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On a Consistent Subsystem
of Frege’s Grundgesetze

JOHN P. BURGESS

Abstract Parsons has given a (nonconstructive) proof that the first-order
fragment of the system of Frege’s Grundgesetze is consistent. Here a construc-
tive proof of the same result is presented.

1 System Russell showed that the system of Frege’s Grundgesetze is inconsis-
tent. But the theme of much recent work on Frege (as represented, for instance, in
Demopolous [2]) has been that the inconsistent system has consistent subsystems
in which a significant amount of mathematics can be developed. In particular, Par-
sons [4] (see also the discussion by Boolos [1]) has proved the consistency of the first-
order fragment of Frege’s system. Heck [3] has extended the proof to cover predica-
tive second-order fragments, while moreover showing that a well-known system Q
of formal arithmetic can be interpreted in such a fragment.

These results leave a gap between the strongest system that has been interpreted
within a predicative fragment of Frege’s system and the weakest system in which the
consistency of such a fragment has been proved. For on the one hand, whereas Q is by
no means a trivial system, it is also by no means as strong a system as first-order Peano
Arithmetic PA. And on the other hand, the original consistency proof for the first-
order fragment and its extension to predicative second-order fragments are model-
theoretic and nonconstructive and cannot be formalized even in PA. The first step
toward narrowing this gap would be to produce a proof-theoretic and constructive
proof of the consistency of the first-order fragment of Frege’s system. This first step is
taken in the present note. Further steps toward pinning down just how weak a system
suffices to prove the consistency of predicative fragments of Frege’s system, and just
how strong a system can be interpreted in such fragments, must await the publication
of Heck’s results.

The first-order fragment of Frege’s system may be presented as a first-order the-
ory in the following way. Let L0 be the language of the first-order theory of identity.
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Let L1 add to L0 a function symbol eϕ(y) for every formula ϕ(x, y) of L0. (Here y
represents a “vector” of any length m ≥ 0 of additional free variables y1, . . . , ym.)

Let Ln+2 add to Ln+1 a function symbol eϕ(y) for every formula ϕ(x, y) of Ln+1 that
is not already a formula of Ln. Let Lω be the union of the Ln and let Tω be the theory
in Lω having as axioms the following for all pairs of formulas of Lω:

(V) ∀y∀z(eϕ(y) = eψ(z) ←→ ∀x(ϕ(x, y) ←→ ψ(x, z))).

Then Tω is a notational variant of the first-order fragment of Frege’s system. A more
traditional notation would be {x|ϕ(x, y)} for eϕ(y). Let Tn be the subtheory of Tω in
the language Ln whose axioms are all axioms of Tω that are formulas of Ln. Then
Tω is the union of the Tn, and to prove the consistency of the first-order fragment of
Frege’s system it suffices to prove the consistency of each Tn. This will be proved in
Section 3 on the basis of three lemmas established in Section 2. The lemmas may be
of some independent interest, but also seem individually so elementary that it is hard
to believe they have not already been noted by others in some context, though I know
of no reference in the literature.

2 Lemmas

Lemma 2.1 Let T be a first-order theory implying the existence of infinitely many
objects. Then the extension of T obtained by adding the axioms

(A1) o �= π(x, y) and
(A2) π(x, y) = π(u, v) → (x = u ∧ y = v)

is consistent.

Proof: It is to be understood that what are taken as axioms are the universal clo-
sures of what is displayed in (A1) and (A2). It is also to be understood that the con-
stant omicron (o) and the two-place function symbol pi (π) do not already occur in
the language of T. Similar remarks apply in the other lemmas below. What is meant
by saying that T implies the existence of infinitely many objects is that for each k, the
formula Ik of the first-order language of identity saying that there exist more than k
objects is a theorem of T.

Toward proving the lemma, let S be the theory with o and π as its only nonlog-
ical vocabulary and with (A1) and (A2) as its only nonlogical axioms. There will in
addition be the logical axioms of identity, namely, reflexivity and indiscernibility of
identicals for atomic formulas:

(A0a) x = x,
(A0b) (x = u ∧ y = v) → π(x, y) = π(u, v).

First note that S is consistent. For by Herbrand’s theorem, if it were inconsistent there
would be some finite set of instances of (A0), (A1), and (A2), obtained by substituting
terms of the language of S for the variables, that was truth-functionally unsatisfiable.
But this is impossible, since any finite set of such instances is truth-functionally sat-
isfiable by assigning the value ‘true’ to all and only those identities t = s in which the
terms t, s on the two sides are literally the same sequence of symbols. Further note
that S itself implies each Ik. Indeed, if we let

0 = o, 1 = π(o, 0), 2 = π(o, 1), . . .
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then it is a theorem of S that 0, 1, . . . , k are all distinct.
What is to be proved is that T ∪ S is consistent. If not, then there would be a

finite conjunction τ of axioms of T and a finite conjunction σ of axioms of S such
that τ → ¬σ is a theorem of first-order logic. But then by the Craig interpolation
theorem there would be a formula ϕ such that τ → ϕ and ϕ → ¬σ are theorems of
first-order logic, and ϕ contains no nonlogical vocabulary except what is common to
the languages of T and S, which is to say, contains no nonlogical vocabulary at all,
but only the identity predicate. But as is well known, the first-order theory of identity
is decidable by elimination of quantifiers, and the quantifier elimination shows that
any closed formula of the language is equivalent to a truth-functional compound of
the Ik for various k. Since T is consistent and implies each Ik, and since Ik implies
Ih for h < k, it follows that ϕ is implied by some Ik for k sufficiently large. But then
since S is consistent and implies Ik, ϕ → ¬σ cannot be a theorem of first-order logic.

�

Lemma 2.2 Let T be a consistent first-order theory whose axioms include (A1) and
(A2) above. Then the extension of T, obtained by adding for every formula ϕ in the
language of T the axiom,

(B1) ∀y∃u∀x(ϕ(x, y) ←→ �(u, x)),

is consistent.

Proof: It suffices to show that for any finite number of formulas ϕ1, . . . , ϕn, there
is a formula δ(u, x) of the language of T such that instances of Axiom B1 for these
ϕi become theorems of T when δ is substituted for �. And indeed if the total number
of free variables additional to x occurring in these ϕi is m, then writing π2 = π and

πk(y1, y2, . . . , yk) = π(y1, π
k−1(y2, . . . , yk),

it suffices to let δ be the disjunction for i = 1, . . . , n of

ϕi(x, y) ∧ u = π(i, πm(y)).

�

For technical purposes connected with the next lemma, note that (B1) implies that
∀x(�(u, x) ←→ �(v, x)) is an equivalence relation, and that it has infinitely many
equivalence classes (since the u corresponding to the formulas x = 0, x = 1, x = 2, . . .

must all be distinct). Moreover, it may be assumed that each equivalence class is in-
finite and that the following axiom holds.

(B2) ∀u∀x(�(u, x) → ∃t(u = π(1, t)).

For if not, simply replace the original � by �′ defined as follows.

�′(u, x) ←→ ∃v∃w(u = π3(1, v,w) ∧ �(w, x)).
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Lemma 2.3 Let T be a first-order theory and ε(u, v) a formula with two free vari-
ables in the language of T such that T implies that ε is an equivalence relation, that
it has infinitely many equivalence classes, and that each equivalence class is infinite.
Then the extension of T, obtained by adding the axiom,

(C1) ∀u ε(u, υ(u)) ∧ ∀u∀v(ε(u, v) → υ(u) = υ(v)),

is consistent.

Proof: The hypothesis that T implies that there are infinitely many equivalence
classes, and that each equivalence class is infinite, is not actually needed but does sim-
plify the proof. What is meant by this hypothesis is that for each m and n the formula
E>m,n of the first-order theory of one equivalence relation saying that there exist at
least m equivalence classes each having more than n elements is a theorem of T, and
so is the negation of the formula E=m,n saying that there exist at least m equivalence
classes each having exactly n elements. It may be assumed that ε is a primitive two-
place predicate, since such a predicate could always be added to the language with an
axiom defining it to be equivalent to any desired formula with two free variables.

If the lemma failed, there would be a finite conjunction τ of axioms of T such
that τ → ¬γ is a theorem of first-order logic, where γ is the formula displayed in
(C1). But then by the Craig interpolation theorem there would be a formula ϕ such
that τ → ϕ and ϕ → ¬γ are theorems of first-order logic, and ϕ contains no non-
logical vocabulary except what is common to the languages of T and γ, which is to
say, contains no nonlogical vocabulary except the two-place predicate ε. But as is
well known, the first-order theory of an equivalence relation is decidable by elimi-
nation of quantifiers, and the quantifier elimination shows that any closed formula of
the language is equivalent to a truth-functional compound of the E>m,n and E=m,n for
various m and n. And indeed, letting Fk be the conjunction of E>k,k and the negations
of the E=m,n for all m, n ≤ k, since each Fk is a theorem of T and since Fk implies Fh

for h < k, it follows that ϕ is implied by some Fk for k sufficiently large. But each
Fk has a finite model with just k · (k + 1) elements, and any such finite model can be
expanded to a finite model of (C1). So ϕ → ¬γ cannot be a theorem of first-order
logic. �

3 Proof Let T0 be the theory in the first-order language of identity whose axioms
are just the Ik for k = 2, 3, 4, . . . , and apply Lemmas 2.1 and 2.2 and 2.3 to T0 to
add the pairing apparatus o and π and predicate �1 and function symbol υ1 for which
(A1), (A2), (B1), (B2), and (C1) all hold. Write �∗

1(u, x) for

�1(u, x) ∧ u = υ(u).

Then for any formula ϕ of the language of T0, the following is a theorem.

(D1) ∀y∃!u{[¬∃xϕ(x, y) ∧ u = π(0, 0)]∨
[∃xϕ(x, y) ∧ ∀x(ϕ(x, y) ←→ �∗

1(u, x))]}.
Add function symbols eϕ and axioms defining eϕ(y) to be the unique u as in (D1) and
call the resulting extension T1. Then T1 is consistent and moreover it has as theorems
all pertinent instances of (V) in §1.



278 JOHN P. BURGESS

Now apply Lemmas 2.2 and 2.3 to T1 to add a predicate �2 and function symbol
υ2 for which (B1), (C1), and the following variant of (B2) hold:

∀u∀x(�2(u, x) → ∃t(u = π(2, t)).

Write �∗
2(u, x) for

¬∃v∀z(�2(u, z) ←→ �1(v, z)) ∧ �2(u, x) ∧ u = υ2(u).

Then for any formula ϕ of the language of T1, the following is a theorem.

(D2) ∀y∃ ! u { [¬∃ x ϕ ( x, y ) ∧ u = π ( 0, 0 ) ] ∨
[∃x ϕ ( x, y) ∧ ∀ x ( ϕ( x, y ) ←→ �∗

1 ( u, x ) )∨
∀x( ϕ ( x, y ) ←→ �∗

2 ( u, x ) ) ] }.
Add function symbols eϕ and axioms defining eϕ(y) to be the unique u as in (D2)
and call the resulting extension T2. Then T2 is consistent and, moreover, it has as
theorems all pertinent instances of (V) of Section 1. Iterating, obtain T3, T4, T5, . . .

in the same way and consider their union Tω. This Tω is consistent and has all axioms
of Tω of §1 as theorems, completing the proof that Tω is consistent. �
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