x*°y=y°x*=y

if x* and y* exist then x* ° y* = (x v y)*
For any elements a and 6, α:Z? is v{c\b ° c < #}.

Proof that this is indeed a Dunn monoid is tedious but not difficult. It will not
be rehearsed here. What makes satisfaction of the residuation postulate trivial
is that the join over any infinite set of elements is I.

So there is an infinite DMM with two idempotent generators, one of which
is e. The other, however, is not the lattice 0 of the DMM because a new 0 gets
added in the crystallization process. All DMMs generated by {e,0} are in fact
finite. To see this, let D be a prime DMM thus generated. Inside D is its con-
stant subalgebra, C, generated from e. This is bounded with greatest and least
elements e v / 2 and/Λ e:f respectively (see C1-C8 above). Now either 0 = / Λ
(e:f), in which case D is just C, or else 0 < a < I for all elements a of C. But
D is prime and bounded, and any prime, bounded DMM is "rigorously com-
pact" in the sense of [1], i.e., for any element a Φ 0, la = I. Consequently, in
the second sort of case there is no way for 0 and I to get involved in generat-
ing anything new. Where a,b are any elements of C we have:

o 0 b I : 0 b I
I

0 0 0 0 0 I I I

fr a
\ a 0 a°b I a 0 a:b I
h 0 I 0 I I I 0 0 I

There are, then, 16 prime DMMs generated by {e,0}. They are C1-C8 and the
same again with extra extreme elements 0 and I. As reported in [9], the free
DMM generated by [e] is a certain subdirect product of the eight prime DMMs
and is of order 3088. The similar subdirect product of the eight extended by the
addition of 0 and I is likewise generable, leaving us with two fairly large DMMs:

ί 1

> * ' ^ f'' \

\ 3088 ) I 3088 i

" " 7 A (e:/) ^T/Λ (e:f)

U
The extreme pairs </Λ (e:/),I> and (e v/2,0> are generated as/Λ (e:f) ° I and
0 : / Λ (e:f), respectively, so the direct product of these two large DMMs is gen-
erated by [e,0]. Evidently it has 9,541,920 elements, which is even larger, but
still finite. There must, therefore, be Dunn monoid polynomials using e and 0
as atoms which are not always identical in Dunn monoids but which are iden-
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tical wherever a Dunn monoid is also a De Morgan monoid. Examples are in
fact easy to find. 0:0 and e: (0:0) v 0: (e: (0:0)) will do, as was known to Meyer
as long ago as 1973 (see [5]).

3 Much of the interest of DMMs is as the algebraic counterparts of a sys-
tem of logic, the relevant logic R of [1]. The sentential logic R has connectives
&, v, ->, and ~, to which others such as * and t are often added. Of these, t
is 0-adic, ~ is monadic, and the rest are dyadic. An interpretation of R in a
DMM D is a homomorphism from the formula algebra of R into D. That is,
where μ is an interpretation, for any formulas A and B, etc.

μ(t) =e
μ(~A) = (μ(A)Y
μ(A & B) = μ(A) A μ(B)
μ(A V B) = μ(A) V μ(B)
μ(A-+B) =μ(B):μ(A)
μ(A*B) =μ(A)oμ(B).

A is true for μ iff μ{A) is in the positive cone and valid for D iff true for every
interpretation in D. A is valid (simpliciter) iff valid for every DMM.

This is not the place to go into the motivations and investigations of R.
What can be noted is a certain classification of the formulas in the language of
R according to their places in crystalline models. Let & positive formula be one
built out of atoms with the connectives t, &, v, ->, * . Now we may define a
subpositive formula as a formula B such that for some positive formula A, there
are R theorems

A & -A -> B
B -+. A & -A-+A & ~A.

A subnegative formula is ^-equivalent to the negation of a subpositive one. A
subnegative fusion is a formula B such that for some subnegative formulas A
and C there are R theorems

A * A ->B
B^C*C.

A subpositive fission is a formula ^-equivalent to the negation of a subnega-
tive fusion. It follows easily from the foregoing reflections on crystalline DMMs
that every R formula is exactly one of:

a subpositive formula
a subnegative formula
a subpositive fission
a subnegative fusion.

The type of a formula is discovered by evaluating it in C4 with all the atoms
assigned the value 1. There are regularities to go with the classification, such as
that subnegatives never entail subpositives in R, and that nothing but a subposi-
tive fission can i?-entail a subpositive fission. From a statement of what is not
the case, nothing follows in R about what is the case instead, for implication
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in R is lawlike connection, and there are no laws leading from Absence to Pres-
ence, from Nonbeing to Being. Anderson and Belnap, in their philosophical
remarks on relevant logic in [1], make much of the contention that if you assume
nothing, nothing follows. This thought, it seems, is deeply mirrored in their
logic.

Metaphysics aside (though I did enjoy using the word 'Nonbeing' for the
first time in my life) results on crystalline and idempotent-generated DMMs have
applications in the study of formal theories based on R. The most deeply inves-
tigated such theory is the relevant arithmetic R#. R# is obtained by adding to
the first-order logic RQ (R with quantifiers) some axioms governing the special
predicate symbol ' = ' and the usual arithmetical function symbols:

Al x = x
A2 x = y -•. x = z-+ y — z
A3 x = y -> sx = sy
A4 sx = sy -> x = y
A5 sx Φ 0
A6 x + 0 = x
A7 x + sy = s(x + y)
A8 x 0 = 0
A9 x - sy = (x - y) + x
Rule IfA(0/x) and A -+ A(sx/x) are theorems, so is A.

A rule of universal generalization is of course being assumed as part of the log-
ical basis. The standard exposition of R# is Meyer's [6] in which it is shown that
the theory is much what one would expect an arithmetic to be. There are, how-
ever, some interesting and startling possibilities such as extending it by adding
as axioms false equations like Ό = 2' or even '0 = Γ without collapsing it into
triviality.

The theorems of this paper make a good starting point for investigating R#.
For one thing, all the atomic formulas (which generate the language) map to
idempotent elements of any algebraic model. For another thing, in any prime
model of R# generated by the values of the equations the formula ' 0 = 1 ' takes
as value the element k described in Theorem 4 while the formula '0 = 0' goes
to the identity e. These facts lead to some rather easy observations on the in-
consistent extensions of R# got by adding an axiom

0=p

where p is a prime (2, for instance). Such an addition conflates identity with
equality modulo p9 making it natural to refer to the extension of R# as 'i?# mod
p\ Now some facts:

Fact Rl hĵ - χ = γ-+0 = 0.
Fact R2 If m divides n then \-gf 0 = m -> 0 = n.
Fact R3 Where m > n, h^- 0 = m ->. 0 = n -> 0 = m - n.
Fact R4 Where a and b are constant (variable-free) terms, there is some m <

n such that \mmodn a = b~0 = m.

All of these facts are well enough known to need no further proof. Less well
known is
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Fact R5 Ifn > m > 0 and m and n have no common prime factor then h^- 0 =

Proof: Induction on m + n, noting that if m and n have no prime factor in common
then neither do m and n — m. Details are left to the reader.

It follows easily that in R# mod p for prime p every constant equation is
equivalent either to '0 = 0' or to '0 = 1'. Since in any prime model these are eval-
uated as e and k respectively, understanding the structure of prime DMMs gen-
erated by [e,k] suffices for understanding the structure of those inconsistent
extensions of R# got by identifying 0 with a prime. In fact, since any DMM thus
generated in which e </yields an algebra suitable for R# mod primes, under-
standing the abnormal cases of such DMMs is exactly what understanding the
inconsistent arithmetics in question comes to. The projects of completing that
understanding and of extending the results to more complicated cases includ-
ing those of nonidempotent generation are hereby left open, the groundwork
sufficing for one paper.
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