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Duality and Completeness for US-Logics

FABIO BELLISSIMA and SAVERIO CITTADINI

Abstract The semantics of e-models for tense logics with binary operators
for ‘until’ and ‘since’ (US-logics) was introduced by Bellissima and Bucalo in
1995. In this paper we show the adequacy of these semantics by proving a gen-
eral Henkin-style completeness theorem. Moreover, we show that for these se-
mantics there holds a Stone-like duality theorem with the algebraic structures
that naturally arise from US-logics.

1 Introduction In 1968 Kamp[f] introduced tense logics with binary operators

U and S (‘until’ and ‘since’). Interest and research about these logics have rapidly
grown since then, particularly in connection with computer science. The opelators
and Sarose from semantical intuitions connected with the concept of Kripke model:
thus their semantics preceded the syntactical aspects. But the traditional relational
semantics, notwithstanding the validity of general completeness theorems (see Xu
[8]), turned out to be strongly inadequate for a global and systematic treatment of
US-logics. From our point of view, the heart of this inadequacy is the fact that, when
Kripke models are employed for US-logics, the distinguishable model theorem fails,
in the sense that there exist models in which the presence of equivalent points cannot
be eliminated. In other words, such models are not equivalent to any distinguishable
(i.e., indeed, without equivalent points) model. This fact prevents the usual construc-
tion of canonical models and also prevents a Stone-like duality theory between frames
and Boolean algebras with operators, as it holds instead for modal and tense logics
with unary operators (see, e.g., Bull and Seger@)g [In fact, both in canonical
models and in models arising from algebras, the points (which are maximal consis-
tent extensions of a logic in the former case and ultrafilters of the originating algebra
in the latter one) are taken exactly once.

In Bellissima and Bucaldl]l a new kind of semantics was introduced based on
the notion ofe-model which is a generalization of that of a Kripke model. For these
models the filtration theorem and, consequently, the distinguishable model theorem
have been proved. In the present paper we show that the concept of e-model and the
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related ones of e-frame and general e-frame can be legitimately considered the right
ones for US-logics, in the sense that there holds a Stone-like duality theorem between
general e-frames and algebras with operai@nsds, that is, a theorem which respects

the classical duality theory for Boolean algebras. Such a theorem is achieved by de-
termining the class of general e-frames which can be obtained as duals of algebras,
namely, thedescriptive general e-frames. By using e-models it is thus possible to
construct canonical models and to obtain in such a way a general Henkin-style com-
pleteness theorem.

2 Preliminariesandbasicresults The US-language consists of a denumerable set
of propositional variables (which we indicate wiphq, r, . . .), the usual Boolean con-
nectives (including and_, i.e., constants for truth and falsehood, respectively), and
two binary operatort) andS. Formulas are defined as usual: the clauset)fand
Sstate that, ifp andy are formulas, theb (¢, ¥) andS(gp, ¥) are formulas. The in-
tended meaning df (¢, ¥) [S(e, ¥)] isthate will be true at some future time [was
true at some past time], and until then, that is, at any time between now and that mo-
ment [since then, i.e., at any time between that moment and nowil) be true [was

true]. According to this interpretation, traditional unary tense operators are defined
as follows: F¢ (‘it will be the case thap’) stands forU (¢, T), Py ('it was the case
that’) for S(p, T), Ge (it is always going to be the case tha) for —F—¢, and

He (‘it has always been the case tha) for —P—¢. Now we define US-logics.

Definition 2.1 A US-ogicis a set of formulas of the US-language which contains
all classical tautologies together with the following axioms:

1. G(p— ) — (U(p,r) - U@, ) AU, p)— U q),
2. H(p— @) — (S(p,1) — 3(q, 1) A (S(r, p) = S(r,q)),
3. pAU(Q,r) > U@A S(p,T),T1),
4. pAS(Q, 1) = S(QAU(p,T),T),
and is closed under uniform substitution, modus ponens, and temporal generalization.

If we denote byKy s the minimal US-logic, we have th#ttyst ¢ if and only if ¢ is
true in all Kripke models (se@; Kusis called TLys(2) there).

We now define the semantics of e-frames, e-models, and so on, follolijng [
(we remark that we shall never omit the “e” when referring to these semantics, hence
when we write just “frame,” “model,” and so on, it means that we are referring to the
standard relational semantics). Given two poitg of a Kripke frame(W, R) such
thatxRy, we write [X, y] for the setf{z: xRzRy} (note thatR does not need to be a
reflexive relation, so it may happen thaty ¢ [X, y]; moreover, to be pedantic, we
should write K, y]r, but we shall drop the subscript to simplify our notation).

Definition 2.2  Ane-frame Fis atriple(W, R, 8), where(W, R) is a Kripke frame,
andg is a function fromR into P(P(W)) such that, for al(x, y) € R

1 pXy) # 2,
2. ifZe B(xy),thenZ C [x,Y].

An emodel over an e-framef = (W, R, B) is a pair( ¥, V) whereV is a function
mapping propositional variables to subset¥\0bfThe definition of truth of a formula
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in a pointx of an e-model is standard for propositional variables and Boolean con-
nectives. Furthermore,

1. x = U(g, ¥) iff there exists a poiny such thakRy andy = ¢, and there exists
Z € B(X, y) such that = , for eachz € Z,

2. X = Sp, ¥) iff there exists a poiny such thatyRx andy = ¢, and there exists
Z € B(Y, X) such thatz = , for eachz € Z.

Thus the elements g#(x, y) are setsZ of points betweerx andy such that it is
“enough” foryr to hold inZ to haveU (¢, v) true atx. Naturally, if for any(x, y) € R
we haves(x, y) = {[X, y]}, then the concept of e-model coincides with that of Kripke
model. Therefore the semantics of e-models extends Kripke semantics. Observe that
in any e-model the truth definition fd¥, P, G, and H coincides with the usual one
for unary tense operators becaysglays no part in it.

Werecall that aistinguishable model is a model which has no equivalent points.
We extend this terminology to e-models.

Proposition 2.3 For each eemodel M there exists a distinguishable e-model M’
suchthat M = M’.

Proof: See[l], Theorem 3.7. O

Definition 24 A general e-frame is a four-tuple (W, R, 8, IT), where (W, R,
B) is an e-frame andl is a subset ofP(W) containingg andW, and closed under
Boolean operations and under the operators

uB,C)={xeW: 3ye B: xRyand3iZ e 8(x,y): Z< C}

and
S(B,C)={xeW: Jye B: yRxand3iZ € 8(y,x): Z < C}.

Clearly, an e-model over a general e-frafhe= (W, R, 8, IT) is a pair{ F, V) where
V is a function mapping propositional variables to elemenfd ofVe say that a gen-
eral e-framgW, R, g, IT) is g-upward closed if, for any (X, y) € R, the set8(x, y) is
upward closed with respect to set-theoretical inclusion, relatively to thex,sdt [

Remark 25 Any general e-fram& = (W, R, §, I1) is equivalent to thg-upward
closed general e-framg’ = (W, R, 8/, IT) where for any(x, y) € R, 8/(x, y) is the
set-theoretical upward closure gtx, y) (i.e.,8/(X,y) ={Z': ZC Z' C [x, Y] for
someZ € B(x,y)}). Therefore we may always consider a general e-framg-as
upward closed.

3 Canonical emodels  Given any US-logid., wedefine itscanonical e-model M
as(WL, R., BL, VL) where

1. W_ is the set of all maximal consistent extensions pf

2. XRLyiff U(p, T) (i.e. Fp) belongs tax for anyg € y,

3. letxR_yandZ C [x, y]; thenZ € B (%, y) iff for any ¢, ¥ such that € yand,
foreachze Z, ¢ € z, it holdsU (¢, ¥) € X,

4. VL(p) = {xe W_: p e x}, for any variablep.
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Lemma 3.1 (Fundamental Lemma) For any formula x and any x € W, it holds
M| E x[X] ifand only if x € x.

To prove Lemmi&.1] we need some preliminary definitions and results, already used
by Xu in his completeness proof (s&&;[the technique was used first in Burgd3B [

Definition 3.2 Letx, y € W, and letys be a formula. We writep (X, v, y) to indi-
cate thatJ (¢, ¥) € x for everyp € y.

Remark 3.3 It is straightforward to see thatR_y if and only if p(x, T, y) and
therefore that ifo(x, v, y) for somey, thenxRLy.

Proposition 3.4

(i) Letx, ye W, andlety beaformula. Then po(X, ¥, y) iff S(p, ¥) € yfor every
@ € X
(i) Let x e W, and let U(p, ¥) € x. Then thereisa y such that p(x, v, y) and
pEeY.
(iii) Supposethat p(x, ¥, ¥), "U (¥, &) € xand ¢ € y. Thenthereisat € W such
that p(x, T, 1), p(t, T,y), ¥y e t,and =& e t.

Proof:  For (i) and (ii), seelf], Lemma 2.3 and 2.4, respectively. For (iii), s&& [
Lemma 2.4. O

Proof of Lemmal31] By induction on the complexity of. The only nontrivial
cases argg = U(p, ¥) andx = S(¢, ). We only consider the case &f (the one
for Sbeing proved in the same way, thanks to Proposffighi)). Suppose then that
ML = U(e, ¥)[X]. Then by definition of truth in an e-model we have that there ex-
istsy € WL such thatxR_y andM | = ¢[y], and there exists & € B (X, ¥) such
that, for anyz € Z, M| = ¥[2]. By induction hypothesis we get € y and, for any
ze Z,y €z ButZ € B.(X, y), and so by definition o we obtainU (¢, ¥) € x.
Conversely, supposé (¢, ¥) € x. By Proposition3.4(ii) there exists ay such that
@ € yandp(x, ¥, y), and by Remari3.3we havexR_y. Now letZ = {z: M| =
Y[Z} N[x, y]l. Suppose by contradiction th@ ¢ B, (x, y). Again by definition of
BL, this means that there existg¥aand a& such that} € y, &€ € zfor anyz e Z, and
=U (9, £) € x. From Propositiof.4{jii) it follows that there exists & W, such that
o(X, T, b), pt, T, y), ¥ e t,and—& e t. Thisimpliest € Z andé ¢ t, acontradiction.
ThereforeZ € B (X, y) and, by definition of truthM | = U (¢, ¥)[X]. O

Lemma3.Timmediately leads to the following result, which in turn yields a Henkin-
style proof of the completeness of any US-logic with respect of the class of its e-
models.

Theorem 3.5 (Fundamental Theorem) Let L bea USlogic and ¢ aformula. Then
LEgifandonlyif M| | ¢.

Corollary 3.6 (Completeness for e-models)A formula ¢ is true in every e-model
of aUS-logic L ifand only if L - ¢.
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Also, completeness can be extended to general e-frames just as in unary modal logics.
In fact, definell. = {X C W_ : X ={x: ¢ € x} for a formulag}. Itis eay to see
that 7L = (W_, Ry, B, 1) is a general e-frame (thmnonical general e-frame of

L).

Corollary 3.7 (Completeness for general e-frameshet ¢ be a formula. Then

ML Egifandonlyif f & ¢.

Theorenf2.5]together with the filtration theorem for e-models (§eTheorem 3.6),
yields the finite e-model property féfys. Infact, we have the following result (note
that any e-model is an e-model i§f; s).

Theorem 3.8 If Kys I# ¢, then there exists a finite emodel which falsifies ¢.

Proof: Supposeéys I+ ¢. Write M ¢ for the canonical e-model ¢fys. By Theo-
remB.5 Mk K ¢. Let X be the (finite) set of all subformulas pfand letM’ be the
finest filtration ofM k throughX: such a filtration exists by Lemma 3.5 ] [andis
clearly finite. Now the filtration theorem for e-models implMds ¢. ButM' is a
finite e-model: hence, the theorem is proved. O

SinceKys is finitely axiomatizable, as an immediate consequence of the finite e-
model property we get its decidability.

Corollary 3.9 Thelogic Kygsisdecidable.

4 Duality Inthis section we examine the duality between general e-frames and al-
gebras. We follow the presentation of the duality for unary modal logics givéd in [
(which can be extended to unary tense logics, see, for example, Thorf@son [

Definition 4.1 Let (A, v, A, /,0,1) be a Boolean algebra, and letands be bi-
nary operations o\. For anyb € A, definef(b) = u(b, 1), p(b) = s(b, 1), g(b) =
(f()), h(b) = (p(b))’. We saythat4 = (A, v, A, ’,0,1,u,s) is aUSalgebra

if the following axioms, which are of course the algebraic version of those for US-
logics, are satisfied for anty; ¢, d in A:

1. gl ve) < (ub,d) vu(c,d),
g(b’ve) < (u(d, b)) v u(d,c),
h(b’ vc) < (s(b,d))’ v s(c, d),
h(b’ vc) < (s(d, b)) v s(d, c),
bAu(c,d) <u(casb,d),d),
bAs(c, d) <s(cas(b,d),d),
gl =1,
8. hl=1.
A valuationv on a US-algebra is a function from the formulas to the elements of
A such that the following conditions are satisfied for any formglag:

1 v(=e) = (v(p),

2. v(eAy) =vip) Av(),

3. v(U(g, ¥)) = uu(p), v(¥)),
4. v(S(g, ¥)) = s(v(p), v(¥)).

Nookwbd
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An algebraic model (A4, v) is a US-algebra equipped with a valuation, and a formula
@ is verified in such a model if and only if(¢) = 1.

Definition 4.2 Given a general e-framé = (W, R, 8, IT), we define itsdual US
algebra F* as follows: F© = (I1,U, N, /, @, W, u, ), where

UB,C)={xeW: dyeB: xRy and3Z e B(x,y): Z<Z C},
S(B,C)={xeW: dyeB: yRx and3Z e 8(y,x): Z< C}.

Incidentally, we observe that the definition 6f* may be given also for (standard)
general frames, simply by settingB, C) = {x € W: Jye B: xRyand [x, y] € C}
ands(B,C) = {xe W: Jy e B: yRxand [x, y] € C}. This definition coincides

with Definition[4.2] when considering general frames as particular general e-frames.
But if one limits oneself to general frames, it is not possible to achieve a Stone-like
duality: we show this by a simple example. Consider the two-point Boolean algebra
2. On2itis possible to define three distinct US-algebrds, 4,, 43, by setting, in
A,u(l, ) =1andu(1,0) =0,in4,u(l,1) =0=u(1,0),and in43, u(1,1) =
1=u(1,0). (Itis easy to see that the remaining conditionsupaend those ors, are
implied by these identities and by the axioms of US-algebras.) These algebras can
actually be obtained as duals of general fraffWsR, IT): namely,4; is obtained as

dual by settingV = {x}, R= {(x, X)} andIT = P(W), 4, by W = {x}, R= @ and
IT=P(W),andAs; by W = {X, y} (with x £ y), R={(X, ¥), (Y, X)} andIT = {&, W}.
Nevertheless, if we want to go back from US-algebras to general frames in a Stone-
like manner, that is, considering the set of ultrafilters of the algebra, thenZnwen
always obtain a one-point frame. But, up to isomorphism, there are only two one-
point general frames, because there are only two ways to defamel one to define

IT (clearly, it isA3 that can not correspond to any one-point frame). As we will show,
this problem does not occur with general e-frames.

Definition 4.3 Given a US-algebral = (A, v, A, ', 0,1, u, s), we define itsdual
general e-frame A4, as follows: A, = (Wa, Ra, Ba, [Ta), WhereW, is the set of
ultrafilters of 4, xRay if and only if u(b, 1) € xforanyb e y, ITa = {{x: be x}:

b e A}, and, for(x,y) € RaandZ C [x, V], Z € Ba(X, y) if and only if u(b, ¢) € x
for anyb, c € A such thath € y andc € zfor eachz € Z (the closure properties of
I, required by Definitiof2.4] will follow from next results, as we shall see).

As an example, we can consider the algebtasi,, andA4s; again and construct their
duals. Ay, is obtained by settin§Va, = {X}, Ra, = {(X, X)}, [Ta, = P(W,,), and
Ba, (X, X) = {{X}}. A2, is obtained by settingVa, = {X}, Ra, = @, ITa, = P(Wa,),
andp = @. Finally, A3, is obtained by settin§Va, = {X}, Ra, = {(X, X)}, [Ta, =
P(Wa,), andBa, (X, X) = {2, {X}}.

As in unary modal and tense logics, A is finite, thenITa coincides with
P(W,), and therefored, is just an e-frame. Moreover, it is possible to show that
if L is a US-logic and4 is the free US-algebra an generators in the variety gener-
ated by the algebras fdr, then4, is isomorphic to the canonical general e-frame of
L (we say thatd is an isomorphism fromiW, R, g, IT) onto (W', R, 8/, IT) if and
only if it is an isomorphism of general frames, and moreover, for@ny) € Rand
anyZ C [x,y]itholdsZ € B(x, y) if and only if ®[Z] € /(P (X), P(y)); by ®[Z]
we mean the s€b(2) . ze Z}).
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A valuationV on a general e-fram& determines an algebraic modgf*, v)
in a natural way, by setting(¢) = {x: (¥, V) & ¢[X]}. Itis then straightforward to
see that

aformulay is true in(#, V) if and only if it is true in( F+, v),

and thereforey is true in F if and only if it is true in 7+. Moreover, if 4 is a US-
algebra ana is a valuation on it, one can define a valuationbnby setting, for any
propositional variable, V(p) = {x: v(p) € x}, and it holds that

aformulay is true in{A4, v) if and only if it is true in{A4,, V).

This last result is proved by showing, by induction on the complexity,dhatx

V(y) ifand onlyifv(x) € x (the crucial points being of course the cages U (¢, )

andy = S(p, ¥)). The proof is analogous to that of Lem{Ra] by considering that
Definiton3.2] RemarkB3.3] and PropositioB.4lstill hold if points of canonical models
(i.e., maximal consistent extensions of a logic) are replaced by ultrafilters of a US-
algebra, and formulas are replaced by points of the algebra. As an example, we show
the induction step fo. Suppose that € V(U (¢, ¥)). Then by definition of truth

we have that there existsyae W such thatxRay and (4, V) & ¢[y], and there
exists aZ € Ba(x, y) such that, for ang € Z, (4., V) = ¥[Z7. By induction hy-
pothesis we get(¢) € y and, for anyz € Z, v(y) € z But Z € Ba(X, y), andso

by definition of 84 we obtainu(v(¢), v(¥)) = v(U (g, ¥)) € x. Conversely, sup-
poseu(v(), v(¥)) = v(U(p, ¥)) € X. By Propositior@ii) there exists a/ € Wy

such that(¢) € y andp(x, v(¥), ), and by Remark.3lwe havexRay. Now let
Z={z: (A, V) = ¢[Z}N[x,y]. Suppose by contradiction thatgZ Sa(X, y). By
definition of 8, this means that there existisand ac in 4 such thab € y,ce z
foranyz e Z, and(u(b, ¢))’ € x. From Propositiof2.4{iii) it follows that there ex-

ists at € Wy such thato(x, 1, 1), p(t, 1, ¥), v(¥) € t,andc’ € t. This impliest € Z

andc ¢ t, acontradiction. Therefor& € Sa(X, ). By definition of truth, it follows

x€ V(U(g, ¥)).

As announced in Definitiold_3] from this proof one gets also the closure prop-
erties ofIT 5 required by Definitiod2.4] Similarly, one can show that the function
@ from the points of a US-algebrd to I, defined by®(b) = {x: x an ultra-
filter on 4 with b € x} is an isomorphism fronA to (A4,)" (consider, for exam-
ple, the case of the operator from the definitions, we have that®(b), ®(c)) =
ufte Wa: beth{teWa: cet) ={xeWa: 3Jy: beyandxRpy, and
AZ € Ba(X, Y) : Vze Z, c € Z}; now, proceeding as in the above proof, one can show
that this set coincides witfx € Wx : u(b, ¢) € x}, which by definition of® is just
@ (u(b, ¢))). Therefore it holds that

any US-algebrd is isomorphic to(4,)™.

As in unary modal and tense logics, problems arise when one starts from frames: in
our case, it does not hold for any general e-fragnthat  is isomorphic to( 7).

In unary logics, on that account, those general frames for which such an isomorphism
holds have been characterized (tlescriptive general frames; see Goldbl&). We

recall that a general fram& = (W, R, IT) is descriptive if it satisfies
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(i) (YBell)(xe B ye B)=x=Y,
(i) (VBeIl)(ye B=—= xe f(B)) = XRYy,

where f(B) = {x: Jy(xRy andy € B)} is the operator off ", that is, the dual
(modal) algebra off, and

(ii) for any ultrafilter D of 7, there existx € W such thaD = {Be I1: x € B}.

Clearly, since US-logics extend unary logics, these conditions are still necessary to
obtain isomorphism betweefi and (F 1), (note that in this casé (B) coincides

with u(B, W), whereu is the operator of the US-algebfa’). But they are not suf-
ficient: in fact, one has also to determine opportune condition% on

Definition 4.4 A general e-frame¢f = (W, R, B, IT) satisfies condition IT-3 if and
only if, for any (x, y) € Rand anyZ C [x, y] it holds that, if

(1) forall B, C € IT such thaty € BandZ C Cthere exists @ € B such thakRuw,
and aT € B(x, w) such thafl C C,

thenZ € B(X, y).

Definition 4.5 A general e-frame idescriptive if and only if it is descriptive as a
general frame and satisfies conditidng.

ConditionITI-8 says, essentially, that the behavior of the elemenis wfith respect
to B forces that of other sets of points with respecgtdts role will be made clearer
by the proof of Theorerd.7]

Now we show that being descriptive is a necessary and sufficient condition for
a general e-framef to be isomorphic with( 7). We treat the two directions sep-
arately.

Theorem 4.6  For any US-algebra 4, the general e-frame A4, isdescriptive.

Proof: From a well-known result of unary modal and tense logics we have that the
general frame underlying, is descriptive. Thus we have to check only condition
I1-B8. Assuming condition 1 of Definitiod.4] we want to show thaZ € Ba(X, y)
(herex andy are points of4,, that is, ultrafilters orfd). By definition of 8, this
means that, fob, ¢ points of 4, if b € y andc € zfor anyz € Z, thenu(b, ¢) € x.
Now let us callB (resp.C) the point of4, corresponding tb (resp.c), that is, the set
of ultrafilters to whichb (resp.c) belongs. ClearlyB, C € IT4, and moreovelh € y
translates ty € B, andc € zfor anyz € Z translates t& < C. Suppose they € B
andZ c C. By hypothesis, it follows that there existauae B such thaxRaw and
aT C Csuchthafl € Ba(X, w). Butw € Bmeansh € w, andT € C means that
cet, foranyt e T. Thus fromT € Ba(X, w) it follows thatu(b, ¢) € x, by definition

of Ba. U

Theorem 4.7 If ¥ = (W, R, 8, IT) isa descriptive general e-frame, then the func-
tion ® from F to (1) defined by ®(x) = {B € I1: x € B} isanisomorphism.

Proof: It is known from unary modal and tense logics tldais an isomorphism
of general frames. Therefore we only have to check that (x, y) if and only if
®[Z] € Ba(P(X), D(Y)), Where A is the carrier of . Now, from the definitions
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it follows that ®[Z] € Ba(P(X), ®(Yy)) means that for an, C € I1, if y € B and
Z C C,thenthere exists@a € B such thakRw and aT € C suchthaill € 8(x, w) (in
other words®[Z] € Ba(®(x), ®(y)) is just condition 1 of DefinitioBL4). Suppose
thenZ € B(x, y), and takeB, C € II such thaty € BandZ c C. Clearly we may
takew = yandT = Z, thus obtainingb[Z] € Ba(D(X), ®(y)). Conversely, assume
D[ Z] € Ba(P(X), D(Y)). Then, using conditioll-8, we obtainZ € (X, y). O

Again in analogy with the unary case, we have the following result.

Theorem 4.8 Every finite general e-frame 7 = (W, R, 8, IT) which is descriptive
asa general frame is descriptive (as a general e-frame).

Proof: Since by Remark.5kny e-frame can be consideredmapward closed, it

is enough to show that iff is finite and descriptive as a general frame, then condi-
tion TT- 8 is equivalent tg-upward closedness (we recall that a finite general frame is
descriptive if and only ifT = P(W)). Itis clear that every general e-frame which sat-
isfies conditiorl1-8 is B-upward closed. For the converse, assyimupward closed-
ness and condition 1 of Definiti¢h4] Sincell = P(W), we may takeB = {y} and

C = Z, and it follows that there exist§ € Z such thatT € 8(x, y). Applying -
upward closedness, we obtaine 8(X, y), and thus conditioril-4 is satisfied. O

For the infinite case8-upward closedness does not imply conditldss, asthe fol-
lowing counterexample shows.

Let X be a denumerable set and defie= X U {—o0, oo} (Where—oo, oo &
X). SetR={(—00,X) : xe X}U{(X,00): Xxe X}U{(—00,00)} andIl = P(W).
Now ¥ = (W, R, IT) is a general frame and we can consider its bidyat )., in
the sense of unary modal and tense logics. As is well kn@rt,) ., is a descriptive
general frame, and it is straightforward to verify th&"), = (W', R, IT’), where
W = WU Y for a setY of cardinality 2% disjoint with W, R = RU {(—00, y) :
ye YU {(y,00) : y e Y}, andIT’ contains all finite subsets &, but if B € IT" is
infinite thenBN'Y # &. Now define a general e-fram@ over (¥ 7)., by setting
B(—00,00) ={Z < XUY: ZNY # &} (in all other cases the only possibility is
B(x,y) = {@}). Clearly, G is p-upward closed. Bu; does not satisfy conditioH -
B. Infact, let Z be any infinite subset oX, and letB, C € IT’ be such thato € Band
Z C C. Then, sinceC is infinite, we haveCNY £ @. ThusCNY € B(—o0, 00),
and sincexo € BandCN'Y C C, condition 1 of Definitiorid.4lis fulfilled for x =
—00, Y= o00 and ourZ with w =ococandT =CNY. But Z ¢ 8(—o0, 00), because
ZNY = @, so conditionIT-g is not satisfied.

5 Morphisms Now, by analogy with the unary case, we want to give a definition
of general e-frame morphism, corresponding (contravariantly) to that of US-algebra
morphism. In such a way, we obtain a category-theoretic contravariant duality be-
tween descriptive general e-frames and US-algebras.

Definition 5.1 Let F = (Wy, Ry, 81, I11) and % = (Wh, Ry, B2, ITo) be general
e-frames, and leb be a function from\ to W. We say thatd is ageneral e-frame
morphismif ® is a general frame morphism, and furthermore
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(i) if Ze pr(x. y), thend[Z] € Bo(P(X), D(Y));

(i) for any x € Wy andB, C € Iy, if there exists & € B such thatd(x) R,y and
aZ e Ba(P(x), y) such thatZ < C, then there exists a e ®~1[B] such that
xRyv and aZ € B1(x, v) such thatz € &~ 1[C];

(i) for_any ye W, andB, C ¢ I, if there exists & € B such thatkR,®(y) and
aZ e Bo(X, ®(y)) such thalZ < C, then there exists @ € ®~![B] such that
wRyy and aZ € B1(w, y) such thatz € »~1[C].

Note that conditions (ii) — (iii) involvd1,; andIT,. Thus our definition of general e-
frame morphism recalls that of weak contraction (see, e.g., Sambin and Vdgparo [
more than the usual one pfmorphism of the unary case. To achieve a stronger anal-
ogy with the unary case, one should find a notion of general e-frame morphism which
does not involvd1, andIl, and for descriptive general e-frames is equivalent to the
one we have given. A good candidate may be the definition obtainedZralny
replacing (ii) — (iii) with the following ones.

(i)’ foranyx e Wy, ¥ € Wo, andZ € Wh, if ®(X)Ray andZ € B(P(X), ), then
there exists a € W, such thatxR,v and® (v) = y, and aZ € B1(x, v) such
thatz c o1 Z];

(iii)" foranyy e Wy, X € W, andZ € Wb, if XRo®(y) andZ € Ba(X, ®(Yy)), then
there exists a € W, such thatw R,y and® (w) = X, and aZ € 81(w, y)such
thatz € »~1[Z].

In fact, it is easy to verify that (if)}-(iii)” are equivalent to (ii) — (iii) whenf, and
% arefinite descriptive general e-frames (i.8V; andW, are finite sets, anfll; =
P(Wy), ITo = P(W,)). Moreover, if we calle-frame morphismafunction which is a
frame morphism and satisfies conditions (i), (ignd (iii), we have that an e-frame
morphism® preserves the truth of formulas (thatxs= ¢ if and only if & (x) & ¢),
as can be shown by an easy induction on the complexity of the formula. But whether
the equivalence of (ii) — (iii) and (if}-(iii) " holds also for infinite descriptive general
e-frames is an open question.

The following two theorems show the announced correspondence between gen-
eral e-frame morphisms and US-algebra morphisms.

Theorem 5.2 Let @ be a general e-frame morphism from 7% = (W, Ry, 81,
MMy) to % = (Ws, Ry, B2, [Tp). Then the function ¥ from %" to %" defined by
¥(B) = ®~1[B] isa US-algebra morphism.

Proof. It is straightforward to verify thatl preserves Boolean operators. As
for u, using the definitions and conditions (i) and (ii) of DefinitlanL] we obtain
Y(Uu(B,C)) = > HuB,C)=d 1 {XeW,: dye B: XRyand3Z € Bo(X, ¥) :
ZCCl={xeW,:3yeB: ®(X)Ryyand3dZ € Bo(P(X),y): ZC Cl={xeW;:
Jve ®YB]: xRwandiZ e f1(x,v): ZC O YC]} ={xe Wy : Jv e ¥(B):
XRivandiZ € B1(x,v) : Z S ¥ (C)} = u(¥(B), ¥(C)) (note: we are using for
both the operator of;,* and that ofZ,"). The case o$is proved analogously, using
conditions (i) and (iii) of Definitiorﬁ O




DUALITY AND COMPLETENESS 241

Theorem 5.3 Let ¥ be a US-algebra morphism from A4, to 4;. Then the function
® from Ay, to A, defined by ®(x) = {b e Ay : W(b) € x} (where Ay isthecarrier
of A4,; we use the anal ogous notation for A4;) isa general e-frame morphism.

Proof: Sincex is an ultrafilter on4; andW is a US-algebra morphisn®(x) is an
ultrafilter onA,. Itisclear from well-known results on unary logics tldats a general
frame morphism: thus we have to check only conditions (i) — (iii) of Definifiod
As regards (i), lekRa, Yy andZ € S, (X, y). By definition of 85, , this means that for
anyb,ce A4, if be yandc e zfor anyz € Z, thenu(b, c) € x (again, we shall use
u for both the operator afl; and that 0f4,). Now, takeb, € € A,, and assume that
b e ®(y) andc € z foranyz e ®[Z] (thatis,C € ®(z), for anyz e Z). By definition
of @, it follows thatW(b) € yandW¥(€) € zforanyz e Z, whencau(¥(b), ¥(€)) € x.
But W is a US-algebra morphism, so we havéu(b, ¢)) € x and thereforei(b, €) €
®(x). By definition of 8 ,, it follows that®[Z] € Ba, (P (X), P(y)). Asregards (ii),
let B*, C* e I1a,, and suppose that there existg & B* such thatd(x)Ra,y and a
Z € Bo(P(X), ¥) such thatZ < C*. Recall thatB* andC* are sets of ultrafilters on
A, which correspond to points®, ¢c* of 4,, sothaty € B* is equivalent td* € y,
andZ c C* is equivalent ta* € zfor anyz e Z. Now, Z € B>(®(x), ¥) means that
for anyb, c € A, with b € yandc e zfor anyz e Z, it holdsu(b, ¢) € ®(x). Thus,
in particular,u(b*, c*) € ®(x), which, by definition of®, implies ¥(u(b*, c*)) =
u(¥(b*), ¥(c*)) € x. Let BandC be the points of1 5, corresponding ta(b*) and
w(c*). Thenfromu(¥(b*), W(c*)) € xwe obtain thak € u(B, C), where the latten
is the operator of the algebtal;, )™ (which is isomorphic ta4;). By Definition[4.2]
this means that there exists & B such thakRa, vand aZ € Ba, (X, v) suchthaZ <
C. Butv € B means¥(b*) € v, henceb* € ®(v) andv € ®~1[B*], and moreover,
Z € Cmeans¥(c*) e zforanyz e Z, hencec* € ®(z) for anyz e Z and therefore
Z € ®~1[C*]: thus condition (i) holds. Condition (iii) is proved similarly. O
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