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Duality and Completeness for US-Logics

FABIO BELLISSIMA and SAVERIO CITTADINI

Abstract The semantics of e-models for tense logics with binary operators
for ‘until’ and ‘since’ (US-logics) was introduced by Bellissima and Bucalo in
1995. In this paper we show the adequacy of these semantics by proving a gen-
eral Henkin-style completeness theorem. Moreover, we show that for these se-
mantics there holds a Stone-like duality theorem with the algebraic structures
that naturally arise from US-logics.

1 Introduction In 1968 Kamp [5] introduced tense logics with binary operators
U and S (‘until’ and ‘since’). Interest and research about these logics have rapidly
grown since then, particularly in connection with computer science. The operatorsU
andS arose from semantical intuitions connected with the concept of Kripke model:
thus their semantics preceded the syntactical aspects. But the traditional relational
semantics, notwithstanding the validity of general completeness theorems (see Xu
[8]), turned out to be strongly inadequate for a global and systematic treatment of
US-logics. From our point of view, the heart of this inadequacy is the fact that, when
Kripke models are employed for US-logics, the distinguishable model theorem fails,
in the sense that there exist models in which the presence of equivalent points cannot
be eliminated. In other words, such models are not equivalent to any distinguishable
(i.e., indeed, without equivalent points) model. This fact prevents the usual construc-
tion of canonical models and also prevents a Stone-like duality theory between frames
and Boolean algebras with operators, as it holds instead for modal and tense logics
with unary operators (see, e.g., Bull and Segerberg [2]). In fact, both in canonical
models and in models arising from algebras, the points (which are maximal consis-
tent extensions of a logic in the former case and ultrafilters of the originating algebra
in the latter one) are taken exactly once.

In Bellissima and Bucalo [1] a new kind of semantics was introduced based on
the notion ofe-model which is a generalization of that of a Kripke model. For these
models the filtration theorem and, consequently, the distinguishable model theorem
have been proved. In the present paper we show that the concept of e-model and the
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related ones of e-frame and general e-frame can be legitimately considered the right
ones for US-logics, in the sense that there holds a Stone-like duality theorem between
general e-frames and algebras with operatorsu ands, that is, a theorem which respects
the classical duality theory for Boolean algebras. Such a theorem is achieved by de-
termining the class of general e-frames which can be obtained as duals of algebras,
namely, thedescriptive general e-frames. By using e-models it is thus possible to
construct canonical models and to obtain in such a way a general Henkin-style com-
pleteness theorem.

2 Preliminaries and basic results The US-language consists of a denumerable set
of propositional variables (which we indicate withp, q, r, . . .), the usual Boolean con-
nectives (including� and⊥, i.e., constants for truth and falsehood, respectively), and
two binary operatorsU andS. Formulas are defined as usual: the clauses forU and
S state that, ifϕ andψ are formulas, thenU(ϕ,ψ) andS(ϕ,ψ) are formulas. The in-
tended meaning ofU(ϕ,ψ) [S(ϕ,ψ)] is thatϕ will be true at some future time [was
true at some past time], and until then, that is, at any time between now and that mo-
ment [since then, i.e., at any time between that moment and now],ψ will be true [was
true]. According to this interpretation, traditional unary tense operators are defined
as follows: Fϕ (‘it will be the case thatϕ’) stands forU(ϕ,�), Pϕ (‘it was the case
thatϕ’) for S(ϕ,�), Gϕ (‘it is always going to be the case thatϕ’) for ¬F¬ϕ, and
Hϕ (‘it has always been the case thatϕ’) for ¬P¬ϕ. Now we define US-logics.

Definition 2.1 A US-logic is a set of formulas of the US-language which contains
all classical tautologies together with the following axioms:

1. G(p → q) → (U(p, r) → U(q, r)) ∧ (U(r, p) → U(r, q)),
2. H(p → q) → (S(p, r) → S(q, r)) ∧ (S(r, p) → S(r, q)),
3. p ∧ U(q, r) → U(q ∧ S(p, r), r),
4. p ∧ S(q, r) → S(q ∧ U(p, r), r),

and is closed under uniform substitution, modus ponens, and temporal generalization.

If we denote byKUS the minimal US-logic, we have thatKUS � ϕ if and only if ϕ is
true in all Kripke models (see [8]; KUS is calledTLUS(∅) there).

We now define the semantics of e-frames, e-models, and so on, following [1]
(we remark that we shall never omit the “e” when referring to these semantics, hence
when we write just “frame,” “model,” and so on, it means that we are referring to the
standard relational semantics). Given two pointsx, y of a Kripke frame〈W, R〉 such
that xRy, we write [x, y] for the set{z : xRzRy} (note thatR does not need to be a
reflexive relation, so it may happen thatx, y �∈ [x, y]; moreover, to be pedantic, we
should write [x, y] R, but we shall drop the subscript to simplify our notation).

Definition 2.2 An e-frame F is a triple〈W, R, β〉, where〈W, R〉 is a Kripke frame,
andβ is a function fromR into P (P (W )) such that, for all(x, y) ∈ R:

1. β(x, y) �= ∅;
2. if Z ∈ β(x, y), thenZ ⊆ [x, y].

An e-model over an e-frameF = 〈W, R, β〉 is a pair〈F , V〉 whereV is a function
mapping propositional variables to subsets ofW. The definition of truth of a formula
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in a pointx of an e-model is standard for propositional variables and Boolean con-
nectives. Furthermore,

1. x |= U(ϕ,ψ) iff there exists a pointy such thatxRy andy |= ϕ, and there exists
Z ∈ β(x, y) such thatz |= ψ, for eachz ∈ Z,

2. x |= S(ϕ,ψ) iff there exists a pointy such thatyRx andy |= ϕ, and there exists
Z ∈ β(y, x) such thatz |= ψ, for eachz ∈ Z.

Thus the elements ofβ(x, y) are setsZ of points betweenx and y such that it is
“enough” forψ to hold inZ to haveU(ϕ,ψ) true atx. Naturally, if for any(x, y) ∈ R
we haveβ(x, y) = {[x, y]}, then the concept of e-model coincides with that of Kripke
model. Therefore the semantics of e-models extends Kripke semantics. Observe that
in any e-model the truth definition forF, P, G, and H coincides with the usual one
for unary tense operators becauseβ plays no part in it.

Werecall that adistinguishable model is a model which has no equivalent points.
Weextend this terminology to e-models.

Proposition 2.3 For each e-model M there exists a distinguishable e-model M′

such that M ≡ M′.

Proof: See [1], Theorem 3.7. �

Definition 2.4 A general e-frame is a four-tuple〈W, R, β,�〉, where 〈W, R,

β〉 is an e-frame and� is a subset ofP (W ) containing∅ andW, and closed under
Boolean operations and under the operators

u(B, C) = {x ∈ W : ∃y ∈ B : xRy and∃Z ∈ β(x, y) : Z ⊆ C}

and
s(B, C) = {x ∈ W : ∃y ∈ B : yRx and∃Z ∈ β(y, x) : Z ⊆ C}.

Clearly, an e-model over a general e-frameF = 〈W, R, β,�〉 is a pair〈F , V〉 where
V is a function mapping propositional variables to elements of�. We say that a gen-
eral e-frame〈W, R, β,�〉 is β-upward closed if, for any (x, y) ∈ R, the setβ(x, y) is
upward closed with respect to set-theoretical inclusion, relatively to the set [x, y].

Remark 2.5 Any general e-frameF = 〈W, R, β,�〉 is equivalent to theβ-upward
closed general e-frameF ′ = 〈W, R, β′,�〉 where for any(x, y) ∈ R, β′(x, y) is the
set-theoretical upward closure ofβ(x, y) (i.e.,β′(x, y) = {Z ′ : Z ⊆ Z ′ ⊆ [x, y] for
someZ ∈ β(x, y)}). Therefore we may always consider a general e-frame asβ-
upward closed.

3 Canonical e-models Given any US-logicL, wedefine itscanonical e-model ML

as〈WL, RL, βL, VL〉 where

1. WL is the set of all maximal consistent extensions ofL,
2. xRL y iff U(ϕ,�) (i.e. Fϕ) belongs tox for anyϕ ∈ y,
3. letxRL y andZ ⊆ [x, y]; thenZ ∈ βL(x, y) iff for any ϕ, ψ such thatϕ ∈ y and,

for eachz ∈ Z, ψ ∈ z, it holdsU(ϕ,ψ) ∈ x,
4. VL(p) = {x ∈ WL : p ∈ x}, for any variablep.
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Lemma 3.1 (Fundamental Lemma) For any formula χ and any x ∈ WL, it holds
ML |= χ[x] if and only if χ ∈ x.

To prove Lemma3.1, weneed some preliminary definitions and results, already used
by Xu in his completeness proof (see [8]; the technique was used first in Burgess [3]).

Definition 3.2 Let x, y ∈ WL, and letψ be a formula. We writeρ(x, ψ, y) to indi-
cate thatU(ϕ,ψ) ∈ x for everyϕ ∈ y.

Remark 3.3 It is straightforward to see thatxRL y if and only if ρ(x,�, y) and
therefore that ifρ(x, ψ, y) for someψ, thenxRL y.

Proposition 3.4

(i) Let x, y ∈ WL, and let ψ be a formula. Then ρ(x, ψ, y) iff S(ϕ,ψ) ∈ y for every
ϕ ∈ x.

(ii) Let x ∈ WL, and let U(ϕ,ψ) ∈ x. Then there is a y such that ρ(x, ψ, y) and
ϕ ∈ y.

(iii) Suppose that ρ(x, ψ, y), ¬U(ϑ, ξ) ∈ x and ϑ ∈ y. Then there is a t ∈ WL such
that ρ(x,�, t), ρ(t,�, y), ψ ∈ t, and ¬ξ ∈ t.

Proof: For (i) and (ii), see [3], Lemma 2.3 and 2.4, respectively. For (iii), see [8],
Lemma 2.4. �

Proof of Lemma 3.1: By induction on the complexity ofχ. The only nontrivial
cases areχ = U(ϕ,ψ) andχ = S(ϕ,ψ). We only consider the case ofU (the one
for S being proved in the same way, thanks to Proposition3.4(i)). Suppose then that
ML |= U(ϕ,ψ)[x]. Then by definition of truth in an e-model we have that there ex-
ists y ∈ WL such thatxRL y andML |= ϕ[y], and there exists aZ ∈ βL(x, y) such
that, for anyz ∈ Z, ML |= ψ[z]. By induction hypothesis we getϕ ∈ y and, for any
z ∈ Z, ψ ∈ z. But Z ∈ βL(x, y), and so by definition ofβL we obtainU(ϕ,ψ) ∈ x.
Conversely, supposeU(ϕ,ψ) ∈ x. By Proposition3.4(ii) there exists ay such that
ϕ ∈ y andρ(x, ψ, y), and by Remark3.3 we havexRL y. Now let Z = {z : ML |=
ψ[z]} ∩ [x, y]. Suppose by contradiction thatZ �∈ βL(x, y). Again by definition of
βL, this means that there exists aϑ and aξ such thatϑ ∈ y, ξ ∈ z for anyz ∈ Z, and
¬U(ϑ, ξ) ∈ x. From Proposition3.4(iii) it follows that there exists at ∈ WL such that
ρ(x,�, t), ρ(t,�, y), ψ ∈ t, and¬ξ ∈ t. This impliest ∈ Z andξ �∈ t, acontradiction.
ThereforeZ ∈ βL(x, y) and, by definition of truth,ML |= U(ϕ,ψ)[x]. �

Lemma3.1immediately leads to the following result, which in turn yields a Henkin-
style proof of the completeness of any US-logic with respect of the class of its e-
models.

Theorem 3.5 (Fundamental Theorem) Let L be a US-logic and ϕ a formula. Then
L � ϕ if and only if ML |= ϕ.

Corollary 3.6 (Completeness for e-models)A formula ϕ is true in every e-model
of a US-logic L if and only if L � ϕ.
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Also, completeness can be extended to general e-frames just as in unary modal logics.
In fact, define�L = {X ⊆ WL : X = {x : ϕ ∈ x} for a formulaϕ}. It is easy to see
thatFL = 〈WL, RL, βL,�L〉 is a general e-frame (thecanonical general e-frame of
L).

Corollary 3.7 (Completeness for general e-frames)Let ϕ be a formula. Then
ML |= ϕ if and only if FL |= ϕ.

Theorem3.5, together with the filtration theorem for e-models (see [1], Theorem 3.6),
yields the finite e-model property forKUS. In fact, we have the following result (note
that any e-model is an e-model ofKUS).

Theorem 3.8 If KUS � � ϕ, then there exists a finite e-model which falsifies ϕ.

Proof: SupposeKUS � � ϕ. Write MK for the canonical e-model ofKUS. By Theo-
rem3.5, MK �|= ϕ. Let 	 be the (finite) set of all subformulas ofϕ and letM′ be the
finest filtration ofMK through	: such a filtration exists by Lemma 3.5 of [1] andis
clearly finite. Now the filtration theorem for e-models impliesM′ �|= ϕ. But M′ is a
finite e-model: hence, the theorem is proved. �
SinceKUS is finitely axiomatizable, as an immediate consequence of the finite e-
model property we get its decidability.

Corollary 3.9 The logic KUS is decidable.

4 Duality In this section we examine the duality between general e-frames and al-
gebras. We follow the presentation of the duality for unary modal logics given in [2]
(which can be extended to unary tense logics, see, for example, Thomason [7]).

Definition 4.1 Let 〈A,∨,∧, ′,0,1〉 be a Boolean algebra, and letu ands be bi-
nary operations onA. For anyb ∈ A, define f (b) = u(b,1), p(b) = s(b,1), g(b) =
( f (b′))′, h(b) = (p(b′))′. We saythatA = 〈A,∨,∧, ′,0,1, u, s〉 is aUS-algebra
if the following axioms, which are of course the algebraic version of those for US-
logics, are satisfied for anyb, c, d in A:

1. g(b′ ∨ c) ≤ (u(b, d))′ ∨ u(c, d),
2. g(b′ ∨ c) ≤ (u(d, b))′ ∨ u(d, c),
3. h(b′ ∨ c) ≤ (s(b, d))′ ∨ s(c, d),
4. h(b′ ∨ c) ≤ (s(d, b))′ ∨ s(d, c),
5. b ∧ u(c, d) ≤ u(c ∧ s(b, d), d),
6. b ∧ s(c, d) ≤ s(c ∧ s(b, d), d),
7. g(1) = 1,
8. h(1) = 1.

A valuationv on a US-algebraA is a function from the formulas to the elements of
A such that the following conditions are satisfied for any formulasϕ, ψ:

1. v(¬ϕ) = (v(ϕ))′,
2. v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ),
3. v(U(ϕ,ψ)) = u(v(ϕ), v(ψ)),
4. v(S(ϕ,ψ)) = s(v(ϕ), v(ψ)).
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An algebraic model 〈A , v〉 is a US-algebra equipped with a valuation, and a formula
ϕ is verified in such a model if and only ifv(ϕ) = 1.

Definition 4.2 Given a general e-frameF = 〈W, R, β,�〉, wedefine itsdual US-
algebra F + as follows:F + = 〈�,∪,∩, ′,∅, W, u, s〉, where

u(B, C) = {x ∈ W : ∃y ∈ B : xRy and ∃Z ∈ β(x, y) : Z ⊆ C},
s(B, C) = {x ∈ W : ∃y ∈ B : yRx and ∃Z ∈ β(y, x) : Z ⊆ C}.

Incidentally, we observe that the definition ofF + may be given also for (standard)
general frames, simply by settingu(B, C) = {x ∈ W : ∃y ∈ B : xRy and [x, y] ⊆ C}
ands(B, C) = {x ∈ W : ∃y ∈ B : yRx and [x, y] ⊆ C}. This definition coincides
with Definition4.2, when considering general frames as particular general e-frames.
But if one limits oneself to general frames, it is not possible to achieve a Stone-like
duality: we show this by a simple example. Consider the two-point Boolean algebra
2. On 2 it is possible to define three distinct US-algebras,A1, A2, A3, by setting, in
A1, u(1,1) = 1 andu(1,0) = 0, in A2, u(1,1) = 0 = u(1,0), and inA3, u(1,1) =
1 = u(1,0). (It is easy to see that the remaining conditions onu, and those ons, are
implied by these identities and by the axioms of US-algebras.) These algebras can
actually be obtained as duals of general frames〈W, R,�〉: namely,A1 is obtained as
dual by settingW = {x}, R = {(x, x)} and� = P (W ), A2 by W = {x}, R = ∅ and
� = P (W ), andA3 by W = {x, y} (with x �= y), R = {(x, y), (y, x)} and� = {∅, W}.
Nevertheless, if we want to go back from US-algebras to general frames in a Stone-
like manner, that is, considering the set of ultrafilters of the algebra, then from2 we
always obtain a one-point frame. But, up to isomorphism, there are only two one-
point general frames, because there are only two ways to defineR and one to define
� (clearly, it isA3 that can not correspond to any one-point frame). As we will show,
this problem does not occur with general e-frames.

Definition 4.3 Given a US-algebraA = 〈A,∨,∧, ′,0,1, u, s〉, we define itsdual
general e-frame A+ as follows: A+ = 〈WA, RA, βA,�A〉, whereWA is the set of
ultrafilters ofA , xRA y if and only if u(b,1) ∈ x for anyb ∈ y, �A = {{x : b ∈ x} :
b ∈ A}, and, for (x, y) ∈ RA andZ ⊆ [x, y], Z ∈ βA(x, y) if and only if u(b, c) ∈ x
for anyb, c ∈ A such thatb ∈ y andc ∈ z for eachz ∈ Z (the closure properties of
�A, required by Definition2.4, will follow from next results, as we shall see).

As an example, we can consider the algebrasA1, A2, andA3 again and construct their
duals. A1+ is obtained by settingWA1 = {x}, RA1 = {(x, x)}, �A1 = P (WA1), and
βA1(x, x) = {{x}}. A2+ is obtained by settingWA2 = {x}, RA2 = ∅, �A2 = P (WA2),
andβ = ∅. Finally, A3+ is obtained by settingWA3 = {x}, RA3 = {(x, x)}, �A3 =
P (WA3), andβA3(x, x) = {∅, {x}}.

As in unary modal and tense logics, ifA is finite, then�A coincides with
P (WA), and thereforeA+ is just an e-frame. Moreover, it is possible to show that
if L is a US-logic andA is the free US-algebra onω generators in the variety gener-
ated by the algebras forL, thenA+ is isomorphic to the canonical general e-frame of
L (we say that� is an isomorphism from〈W, R, β,�〉 onto 〈W ′, R′, β′,�′〉 if and
only if it is an isomorphism of general frames, and moreover, for any(x, y) ∈ R and
any Z ⊆ [x, y] i t holdsZ ∈ β(x, y) if and only if �[ Z] ∈ β′(�(x),�(y)); by �[ Z]
we mean the set{�(z) : z ∈ Z}).
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A valuationV on a general e-frameF determines an algebraic model〈F +, v〉
in a natural way, by settingv(ϕ) = {x : 〈F , V〉 |= ϕ[x]}. It is then straightforward to
see that

a formulaχ is true in〈F , V〉 if and only if it is true in〈F +, v〉,
and thereforeχ is true inF if and only if it is true inF +. Moreover, ifA is a US-
algebra andv is a valuation on it, one can define a valuation onA+ by setting, for any
propositional variablep, V(p) = {x : v(p) ∈ x}, and it holds that

a formulaχ is true in〈A , v〉 if and only if it is true in〈A+, V〉.
This last result is proved by showing, by induction on the complexity ofχ, that x ∈
V (χ) if and only ifv(χ) ∈ x (the crucial points being of course the casesχ = U(ϕ,ψ)

andχ = S(ϕ,ψ)). The proof is analogous to that of Lemma3.1, by considering that
Definiton3.2, Remark3.3, and Proposition3.4still hold if points of canonical models
(i.e., maximal consistent extensions of a logic) are replaced by ultrafilters of a US-
algebra, and formulas are replaced by points of the algebra. As an example, we show
the induction step forU. Suppose thatx ∈ V (U(ϕ,ψ)). Then by definition of truth
we have that there exists ay ∈ WA such thatxRA y and〈A+, V〉 |= ϕ[y], and there
exists aZ ∈ βA(x, y) such that, for anyz ∈ Z, 〈A+, V〉 |= ψ[z]. By induction hy-
pothesis we getv(ϕ) ∈ y and, for anyz ∈ Z, v(ψ) ∈ z. But Z ∈ βA(x, y), andso
by definition ofβA we obtainu(v(ϕ), v(ψ)) = v(U(ϕ,ψ)) ∈ x. Conversely, sup-
poseu(v(ϕ), v(ψ)) = v(U(ϕ,ψ)) ∈ x. By Proposition3.4(ii) there exists ay ∈ WA

such thatv(ϕ) ∈ y andρ(x, v(ψ), y), and by Remark3.3 we havexRA y. Now let
Z = {z : 〈A+, V〉 |= ψ[z]} ∩ [x, y]. Suppose by contradiction thatZ �∈ βA(x, y). By
definition ofβA, this means that there exist ab and ac in A such thatb ∈ y, c ∈ z
for any z ∈ Z, and(u(b, c))′ ∈ x. From Proposition3.4(iii) it follows that there ex-
ists at ∈ WA such thatρ(x,1, t), ρ(t,1, y), v(ψ) ∈ t, andc′ ∈ t. This impliest ∈ Z
andc �∈ t, acontradiction. ThereforeZ ∈ βA(x, y). By definition of truth, it follows
x ∈ V (U(ϕ,ψ)).

As announced in Definition4.3, from this proof one gets also the closure prop-
erties of�A required by Definition2.4. Similarly, one can show that the function
� from the points of a US-algebraA to �A, defined by�(b) = {x : x an ultra-
filter on A with b ∈ x} is an isomorphism fromA to (A+)+ (consider, for exam-
ple, the case of the operatoru: from the definitions, we have thatu(�(b),�(c)) =
u({t ∈ WA : b ∈ t}, {t ∈ WA : c ∈ t}) = {x ∈ WA : ∃y : b ∈ y and xRA y, and
∃Z ∈ βA(x, y) : ∀z ∈ Z, c ∈ z}; now, proceeding as in the above proof, one can show
that this set coincides with{x ∈ WA : u(b, c) ∈ x}, which by definition of� is just
�(u(b, c))). Therefore it holds that

any US-algebraA is isomorphic to(A+)+.

As in unary modal and tense logics, problems arise when one starts from frames: in
our case, it does not hold for any general e-frameF thatF is isomorphic to(F +)+.
In unary logics, on that account, those general frames for which such an isomorphism
holds have been characterized (thedescriptive general frames; see Goldblatt [4]). We
recall that a general frameF = 〈W, R,�〉 is descriptive if it satisfies



238 FABIO BELLISSIMA and SAVERIO CITTADINI

(i) (∀B ∈ �)(x ∈ B ⇐⇒ y ∈ B) =⇒ x = y,
(ii) (∀B ∈ �)(y ∈ B =⇒ x ∈ f (B)) =⇒ xRy,

where f (B) = {x : ∃y(xRy and y ∈ B)} is the operator ofF +, that is, the dual
(modal) algebra ofF , and

(iii) for any ultrafilter D of F +, there existsx ∈ W such thatD = {B ∈ � : x ∈ B}.
Clearly, since US-logics extend unary logics, these conditions are still necessary to
obtain isomorphism betweenF and (F +)+ (note that in this casef (B) coincides
with u(B, W ), whereu is the operator of the US-algebraF +). But they are not suf-
ficient: in fact, one has also to determine opportune conditions onβ.

Definition 4.4 A general e-frameF = 〈W, R, β,�〉 satisfies condition �-β if and
only if, for any (x, y) ∈ R and anyZ ⊆ [x, y] i t holds that, if

(1) for all B, C ∈ � such thaty ∈ B andZ ⊆ C there exists aw ∈ B such thatxRw,
and aT ∈ β(x,w) such thatT ⊆ C,

thenZ ∈ β(x, y).

Definition 4.5 A general e-frame isdescriptive if and only if it is descriptive as a
general frame and satisfies condition�-β.

Condition�-β says, essentially, that the behavior of the elements of� with respect
to β forces that of other sets of points with respect toβ. Its role will be made clearer
by the proof of Theorem4.7.

Now we show that being descriptive is a necessary and sufficient condition for
a general e-frameF to be isomorphic with(F +)+. We treat the two directions sep-
arately.

Theorem 4.6 For any US-algebra A , the general e-frame A+ is descriptive.

Proof: From a well-known result of unary modal and tense logics we have that the
general frame underlyingA+ is descriptive. Thus we have to check only condition
�-β. Assuming condition 1 of Definition4.4, we want to show thatZ ∈ βA(x, y)

(herex and y are points ofA+, that is, ultrafilters onA ). By definition ofβA, this
means that, forb, c points ofA , if b ∈ y andc ∈ z for any z ∈ Z, thenu(b, c) ∈ x.
Now let us callB (resp.C) the point ofA+ corresponding tob (resp.c), that is, the set
of ultrafilters to whichb (resp.c) belongs. Clearly,B, C ∈ �A, and moreover,b ∈ y
translates toy ∈ B, andc ∈ z for anyz ∈ Z translates toZ ⊆ C. Suppose theny ∈ B
andZ ⊆ C. By hypothesis, it follows that there exists aw ∈ B such thatxRAw and
a T ⊆ C such thatT ∈ βA(x,w). But w ∈ B meansb ∈ w, andT ⊆ C means that
c ∈ t, for anyt ∈ T . Thus fromT ∈ βA(x,w) it follows thatu(b, c) ∈ x, by definition
of βA. �

Theorem 4.7 If F = 〈W, R, β,�〉 is a descriptive general e-frame, then the func-
tion � from F to (F +)+ defined by �(x) = {B ∈ � : x ∈ B} is an isomorphism.

Proof: It is known from unary modal and tense logics that� is an isomorphism
of general frames. Therefore we only have to check thatZ ∈ β(x, y) if and only if
�[ Z] ∈ βA(�(x),�(y)), whereA is the carrier ofF +. Now, from the definitions
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it follows that�[ Z] ∈ βA(�(x),�(y)) means that for anyB, C ∈ �, if y ∈ B and
Z ⊆ C, then there exists aw ∈ B such thatxRw and aT ⊆ C such thatT ∈ β(x,w) (in
other words,�[ Z] ∈ βA(�(x),�(y)) is just condition 1 of Definition4.4). Suppose
then Z ∈ β(x, y), and takeB, C ∈ � such thaty ∈ B and Z ⊆ C. Clearly we may
takew = y andT = Z, thus obtaining�[ Z] ∈ βA(�(x),�(y)). Conversely, assume
�[ Z] ∈ βA(�(x),�(y)). Then, using condition�-β, weobtainZ ∈ β(x, y). �

Again in analogy with the unary case, we have the following result.

Theorem 4.8 Every finite general e-frame F = 〈W, R, β,�〉 which is descriptive
as a general frame is descriptive (as a general e-frame).

Proof: Since by Remark2.5any e-frame can be considered asβ-upward closed, it
is enough to show that ifF is finite and descriptive as a general frame, then condi-
tion�-β is equivalent toβ-upward closedness (we recall that a finite general frame is
descriptive if and only if� = P (W )). It is clear that every general e-frame which sat-
isfies condition�-β is β-upward closed. For the converse, assumeβ-upward closed-
ness and condition 1 of Definition4.4. Since� = P (W ), we may takeB = {y} and
C = Z, and it follows that there existsT ⊆ Z such thatT ∈ β(x, y). Applying β-
upward closedness, we obtainZ ∈ β(x, y), and thus condition�-β is satisfied. �

For the infinite case,β-upward closedness does not imply condition�-β, asthe fol-
lowing counterexample shows.

Let X be a denumerable set and defineW = X ∪ {−∞,∞} (where−∞,∞ �∈
X). SetR = {(−∞, x) : x ∈ X} ∪ {(x,∞) : x ∈ X} ∪ {(−∞,∞)} and� = P (W ).
Now F = 〈W, R,�〉 is a general frame and we can consider its bidual(F +)+, in
the sense of unary modal and tense logics. As is well known,(F +)+ is a descriptive
general frame, and it is straightforward to verify that(F +)+ ∼= 〈W ′, R′,�′〉, where
W ′ = W ∪ Y for a setY of cardinality 2ℵ0 disjoint with W, R′ = R ∪ {(−∞, y) :
y ∈ Y} ∪ {(y,∞) : y ∈ Y}, and�′ contains all finite subsets ofW, but if B ∈ �′ is
infinite thenB ∩ Y �= ∅. Now define a general e-frameG over (F +)+, by setting
β(−∞,∞) = {Z ⊆ X ∪ Y : Z ∩ Y �= ∅} (in all other cases the only possibility is
β(x, y) = {∅}). Clearly,G is β-upward closed. ButG does not satisfy condition�-
β. In fact, let Z be any infinite subset ofX, and letB, C ∈ �′ be such that∞ ∈ B and
Z ⊆ C. Then, sinceC is infinite, we haveC ∩ Y �= ∅. ThusC ∩ Y ∈ β(−∞,∞),
and since∞ ∈ B andC ∩ Y ⊆ C, condition 1 of Definition4.4 is fulfilled for x =
−∞, y = ∞ and ourZ with w = ∞ andT = C ∩ Y . But Z �∈ β(−∞,∞), because
Z ∩ Y = ∅, so condition�-β is not satisfied.

5 Morphisms Now, by analogy with the unary case, we want to give a definition
of general e-frame morphism, corresponding (contravariantly) to that of US-algebra
morphism. In such a way, we obtain a category-theoretic contravariant duality be-
tween descriptive general e-frames and US-algebras.

Definition 5.1 Let F1 = 〈W1, R1, β1,�1〉 andF2 = 〈W2, R2, β2,�2〉 be general
e-frames, and let� be a function fromW1 to W2. We say that� is ageneral e-frame
morphism if � is a general frame morphism, and furthermore
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(i) if Z ∈ β1(x, y), then�[ Z] ∈ β2(�(x),�(y));

(ii) for any x ∈ W1 andB, C ∈ �2, if there exists āy ∈ B such that�(x)R2 ȳ and
a Z̄ ∈ β2(�(x), ȳ) such thatZ̄ ⊆ C, then there exists av ∈ �−1[ B] such that
xR1v and aZ ∈ β1(x, v) such thatZ ⊆ �−1[C];

(iii) for any y ∈ W1 andB, C ∈ �2, if there exists āx ∈ B such thatx̄R2�(y) and
a Z̄ ∈ β2(x̄,�(y)) such thatZ̄ ⊆ C, then there exists aw ∈ �−1[ B] such that
wR1y and aZ ∈ β1(w, y) such thatZ ⊆ �−1[C].

Note that conditions (ii) – (iii) involve�1 and�2. Thus our definition of general e-
frame morphism recalls that of weak contraction (see, e.g., Sambin and Vaccaro [6])
more than the usual one ofp-morphism of the unary case. To achieve a stronger anal-
ogy with the unary case, one should find a notion of general e-frame morphism which
does not involve�1 and�2 and for descriptive general e-frames is equivalent to the
one we have given. A good candidate may be the definition obtained from5.1 by
replacing (ii) – (iii) with the following ones.

(ii) ′ for anyx ∈ W1, ȳ ∈ W2, and Z̄ ⊆ W2, if �(x)R2 ȳ and Z̄ ∈ β2(�(x), ȳ), then
there exists av ∈ W1 such thatxR1v and�(v) = ȳ, and aZ ∈ β1(x, v) such
that Z ⊆ �−1[ Z̄];

(iii) ′ for any y ∈ W1, x̄ ∈ W2, and Z̄ ⊆ W2, if x̄R2�(y) and Z̄ ∈ β2(x̄,�(y)), then
there exists aw ∈ W1 such thatwR1y and�(w) = x̄, and aZ ∈ β1(w, y)such
that Z ⊆ �−1[ Z̄].

In fact, it is easy to verify that (ii)′ –(iii) ′ are equivalent to (ii) – (iii) whenF1 and
F2 arefinite descriptive general e-frames (i.e.,W1 andW2 are finite sets, and�1 =
P (W1), �2 = P (W2)). Moreover, if we calle-frame morphism afunction which is a
frame morphism and satisfies conditions (i), (ii)′, and (iii)′, we have that an e-frame
morphism� preserves the truth of formulas (that is,x |= ϕ if and only if �(x) |= ϕ),
as can be shown by an easy induction on the complexity of the formula. But whether
the equivalence of (ii) – (iii) and (ii)′ –(iii) ′ holds also for infinite descriptive general
e-frames is an open question.

The following two theorems show the announced correspondence between gen-
eral e-frame morphisms and US-algebra morphisms.

Theorem 5.2 Let � be a general e-frame morphism from F1 = 〈W1, R1, β1,

�1〉 to F2 = 〈W2, R2, β2,�2〉. Then the function � from F +
2 to F +

1 defined by
�(B) = �−1[ B] is a US-algebra morphism.

Proof: It is straightforward to verify that� preserves Boolean operators. As
for u, using the definitions and conditions (i) and (ii) of Definition5.1, we obtain
�(u(B, C)) = �−1[u(B, C)] = �−1[{x̄ ∈ W2 : ∃ ȳ ∈ B : x̄R2 ȳ and∃ Z̄ ∈ β2(x̄, ȳ) :
Z̄ ⊆ C}] = {x ∈ W1 : ∃ ȳ ∈ B : �(x)R2 ȳ and∃ Z̄ ∈ β2(�(x), ȳ) : Z̄ ⊆ C} = {x ∈ W1 :
∃v ∈ �−1[ B] : xR1v and∃Z ∈ β1(x, v) : Z ⊆ �−1[C]} = {x ∈ W1 : ∃v ∈ �(B) :
xR1v and∃Z ∈ β1(x, v) : Z ⊆ �(C)} = u(�(B),�(C)) (note: we are usingu for
both the operator ofF +

1 and that ofF +
2 ). The case ofs is proved analogously, using

conditions (i) and (iii) of Definition5.1. �
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Theorem 5.3 Let � be a US-algebra morphism from A2 to A1. Then the function
� from A1+ to A2+ defined by �(x) = {b ∈ A2 : �(b) ∈ x} (where A2 is the carrier
of A2; we use the analogous notation for A1) is a general e-frame morphism.

Proof: Sincex is an ultrafilter onA1 and� is a US-algebra morphism,�(x) is an
ultrafilter onA2. It isclear from well-known results on unary logics that� is a general
frame morphism: thus we have to check only conditions (i) – (iii) of Definition5.1.
As regards (i), letxRA1 y andZ ∈ βA1(x, y). By definition ofβA1, this means that for
anyb, c ∈ A1, if b ∈ y andc ∈ z for anyz ∈ Z, thenu(b, c) ∈ x (again, we shall use
u for both the operator ofA1 and that ofA2). Now, takeb̄, c̄ ∈ A2, and assume that
b̄ ∈ �(y) andc̄ ∈ z̄, for any z̄ ∈ �[ Z] (that is,c̄ ∈ �(z), for anyz ∈ Z). By definition
of �, it follows that�(b̄) ∈ y and�(c̄) ∈ z for anyz ∈ Z, whenceu(�(b̄),�(c̄)) ∈ x.
But � is a US-algebra morphism, so we have�(u(b̄, c̄)) ∈ x and thereforeu(b̄, c̄) ∈
�(x). By definition ofβA2, it follows that�[z] ∈ βA2(�(x),�(y)). As regards (ii),
let B∗, C∗ ∈ �A2, and suppose that there exists aȳ ∈ B∗ such that�(x)RA2 ȳ and a
Z̄ ∈ β2(�(x), ȳ) such thatZ̄ ⊆ C∗. Recall thatB∗ andC∗ are sets of ultrafilters on
A2 which correspond to pointsb∗, c∗ of A2, sothat ȳ ∈ B∗ is equivalent tob∗ ∈ ȳ,
and Z̄ ⊆ C∗ is equivalent toc∗ ∈ z̄ for any z̄ ∈ Z̄. Now, Z̄ ∈ β2(�(x), ȳ) means that
for anyb, c ∈ A2 with b ∈ ȳ andc ∈ z̄ for any z̄ ∈ Z̄, it holdsu(b, c) ∈ �(x). Thus,
in particular,u(b∗, c∗) ∈ �(x), which, by definition of�, implies�(u(b∗, c∗)) =
u(�(b∗),�(c∗)) ∈ x. Let B̄ andC̄ be the points of�A1 corresponding to�(b∗) and
�(c∗). Then fromu(�(b∗),�(c∗)) ∈ x we obtain thatx ∈ u( B̄, C̄), where the latteru
is the operator of the algebra(A1+)+ (which is isomorphic toA1). By Definition4.2,
this means that there exists av ∈ B̄ such thatxRA1v and aZ ∈ βA1(x, v) such thatZ ⊆
C̄. But v ∈ B̄ means�(b∗) ∈ v, henceb∗ ∈ �(v) andv ∈ �−1[ B∗], and moreover,
Z ⊆ C̄ means�(c∗) ∈ z for anyz ∈ Z, hencec∗ ∈ �(z) for anyz ∈ Z and therefore
Z ⊆ �−1[C∗]: thus condition (ii) holds. Condition (iii) is proved similarly. �
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