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Notes on Modal Definability

JOHAN van BENΊΉEM*

1 Introduction This paper contains a few observations on the definability
of frame classes in modal logic, utilizing current algebraic methods in the area.
For technical background, see [3], [4].

Possible worlds frames induce modal algebras of their subsets, and con-
versely, modal algebras can be represented as frame-induced set algebras by the
Stone ultrafilter representation. This back-and-forth connection allows for a
transfer of existing definability results in Universal Algebra to the model the-
ory of possible worlds frames. One notable result is that, in translating the Birk-
hoff characterization of equational varieties, if a frame F validates the full modal
theory of some frame class K, then the following structural connection exists:
The 'ultrafilter extension' ue(F) is a generated subframe of a p-morphic image
of an ultraf ilter extension of some disjoint union of frames in K. Several well-
known theorems on the modal definability of frame classes have been deduced
from this and similar observations. Here we shall take a closer look at the struc-
ture of the ultraf ilter extensions involved (Section 2), deriving some additional
definability results (Section 3). Then we particularize the theory to an impor-
tant special case, viz. that of finite frames, which turns out to require additional
techniques (Section 4). Finally, another specialization is considered, to the case
of singleton classes K, i.e. to the study of modal equivalence between frames
(Section 5).

The notion of an ultrafilter extension and its various uses forms a red
thread through this report —which is otherwise a loose collection of results
'rounding out' the existing literature.

T h e contents of this paper form a response to the work of several people. A reading
of Fine [13] led to Section 3.1, a review of Sambin & Vaccaro [24] to Section 3.2. Also,
notably, involvement with Rodenburg [23] and Doets [9] produced Section 4. And
finally, a correspondence with Kees Doets and Dick de Jongh inspired Section 5.2.

I would also wish to thank the referee of this Journal for several valuable sugges-
tions.
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2 The structure of ultrafilter extensions

2.1 Known results The ultrafilter extension ue(F) of a frame F = (W,R) has
as its universe the set of all ultrafilters on (the power set of) W> ordered by the
following relation R*:

R*U{ U2 iff for all X G £/2, m(X) G Ux

(where m(X) =def {w G W\ for some v G X, Rwυ}).
Occasionally, we shall also need the more general algebraic background of

this notion. Ultrafilter extensions ue(F) may be viewed as being the result of
applying a Stone Representation construction to the modal algebra A(F) con-
sisting of the subsets of W with their ordinary Boolean structure as well as the
new modal operation m. More generally, modal algebras 21 are Boolean algebras
having such an additional operation satisfying the basic identities of the 'mini-
mal modal logic' K (in particular, distributivity over disjunctions). The Stone
Representation S(Sί) then arises by taking all the ultrafilters on 2ί as worlds, and
defining an alternative relation among these as above, to obtain a frame. More-
over, this frame comes with a distinguished set of subsets W (being the canonical
images of elements of 81), from which the original algebra can be recovered.
Such frames which have a distinguished family W of subsets closed under
Boolean as well as modal operations are called general frames (F,W). Evidently,
it makes sense to speak of ultrafilter representations of general frames too, being
the underlying frames of the Stone Representations S(A«/7,W»), where
A«JRW» is the set-based modal algebra consisting of V? with its obvious struc-
ture. In this perspective, the original ultrafilter extensions ue(F) derive from the
case of <F,W> when W is the full power set of W.

What is known, in general, about the structure of the ue(F) frames?

(1) F lies embedded as a subframe (not necessarily generated) in ue(F).
(Consider the principal ultrafilters on F.)

(2) ue(F) is a/7-morphic image of some ultrapower of F. (For a proof, see
[1]. Note that the saturated elementary extension of Femployed there
can be obtained as a countable ultrapower, by Lemma 6.1.1 in [8]. This
observation is due, amongst others, to Goldblatt.) As a corollary, every
first-order feature of F which is preserved under /?-morphisms also
holds in ue(F). By a preservation theorem in [4], these are precisely
those first-order formulas reducible to the form 'one universal quan-
tifier, followed by a formula involving only atomic formulas, falsum,
Λ, v, and restricted quantifiers of the form vy(Rxy -+ . . . or ly(Rxγ
Λ. .. \ (Examples are Vx Rxx (reflexivity), VxVy(Rxy -> Vz{Ryz -*
Rxz)) (transitivity), vx\fy(Rxy -» Vz(Rxz -+ (Ryz v Rzy v y = z)))
(right-linearity), etc.)

(3) The modal theory of ue(F) is contained in that of F. (This follows by
the Stone isomorphism between the modal set algebra of F and some
subalgebra of that of ue(F).)

2.2 Concrete examples Some specific examples will make the notion of ultra-
filter extension more concrete.
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(1) On finite frames, all ultrafilters are principal, and ue(F) remains iso-
morphic to F itself.

(2) For the integers (Z,<), the construction adds points only at infinity.
ue(Z,<) looks like Figure 1. The key observation here is this. Any
free ultrafilter U on Z contains either the negative integers or the
nonnegative ones. Moreover, 'nibbling off singletons, U either contains
all tails [n, + oo) or their left-hand analogues. By the definition of R*,
U must either succeed all standard numbers, or precede all of them.
Moreover, if, say, Ulies toward the right, and l E ί / , then Xis cofi-
nal in Z. Hence, m(X) equals Z itself. It follows that every ultrafilter
in ue(Z) R*- precedes U. In particular, the new points at infinity form
a cluster of mutually R* -accessible worlds. (A similar argument shows
that the left-infinite points form such a cluster.)

(3) With the rationals (Q,<), 'interpolation' occurs, in addition to the
above 'extension'. For instance, let U be any ultrafilter on Q contain-
ing all open intervals (0,#), where q > 0. Then U becomes an 'in-
finitesimal', lying to the right of 0, but to the left of all its rational
successors. In general, ue(Q,<) looks like Figure 2. There are two
clusters at infinity, as with Z. But, in addition, each rational lies sur-
rounded by two infinitesimal clusters. And finally, there is a pair of
such clusters for each irrational number too.

Sketch of a proof: Let U be any ultrafilter on Q. Consider the case where U
contains the nonnegative rationals (the other case being similar). For each X G
U, let sup(X) be the supremum of X (in R!) if this exists; sup(^f) = +oo,
otherwise. Case 1: sup(^Γ) = +oo for all X G U. Then U lies at infinity, con-
taining all right hand tails [Λ, + OO), for n G IN. Case 2: sup(^ί) G R for some
X G U. Then the infimum y exists of all such points sup(Jf), which must
be ^ 0. But now, the Q-interval [0,y + 1] must belong to £/, and hence so does
one of [0,j>)> {y}> or (y,y + 1] It follows that U is either y or in one of its
infinitesimal neighboring clusters. (If y is irrational, the middle possibility cannot
occur.)

Figure 1.

Figure 2.
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(4) Finally, for a more complicated example, consider the binary tree
(2?,<) with the relation of succession (see Figure 3). Ultrafilters can
now be divided into several kinds:

I. First, there are the principal ultrafilters, i.e., the old nodes.
II. Then, there are free ultrafilters U which are still 'thin', in the fol-

lowing sense.

Definition An ultrafilter U on the binary tree is thin if there exists a partial
function/: IN-+B picking out at most one node/(/t) at each level n of the tree,
such that/[/TV] E U. (Later on, we shall also use a more general version, where
U is to contain some set containing at most one representative from each mem-
ber of a given disjoint family of sets.)

Prime examples of thin ultrafilters U are those generated by some branch
τ in B, together with some free ultrafilter V on IN such that r (when considered
as a set of nodes) belongs to U, and more generally, for all subsets X of B,

XG Uiff{neti\τ(n)GX} G V.

Such ultrafilters again form a cluster of infinite successors of the branch r
(differing only in the choice of the 'index ultrafilter' V). But in this case there
is further structure at infinity. For consider the 'immediate successor set' of r,
consisting of all sisters of nodes in r (see Figure 4). Together with a choice of
an index ultrafilter, this successor set generates ultrafilters on B which become
(infinitely many!) immediate R* -successors of the points in the earlier infinite
τ-cluster. And so on: at infinity, there lies an infinitely branching infinite tree
beyond r, obtained by considering successor sets of successor sets, etc.

There are also less regular 'thin sets' which can be used, of course —e.g.,
to produce successors at an infinite distance by choosing ever further successors
at consecutive stages. Still, there will always be a connection with one particu-
lar branch r, because of the following sequence of choices which any ultrafilter
C/must make: {x\0 ^ x] or {*|1 ̂ x}; then, say, {x|00 ^ x} or {x|01 ^x],
etc., which converges toward some specific branch (itself not necessarily a mem-
ber of U).

III. Finally, there is a third kind of ultrafilter in the binary tree (B,<).

# ! —

Figure 3.
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A ! A \

Figure 4.

Definition An ultrafilter is thick if it contains all ̂ -complements of 'thin'
subsets of B, where the latter contain at most one point at each level. (Note that
the set of these complements has the Finite Intersection Property.)

Such thick ultrafliters also lie at infinity, each beyond one particular
branch r.

2.3 Disjoint unions For future purposes, we now look at ultrafilter exten-
sions of disjoint unions of frames.

Let [Fi\i E /} be a family of frames, with disjoint union ©F/. As before,
ue(©F/) will contain this disjoint union as a subframe. In addition, all ultra-
filter extensions of these single frames Fj will be included:

Lemma Every frame ue(Fj) lies embedded as a generated subframe in
ue(©F, ).

Proof: This can be shown by direct inspection of ultrafilters on the union U Wt

having Wj as an element. A more elegant argument uses the earlier-mentioned
algebraic connection. Recall that any frame F induced a modal algebra A(F),
and the latter induced a Stone representation S(A(F)) isomorphic to ue(F). Now,
projection onto the y-coordinate is a modal homomorphism from UiGlA(Fi)
onto A(Fj). By general duality then (see [14], [4]), ue(Fj) = S(A(Fj)) lies
embedded as a generated subframe in S(nA(F,)) = S(A(©F, )) = ue(©F, ).

But ue(®Fi) also contains other subframes of interest, namely, all
ultraproducts Π^F/, where U is any (free) ultrafilter on the index set /.

Lemma Any ultraproduct Πc//7/ is isomorphic to a subframe of\xe(@Fi).

Proof: The embedding a is as follows: For any function/E Π{W^ |/ E /},

Λ/~ iχc\j{Wi\iei} I [nei\f(n)exn wn}eu}.

One checks, successively, using the characteristic properties of ultrafilters and
ultraproducts, that

(i) a(fυ) is an ultrafilter on ©F/ (compare Example 2.2.(4).II),
(ii) this value is the same for all g where fυ — gU9

(iii) a is injective,
(iv) a preserves the relation R both ways.
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Ad(iii). Note that/^ is mapped to a 'thin' ultrafilter containing the image
of/and all its '{/-sections'. (Actually, on the usual definition of disjoint unions,
the functions / i n Π / e / ^ are subsets of ®Wt\ hence/e a(fu) ) So if gv is
mapped to the same ultrafilter then / e gu and hence, by definition, [n G
I\g(n)=f{n)} G U;i.e.,fu = gu.

Ad(iv). If Rfugu, then [n G I\Rnf(n)g(n)) G U. So m(g) G / ^ - a n d
hence R*fugu- (The other direction is similar.)

Thus, ue(©/v) contains all frames Ft and also all /-ultraproducts out of
these. Moreover, by the definition of the embedding a, no world in any Ft is
i?-related (either way) to any world in a nontrivial ultraproduct Π^/v Also, all
ultraproducts Π(//*},Πyi*} with different ultrafilters U, U' are completely unre-
lated in the same way. (Use the fact that, for some pair X, Y of disjoint subsets
ofI,XeU, Ye £/', whence m(fΠX)£a(gu), forall/g.)

Still, there may be many other worlds, in general, in ut(®Fj)9 viz. those
corresponding to 'thick' ultrafilters on U{F^|/ G /}, in the sense of Example
2.2.(4).III. Their location can be ̂ -connected to worlds in the earlier ultra-
products, as in the following illustration.

Example: Let / = IN and Ft be the finite linear order ({0, ...,/},<), for / G IN.
ue(©F/) is a disjoint union of rooted linear orders (compare the observation
about the preservation of first-order properties in Section 2.1). Moreover, each
Fi lies in it as a generated subframe (by the first lemma, using the isomorphism
ue(F) = Fϊox finite frames), as shown in Figure 5. Also, as pictured, uc(®Fι)
contains all ultraproducts of the frames Fh being infinite linear orders of the
following form:

copy of (N,<) - copies of (2,<) - copy of (N,>).

Finally, the 'thick' ultrafilters in ue(©/v), containing all complements of 'thin'
sets selecting at most one object in each component Wi9 can be located with
respect to these as follows.

Let U be a thick ultrafilter. Now, derive an index ultrafilter V as {X c
1̂ V[Wj\jGX) G U]. It is easy to see that U can only be R* -related to worlds

in the ultraproduct Π^F/. Next, by the definition of U, the following thin sets
do not belong to ί/, for fixed k G IN,

• the (images of the) constant functions λn-k

• the (images of the) 'diagonal functions' \n-n — k.

It follows, by some calculation, that

(i) every world in the initial copy of (N,<) (in UvFj) has U for an R*-
successor

(ii) no world in the final copy of (N,>) has U for an JR* -successor.

Fo

Fx +-+ • — < • ••• 4 » »
F2 n t φ ultraproducts

•
Figure 5.
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Therefore, t/must have been interpolated somewhere in UvFh due to the ear-
lier observation about the linearity of ueί©/7;).

Finally, a collapse results if the frames Ft all come from some finite family
of finite frames. In that case, all ultrafilters must be 'thin' in the earlier sense,
and hence ue(©jF}) consists of ®{Fi\i E /) plus a set of ultrafilters UσFi,
where the latter are actually isomorphic to single frames Fj. So ue(©F;) will
actually be isomorphic to a mere disjoint union of the original frames.

3 Special logics One way of improving existing definability results in modal
logic is by restricting attention to important special kinds of logics. For instance,
the usual modal axioms often have special features, syntactic or semantic, which
can be exploited.

3.1 Subframe logics In Fine [13], attention is restricted to subframe logics,
i.e., to modal logics L that are preserved while passing from a frame where they
hold to all its subframes. (This holds, e.g., for the usual systems K, T, S4, S5,
and also for higher-order systems such as Lob's Logic.) For subframe logics con-
taining K4, and axiomatized by special axiom types, Fine then proves a nice
characterization of frame classes definable in terms of such logics. Moreover,
he shows that such special logics L are better behaved than modal logics in gen-
eral. Notably, the following equivalence holds: L is canonical iffL is elemen-
tary and complete. Here, a modal logic L is complete if it coincides with the full
modal theory of its associated class of frames, i.e., L = [φ\F 1= φ for all F with
F N L}. Next, L is elementary if [F\F N L} has a definition in the first-order
language of Section 2.1 with R and identity. And finally, L is canonical if its
truth is preserved in passing from a so-called descriptive general frame (i.e., one
isomorphic to some Stone Representation S(2I)) in which it holds to the under-
lying full frame. From [10], we know that all complete and elementary modal
logics are canonical, but the converse does not hold for modal logics in general.
More precisely, it is not hard to see that all canonical logics are complete, but
they need not be elementary.

Using the results of Section 2.3, this can be improved somewhat.

Theorem For all subframe logics L, the following are equivalent:

(i) L is elementary
(ii) L is preserved under ultrafilter extensions.

Proof: The entailment from (i) to (ii) was proved in [1] for arbitrary modal logics
L. Conversely, it suffices to show that L is preserved under ultraproducts (cf.
[3]). So consider UσFn with Ft \= L for each / e /. Then ®F( \= L, L being
modal, and so ue(@Fi) N L, by assumption. But then, Π^F/ (= L, since L is a
subframe logic, and Π^/7, lies embedded in ue(©F/), by the lemma in Section
2.3.

Corollary For all subframe logics L, the following are equivalent:
(i) L is canonical

(ii) L is elementary and complete.
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Proof: By earlier observations, (ii) always implies (i). Conversely, canonicity
always implies completeness. Moreover, it also implies preservation under
ultrafilter extensions, and so elementarity follows in the present case.

3.2 Natural logics Another important special class of modal formulas, orig-
inally studied in [26] and [10], are the natural ones, defined as those preserved
in passing from a refined general frame <F,W> satisfying

Vxy(x = y++vAG W{Ay -• Ax)),

Vxy(Rxy <-> VA G W{Ay -+ x G m(A))),

to the underlying full frame. Stone representations of modal algebras are
refined —and in fact, any general frame can be /?-morphically contracted to a
refined general frame with the same modal theory. Refined general frames also
play a key role in the categorial study of [24].

One useful aspect of refined general frames is that they can be isomorphi-
cally embedded in their Stone representations (just like full frames in Section
2.2). Now, call a frame F2 a compactification of a frame Fx if F2 is the Stone
representation of {Fu W) for some refined general frame {Fu W). Thus, F2 is
a more parsimonious version of the full ue(Fι) (see Section 2). For instance,
to continue Example 2.2.(2), the frame consisting of Z with only two added
points at infinity is the Stone representation of the following refined general
frame: (2,<) with the Boolean algebra generated by all finite sets together
with the positive integers. In general, there is a whole family of compactifica-
tions for Fu all being /7-morphic images of the full frame UQ(FI).

As we have seen, in general, the truth of modal formulas need not be pre-
served in going from compactifications to the original frames. But for natural
logics L this transition is valid. For let F2 be the Stone representation of some
refined (Fu W) such that F2Y L. A fortiori, L holds in that general frame on
F2 to which (Fu W) is isomorphic, and hence (Fu W) N L. But then, Fx 1= L
(as L is natural). This observation leads to the following result, extending one
in [1]:

Theorem A class of frames is definable by means of some natural set of
modal formulas iff it satisfies the known closure conditions for definability with
canonical sets, but with closure under ultrafilter extensions strengthened to
closure under compactifications. (I.e., the class should be closed under the
formation of generated subframes, disjoint unions, p-morphic images and com-
pactifications, with the latter requirement also holding for its complement.)

Proof: If K has a natural definition, then it is closed under generated subframes,
/?-morphic images, and disjoint unions, because of modal definability as such.
Moreover, as natural logics are canonical, K is closed under ultrafilter exten-
sions, and hence under compactifications (the latter being/7-morphic images of
the former). Finally, the similar closure condition on the complement was proved
in the above observation.

Conversely, if K has all these closure properties, then it has at least a canon-
ical modal definition, say L. But this is not all. Let (F{i W) be any refined
frame validating L. Then L also holds in its Stone representation F 2, viewed as
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a general frame. Since this general frame is descriptive, and L is canonical, L
must also hold in the full frame F2. But then, by the closure condition on the
complement of K, Fι |= L. So L is in fact natural.

As is well-known, all natural logics are elementary (see [10]). In fact, the
above argument showed that all elementary modal logics are preserved under
compactifications. The converse fails, however (and thus, the theorem in Sec-
tion 3.1 does not generalize as might be expected). For instance, all canonical
logics are preserved in this way (but not all of these are elementary, in general).

Remark: All results in this section, as well as those to come, refer to global
definability, in terms of truth in all worlds of frames. But local versions refer-
ring to frames (F, w) with distinguished worlds may be pursued too (cf. [5] or
[7]).

4 Special frame classes Another way of improving existing definability results
in modal logic is by restricting attention to important special classes of frames,
such as linear frames (for tense logic), or well-founded frames (plausible in gen-
eral). Perhaps the simplest case is that of finite frames. There is a good deal
of interest these days in so-called Finite Model Theory (see [16]), refuting the
common assumption that this is a marginal, 'easy' area. In modal logic as well
there are many interesting questions. These often arise in specializing general
concerns to finite frames. Sometimes this leads to a decrease in complexity. For
instance, valid frame consequence is highly complex in general (cf. [27]), but
on the finite frames its complexity goes down to at most Π?. An open question
is if it even becomes decidable. On the other hand, general issues may also
become more complex on finite structures; as general types of argument based
on compactness or Lόwenheim-Skolem theorems will not transfer to this
restricted non-elementarily definable subuniverse. We shall encounter both phe-
nomena in what follows.

4.1 Counterexamples How to characterize the modally definable classes of
finite frames? One would like to accomplish this without using the earlier infini-
tary constructions UQ(@FI) for infinite index sets /.

One reasonable approach seems to be this: In the underlying algebraic Birk-
hoff Theorem, if some finite algebra 21 validates all identities true in some class
K of finite algebras, will 3ί then be a homomorphic image of some subalgebra
of some finite product of algebras in KΊ If so, then we are done, because the
transfer to frames will involve only ultrafilter extensions of (finite disjoint unions
of) finite frames, i.e., just those frames themselves. But actually this finitized
version of the Birkhoff Theorem fails, as is well-known from the algebraic liter-
ature on so-called 'pseudo-varieties' (cf. [22]).

Example (in the similarity type <1»: The two-point algebra with a 2-cycle for
the unary function is not a homomorphic image of (a subalgebra of) any £-cycle
with k an odd prime. Moreover, it is not a homomorphic image of any (subal-
gebra of a) finite product of such algebras (these will be /:-cycles with odd k).
But the 2-cycle is indeed a homomorphic image of certain subalgebras of the infi-
nite product of all such /:-cycles, for the latter contains subalgebras isomorphic
to the integers with the successor function.



MODAL DEFINABILITY 29

The finitized Birkhoff Theorem does hold, though for locally finite vari-
eties of algebras. But, in the field of modal logic, this only helps in very spe-
cial cases, e.g., when all frames are restricted to some fixed finite depth. (In that
case, a finite set of formulas {-I,Λ,D}-generates only a finite set of formulas
again, up to modal equivalence.)

But, in general, there are modal counterexamples to the desired simplifi-
cation, related to the earlier algebraic one.

Proposition The reflexive one-point frame F validates the modal theory of
the class K of finite linear orders with the relation of immediate succession, with-
out being constructible from these by generated subframes, (finite) disjoint
unions, and p-morphisms alone.

Proof: If F# φ, then φ fails in (N, S) (as F is a /?-morphic image of the latter
infinite frame). But then, restricting to a finite sub frame of length greater than
the modal operator depth of φ, φ already fails in some element of K. It follows
that F is not constructible as indicated since p-morphic inverses of F must satisfy
succession: VxSyRxy.

On the other hand, F can indeed be obtained from the ultrafilter extension
of the disjoint union of K, as the latter contains isomorphs of (N,S). (This may
be seen in the examples of Section 2.3.)

4.2 A lead from the transitive case For the moment let us consider an addi-
tional restriction. The above counterexample depended heavily on the use of
nontransitive frames. By another type of argument, however, we can prove the
following result, which is the frame version of a (special case of a) known result
from universal algebra on varieties with equationally definable congruences (cf.
[6]).

Theorem On the finite transitive frames, a class of frames is modally defin-
able iff it is closed under the formation of generated subframes, finite disjoint
unions, and p-morphic images.

Proof: Only the 'if'-direction requires proof. Let F h Ύhmoά(K), where F is
finite. It suffices to show that F is constructible from K by the above three oper-
ations. Moreover, as Fis a/?-morphic image of the disjoint union of its rooted
generated subframes, it suffices to consider the latter. Now, for any finite rooted
frame (F, w), the Jankov-Fine formula φF^w (cf. [11]) may be constructed, being
a modal formula with the following property: for any frame G and υ E G, φFyW

can be verified in (G,v) iff there exists a/7-morphism from the sub frame of G
generated by v as a root, onto (F, w). In particular, (F, w) verifies φFiW with
some canonical valuation V, and so ~^φFfW cannot belong to the modal theory
of K. That is, φFt w may be verified somewhere in K: and (F> w) must be a p-
morphic image of some generated subframe of an element of K.

This result may yet be extended to so-called n-transitive frames, making
each node accessible from the root in at most n /^-successor steps.

The Jankov-Fine formulas describe (F, w) by means of proposition letters
px for each world x in /% encoding /^-relations by modal operators (e.g., if Rxy,
one employs (px -> 0py) Λ D ( p x ^ 0py)) As R is transitive, the combinations
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ψ Λ Πφ enforce the truth of sub formulas for the whole frame as viewed from
w. If R is not transitive, then, in general, one can only enforce this truth up to
finite depths, using increasing combinations ψΛDifΛDDf . . . (For ft-transi-
tive frames, of course, one suitably large iteration will still do the job.) The truth
of the resulting formulas at locations (G, υ) will only enforce the existence of
n-p-morphisms from (G, v) to (F, w) —where only n iterations are allowed for
the relational clauses in the definition of 7?-morphism', starting from the match-
ing pair v9 w.

Even so, this is a quite reasonable refined notion, concerning which we
make the following general observation. Call a rooted frame F a localp-morphic
image of K if, for each «, F is an «-/?-morphic image of some frame in K. It is
easy to see that local /?-morphic images validate the full modal theory of K. (For
each formula φ in that modal theory, consider AZ-/?-morphisms with n equal to
the modal operator depth of φ, and use the obvious refined version of the stan-
dard />-morphism lemma.) But then, combining with the earlier arguments, we
have obtained a general result after all:

Theorem On the finite frames, a class of frames is modally definable iff it
is closed under the formation of generated subframes, (finite) disjoint unions,
and local p-morphic images.

This result receives a nice generalization in [20], where it is shown that mere
closure under/7-morphic images is just enough for the definability of classes of
finite frames in terms of 'modal sequents.'

4.3 Elementary classes Finally, we consider an additional restriction which
is of general logical interest. Which modal classes of finite frames are elemen-
tary! Here 'elementary' cannot be taken in the usual liberal sense of being
definable by means of some set of first-order sentences (ECA). For every class
K of finite frames which is closed under isomorphisms is thus definable (rela-
tive to the universe of finite frames): take the set of all negations of all complete
/^-descriptions of the finite frames outside of K. Rather, we are interested in
definability by means of a single first-order sentence.

Even so, it might be thought that all modal formulas are elementary in this
sense on the finite frames. But a variant of the well-known McKinsey Axiom
ΠOp-^OD/? refutes this:

Theorem There exist nonelementary modal formulas on the universe of finite
frames.

Proof: Consider the sequence of finite frames shown in Figure 6 (having the
transitive closure of the indicated arrows for their alternative relation). The fol-
lowing formula φ is valid on precisely those frames Fn with odd index n:

( O O Γ Λ D(0:Γ-><>/?))-> 0 ( 0 7 Λ Up).

(The only relevant check is in the central point, where the antecedent says that
each immediate successor sees at least one endpoint with p. Only with odd index
n does this imply that at least two adjoining endpoints have/?, i.e., that the con-
sequent holds.)
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fγ\ -<Sb M
F, ^ Γ F4 \ S F5 W , etc.

Figure 6.

But then, by a Fraϊsse-type game argument, it can be shown that no sin-
gle first-order sentence a(R, = ) can define φ: as a would also have to hold in
(suitably) large even Fn. (See [9] for the full argument.)

This counterexample works for all (transitive) frames of fixed finite depth.
Are all modal formulas elementary on the finite frames, however, if attention
is restricted to some fixed finite width of branching? (At least for the case of
intuitionistic propositional formulas an affirmative answer has been provided
by P. Rodenburg, via personal communication.)

Remark: The preceding theorem suggests a more hierarchical perspective upon
first-order definability. Some modal formulas lack a first-order equivalent on
the finite frames already. Other modal formulas have one on the finite frames,
but not on the countable ones. (An example is Lob's Axiom, whose finite frames
are the transitive irreflexive ones.) But there are also modal principles which are
elementary on the countable frames, though no longer on the uncountable ones.
(For an example, going back to an axiom in [12], see [9].) What is the smallest
cardinality where all nonelementary behavior has become manifest?

There remain several further questions. For instance, what about the first-
order definability of the earlier Jankov-Fine formulas, e.g., on the transitive
frames? In general, these will not be elementary.

Example: Consider the following transitive frame (F, w):

w C * -0
Its Jankov-Fine formula ~>ΦF,W holds in (IN,<): no /7-morphism runs from
there to (F, w). But it does not hold in the elementary extension (IN,<) ©
(Z,<), which can be mappedp-morphically onto (F, w).

However, first-order definability for such formulas might still hold within
the universe of finite frames. We will not pursue this, stating only a more
restricted result.

Proposition On the universe of irreflexive transitive frames, the Jankov-Fine
formulas are all elementary.
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The reason for this is that finite irreflexive transitive frames have a layered
'inductive' shape, which can be used to describe the necessary relational pattern
in/?-morphic inverse images.

To conclude, we formulate a more general issue.

Question: How can we find a general structural characterization of first-order
definability for modal formulas on the finite frames?

One answer comes immediately from standard model theory: it is neces-
sary and sufficient for such a characterization to be invariant for Ehrenfeucht-
Fraϊsse games over n rounds, for some n G IN. But can this be improved? For
instance, if a modal formula φ is elementary on the universe of all frames, then
it is equivalent to some restricted sentence (compare Section 2.1). Does this
preservation theorem also hold in the finite case? Then, attention could be
restricted to games in which each successive choice must be an i?-successor of
some earlier one. (For some warning examples of failure of transfer to the finite
case, however, see [16].) Moreover, the bounded game approach suggests a fur-
ther question of syntactic fine-structure, namely: what a priori restrictions can
be given on the quantifier-complexity of first-order equivalents for given modal
formulas? Inspection of the usual examples motivates the following

Conjecture: If φ has a first-order definition at all, then it has one of the form
Vx a(x), where a has quantifier depth equal to the modal operator depth of φ.

Even further syntactic refinements, concerning the number of bound vari-
ables employed, might be introduced using the pebbling games of [18].

5 Frame equivalence For a final kind of restriction on general definability
theorems, one can make special assumptions on the frame class K involved. One
simple case is when K itself consists of a single frame: and we arrive at the ques-
tion which frames are modally equivalent ( = m ) , i.e., have the same modal the-
ory, as a given frame.

In general, it follows from earlier results that, if F{ = m F2, then ue(F{) is
a generated sub frame of a /?-morphic image of an ultrafilter extension of some
disjoint union of copies of F2. This is not very informative.

5.1 Finite frames For finite frames F2, however, more can be said. As was
shown in Section 2.3, the frame ue(©F2) must be isomorphic to some disjoint
union of copies of F2. So Fγ can be obtained from F2 using only generated sub-
frames, /7-morphic images, and disjoint unions.

Moreover, evidently, for finite Fx only finite disjoint unions are needed
(compare the discussion in Section 4.1). And for rooted finite Fu generated
from some initial world, disjoint unions are not even needed at all:

(*) if FUF2 are rooted finite frames with Fx = m F 2 , then one is obtainable
from the other by generated sub frames and/7-morphic images.

This observation yields a folklore result:
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Proposition For rooted finite frames, modal equivalence coincides with
isomorphism.

Proof: Finite frames related as in (*) must be isomorphic.

This is again the frame version of a well-known algebraic fact: two finite
subdirectly irreducible algebras in a congruence distributive variety generate the
same variety iff they are isomorphic.

5.2 Well-orders Special classes of infinite frames are also worthy of study.
For instance, on the universe of well-orders, modal equivalence can be charac-
terized completely.

Theorem The well-orders of ordinal types ω-k + n (k ^ ω, n < ω) all have

distinct modal theories. But, from then upward, for k^ω, ω-k + n =m ω ω + n.

Proof: This theorem can be proved by a filtration argument, along the lines of
the proof of Theorem II.2.1.6 in [2]. (But the present case is simpler.)

The main steps in the argument are these:

I. (α,<) = m (β,<) implies equality of 'final parts': for some limit ordi-
nals α'\β' and some n < ω, a = a' •+- n, β = β' + n.

II. For k\Ψ Aτ2 = ω, n < ω, (ω-kγ + n,<) and (ω-k2 + n,<) can be told
apart modally by considering modal formulas exploiting the existence
of max(kι,k2) subsequent ω-sequences. Note that this inequality is a
one-way affair: e.g., ω-2 + 3 is isomorphic to a generated subframe
of ω 3 + 3, and hence it validates the complete modal theory of the
latter frame. (It is the converse which fails.)

III. For k ̂  ω, however, no such distinctions are possible: if φ can be fal-
sified onω-k + n, then, by filtration, it can be falsified on some finite
Cluster line.' The latter again can be 'unfolded' to transfer the coun-
terexample to any frame with enough room, i.e., enough infinitely
ascending sequences for unfolding some arbitrary finite number of
clusters: ω ω is the smallest ordinal suitable for this.

Remark: See [25] for a related result. Compare also [21] for a characterization
of first-order elementary equivalence on well-orders (involving distinguishability
up to ωω). To obtain a characterization of modal equivalence on arbitrary lin-
ear frames, one might use the model-theoretic proof of Bull's Theorem on the
extensions of S4.3 (as presented in [12]). Finally, a more extensive classification
for tense-logical equivalence of frames in the above spirit may be found in [19].

Could the above result also be derived directly from existing general defin-
ability results? Such a derivation would require a study of ultrafilter extensions
for well-orders. This is quite feasible. What happens is merely that an ordinal
a acquires reflexive clusters (as in Section 2) in front of each limit and at the
end (if it is a limit itself). Then, again, one can look at the structure of ultrafilter
extensions of disjoint unions.

But there is something perverse about such a way of proceeding, i.e., using
infinitary constructions where a simple finitary (filtration) argument suffices.
Still, there is indeed a connection between the two methods. Forming a filtra-
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tion may be described as performing a truncated version of the ultrafilter rep-
resentation:

Given a frame F and some Boolean set algebra on F generated by a finite
number of subsets Xx,... ,Xn (admitting only modal operations 'm' to some
fixed threshold), one forms the ultrafilters on this finite algebra 31, stipulating
that (see Section 2.1):

UXRU2 iff, for each set of the form m(X) e 21
(with X G 21), X G U2 implies m(X) e Ux.

All the usual facts about filtrations can be restated in this way. Admittedly,
nothing would be gained in the above proof by recasting the argument along
these lines. Still, it does show that the approach of earlier sections can be 'fine-
tuned.'

One possible application is this. If a modal formula is not valid in a frame,
it fails already in one of its finite filtrations. So modally definable frame classes
K have the following structural closure property.

if all finite filtrations of a frame F belong to K, then F itself belongs to K.

Can this be used to improve existing definability theorems?
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