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The Laws of Distribution for Syllogisms

WILFRID HODGES

Abstract The laws of distribution follow at once from Lyndon’s interpolation
theorem and the fact that the fallacy of many terms is a fallacy.

1 Introduction Since at least the seventeenth century, logic textbooks which dis-
cuss syllogisms have usually quoted some laws that a valid syllogism must obey. Dif-
ferent authors give different lists, but the following two laws are usually on the menu:

(a) The middle term must be distributed in at least one premise. (Some authors
add: exactly one premise.)

(b) If a term is distributed in the conclusion, then it must be distributed in the
premise in which it occurs. (Some authors add: if it is undistributed in the con-
clusion, then it must be undistributed in the premise in which it occurs.)

(In a moment I shall discuss the meanings of the technical terms in these laws.) The
laws (a) and (b) are variously known as thelaws of distribution or thelaws of quantity.
Kneale and Kneale ([2], p. 273) find the first parts of the two laws in the writings of
the Jesuits of Coimbra in 1607. The second parts are apparently later; Peirce ([6],
p. 350) had them in 1886.

One can justify the laws by checking that they hold for all valid syllogisms—
there are only a small finite number to check. But many authors tried to give some
general argument which covered all cases. These arguments were always unconvinc-
ing; but this was hardly surprising, since the early authors never managed to find suit-
able definitions of “distributed” and “undistributed.” With twentieth century tools
there is no problem in writing down sound definitions of these notions—in fact there
are several ways of doing it—and then Lyndon’s interpolation theorem [4] gives the
laws of distribution almost immediately.

This paper is a revised version of the results of a discussion I had with Col-
wyn Williamson in March 1993. There is nothing original in it, beyond the easy ob-
servation that Lyndon’s theorem gives the distribution laws. I wrote it up for pub-
lication because I became aware that the facts have not reached print. In fact they
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haven’t even reached the grapevine. Recently I came across a team whose research
project revolved around answering the question which Lyndon’s theorem has already
answered.

2 Syllogisms We work with a signatureσ consisting of three 1-ary relation sym-
bols P, Q, R. So aσ-structureM consists of a set dom(M) (thedomain of M) and
three subsetsPM, QM, RM of dom(M). I write L for the first-order language of sig-
natureσ. The languageS of syllogisms has four types of atomic sentence. I write
them below, each with its common English reading and a sentence ofL which I shall
call its first approximant. The symbolsX, Y are metavariables ranging over the set
of symbols{P, Q, R}; when we talk aboutS, these three relation symbols are called
terms.

(1) A(X, Y ), ‘Every X is aY .’
∀x (Xx → Yx).

(2) E(X, Y ), ‘No X is aY ’.
∀x (Xx → ¬Yx).

(3) I(X, Y ), ‘SomeX is aY ’.
∃x (Xx ∧ Yx).

(4) O(X, Y ), ‘SomeX is not aY ’.
∃x (Xx ∧ ¬Yx).

The sentences ofS are the atomic sentences ofS and any built up from these by truth-
functions¬,∧,∨,→,←→. There has been some confusion about how to interpret
an atomic sentence ofS in a σ-structure where one or both of the terms names an
empty set. I shall assume for the moment that each atomic sentence means the same
as its first approximant; but we shall have to come back to the question later.

We say that aσ-structureM is amodel of the sentenceϕ if ϕ is true inM. The
expression

ϕ1, . . . , ϕn � ψ,

whereϕ1, . . . , ϕn, ψ are sentences ofL or S, is called asequent; its premises are
ϕ1, . . . , ϕn and itsconclusion is ψ. It is said to bevalid if every σ-structure which
is a model of the premises is also a model of the conclusion. Instead of saying that
the sequent is valid, we may say thatϕ1, . . . , ϕn entail ψ. We say that sentencesϕ
andψ areequivalent if they are true in exactly the sameσ-structures; or equivalently,
if ϕ andψ entail each other.

A syllogism is a sequent

ϕ1, ϕ2 � ψ

whereϕ1, ϕ2, ψ are atomic sentences ofS and each of the three symbolsP, Q, R oc-
curs in precisely two ofϕ1, ϕ2, ψ. The term which occurs only in the premises is
called themiddle term of the syllogism.

For technical reasons we shall sometimes expand the signatureσ by adding a
new 1-ary relation symbolQ�. The new signature with this symbol added is called
σ�. The notions of validity, equivalence, and so forth work forσ�-structures in the
same way as forσ-structures.
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3 The fallacy of many terms Suppose

ϕ1, ϕ2 � ψ

is a valid syllogism. Suppose also that

ϕ◦
1, ϕ

◦
2 � ψ◦

is a sequent in signatureσ� which comes from the syllogism by replacing the termQ
in one of its occurrences byQ�. (There are two such sequents, depending on which
occurrence ofQ we replace.) We say that this sequent inσ� commitsthe fallacy of
many terms.

It will be important for us to know that the fallacy of many terms really is a fal-
lacy. In other words:

The sequent ϕ◦
1, ϕ

◦
2 � ψ◦ is not valid.

Tosee this, suppose for definiteness thatQ is the middle term and that we replace it by
Q� in ϕ2. Let M be anyσ�-structure in whichψ is false, and the setsPM andRM are
not empty and not the whole domain ofM. (Clearly there is such a structure.) Form
anewσ�-structureN which agrees withM in its domain and its interpretations ofP
andR, but has interpretations ofQ andQ� which make the two premisesϕ◦

1 andϕ◦
2

true. (Again it is clear that we can find such anN, since each of the symbolsQ, Q�

occurs only once. For future reference we note that bothQN andQ�N can be chosen
so that they are not empty and not the whole of the domain.) SinceM andN agree
in their interpretations ofP andR, the conclusionψ◦ (which is the same asψ) isstill
false inN. HenceN is a counterexample to the sequent.

4 Distribution Supposeϕ is a first-order sentence in which the symbols→ and
←→ never occur. A relation symbolX is said tooccur positively in ϕ if it has an
occurrence which lies within the scope of an even number of negation signs; it is said
to occur negatively in ϕ if it has an occurrence which lies within the scope of an odd
number of negation signs.

The definitions of positive and negative occurrence in arbitrary first-order sen-
tences are more complicated. For us it will be easiest to stick with the definitions
above and use the fact that every first-order sentence is equivalent to one in which→
and←→ never appear.

Lyndon’s interpolation theorem [4] states:

If ϕ andψ are first-order sentences andϕ entailsψ, then there exists a sentence
θ such thatϕ entailsθ, θ entailsψ, and every relation symbol which occurs pos-
itively (negatively) inθ occurs positively (negatively) in bothϕ andψ.

Weshall need an immediate corollary of Lyndon’s theorem:

Corollary 4.1 Suppose ϕ and ψ are first-order sentences such that ϕ entails ψ, and
a certain relation symbol Q occurs positively in at most one of ϕ and ψ, and also
occurs negatively in at most one of ϕ and ψ. Suppose also that we introduce the new
relation symbol Q� and write ψ� for ψ with every occurrence of Q replaced by Q�.
Then ϕ entails ψ�.
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The point is that ifθ is the Lyndon interpolant, thenϕ entailsθ andθ entailsψ; but
sinceQ doesn’t occur inθ, θ must also entailψ�.

Now we can define “distributed.”

Definition 4.2 A term X is said to bedistributed in an atomic sentenceϕ of S if X
occurs inϕ and there is a first-order sentenceϕ′ which is equivalent toϕ, in which X
doesn’t occur positively. LikewiseX is said to beundistributed in ϕ if the same holds
but with “negatively” for “positively.”

For example, if we use first approximants to interpretS, the sentenceA(P, Q) is
equivalent to

∀x (¬Px ∨ Qx).

We see thatP is distributed andQ is undistributed inA(P, Q). Likewise P and Q
are both distributed inE(P, Q) and both undistributed inI(P, Q). Finally P is undis-
tributed andQ distributed inO(P, Q).

5 Proof of the laws of distribution I prove the laws of distribution first under the
assumption that the first approximants give the meanings of atomic sentences ofS.

Consider the first half of law (a). For contradiction, let

ϕ1, ϕ2 � ψ

be a valid syllogism in which the middle termQ is undistributed in both premises.
Then we can translate the syllogism into a sequent ofL ,

ϕ′
1, ϕ

′
2 � ψ′,

in which Q doesn’t occur negatively in eitherϕ′
1 or ϕ′

2 and doesn’t occur at all inψ′.
This sequent is equivalent to

ϕ′
1 � (¬ϕ′

2 ∨ ψ′),

whereQ doesn’t occur negatively on the left of� and doesn’t occur positively on the
right. By Corollary4.1, it follows that the sequent

ϕ′
1 � (¬(ϕ�

2)
′ ∨ ψ′)

is valid, whereϕ�
2 is ϕ2 with Q replaced by the new termQ�, and(ϕ�

2)
′ is the cor-

responding first-order translation ofϕ�
2. (Recall thatQ doesn’t occur inψ′.) Then

translating back fromL to S,
ϕ1, ϕ

�
2 � ψ

is valid. But this sequent commits the fallacy of many terms and hence is invalid.
Thus we reach a contradiction.

This proves the first part of law (a) of distribution. The proof of the second part
is exactly the same but with “positively” and “negatively” transposed. For law (b) we
argue in the same way but with the sequent

ϕ′
1 ∧ ϕ′

2 � ψ′,

noting that if a term occurs in the conclusion then it will occur in just one ofϕ′
1 and

ϕ′
2.
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6 Other interpretations of S In dealing with syllogisms, many people restrict the
class ofσ-structures to thoseM in which PM, QM, RM are all nonempty. Some move
of this kind is needed if we want Darapti (which I quote below) to be a valid form, as
Aristotle took it to be. Another way of achieving exactly the same effect is to make
no restriction onσ-structures, but to interpret an atomic sentence ofS, say with terms
X, Y , as equivalent to the conjunction of its first approximant and the two sentences

∃xXx, ∃xYx.

These two sentences are called theexistence assumptions. On this interpretation, if a
syllogism is valid, then so is the corresponding first-order sequent where we add the
existence assumptions only to the premises, not to the conclusion. (If the premises
entailψ1 ∧ ψ2, then they entailψ1 on its own.)

Now there are two ways of proceeding. The first route is to conjoin the existence
assumptions when we test for distribution. This has the consequence thatX is no
longer distributed inA(X, Y ), sinceX occurs positively in∃xXx. I think nobody who
works with syllogisms would be willing to go down this route. The second route,
which I shall follow, is to use only the first approximant when testing for distribution;
this way we still get the traditional division into distributed and undistributed.

The existence assumptions have no negative occurrences of any terms; so adding
them will not make any difference to which terms occur negatively in the premises.
On this interpretation, the first parts of laws (a) and (b) of distribution are proved just
as before, recalling that when we proved that the fallacy of many terms is a fallacy,
we always used nonempty sets.

Unfortunately the proofs of the second parts of the two laws go astray in this in-
terpretation: if a symbol occurs positively on the right-hand side of the sequent, and
the corresponding existence assumption appears on the left-hand side, then the sym-
bol can occur in the interpolant. But this is as it should be, because under the present
interpretation there are counterexamples to these second parts. A counterexample to
the second part of (a) is Darapti, which hasQ distributed in both premises:

A(Q, P), A(Q, R) � I(R, P).

A counterexample to the second part of (b) is Bramantip:

A(P, Q), A(Q, R) � I(R, P).

HereP is distributed in the first premise but undistributed in the conclusion.
On another interpretation sometimes attributed to the medievals, one should read

the atomic sentences ofS as follows.

A(X, Y ) : ∀x (Xx → Yx) ∧ ∃xXx.
E(X, Y ) : ∀x (Xx → ¬Yx).

I(X, Y ) : ∃x (Xx ∧ Yx).

O(X, Y ) : ∃xXx → ∃x (Xx ∧ ¬Yx).

(I assume as before that we are sticking with the traditional division into distributed
and undistributed.) This interpretation disrupts the proofs of the second parts of laws
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(a) and (b) for the same reason as before, with the same counterexamples. But the
first parts of both laws are still intact by essentially the same proof as before. I leave
the details to the reader. (For example whenO(X, Y ) occurs as a premise of a valid
sequent, the sequent remains valid when we drop the “∃xXx →.”)

7 Some historical remarks The Port-Royal Logic (Arnauld and Nicole, [1], III.3,
for example) paraphrases “X is distributed inϕ” as

[ X] doit être pris universellement.

Several centuries earlier, Peter of Spain in hisTractatus De Distributionibus ([7],
p. 209) defined distribution as

multiplicatio termini communis per signum universale facta.

At first glance one might take these formulations as two ways of saying the same
thing. But what the authors of the Port-Royal Logic meant was very different from
what Peter of Spain meant.

Let us take Peter first. He explains that a common noun such as “man” is dis-
tributed if it appears in the context “every man” or “no man” or “whatever man” or
asimilar phrase. (See [7], p. 209 for the details.) I think it is not far from Peter’s in-
tentions if we say that a termX in a sentenceϕ is “distributed” if X appears just once
in ϕ andϕ has the form

∀x (Xx → ·· ·).
Let us express this condition by saying thatX is universally quantified in ϕ. Likewise
we can say thatX is existentially quantified in ϕ if X appears just once inϕ andϕ has
the form

∃x (Xx ∧ · · ·).
Peter has no name for this second condition.

On Peter’s definition of distribution, the second term in an atomic sentence of
S is never distributed; Peter never claims otherwise. So his definition is not the one
needed for the traditional classification in syllogisms.

We turn to the Port-Royal authors. It seems that their formulation is meant to
express thatϕ says aboutall subsets of X whateverϕ says aboutX. For example,
when the authors discuss the fact thatY is distributed in bothE(X, Y ) andO(X, Y ),
they comment that this fact means the same as the dictum that “If the genus is denied,
the species also is denied” ([1], II.19).

Of course from the standpoint of today’s logic there is no relevant difference
between species of the genus and arbitrary subsets of the genus. In modern terms
one would rewrite the Port-Royal definition as follows. Let us say that a termX in
a formulaϕ is downward monotone in ϕ if for every structureM in which ϕ is true,
ϕ is also true inN wheneverN is the same asM except thatX N is a proper subset
of X M. Then a modern version of the Port-Royal Logic definition says that a term
X is distributed in a sentenceϕ if and only if X is downward monotone inϕ. (See
Makinson [5] for a similar analysis.)

By analogy we say thatX is upward monotone in ϕ if for every structureM in
whichϕ is true,ϕ is also true inN wheneverN is the same asM except thatX M is a
proper subset ofX N .
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If we read “distributed” as “downward monotone,” do we get the traditional clas-
sification of terms in syllogisms? Yes we do, for the following reasons. The Tarski
truth definition quickly implies two facts:

If X doesn’t occur positively inϕ then it is downward monotone inϕ.

If X doesn’t occur negatively inϕ then it is upward monotone inϕ.

The usual way that logicians check upward or downward monotonicity is by means
of these two facts. In any case we see at once that if a term is distributed (according
to Definition4.2), then it is downward monotone; and if it is undistributed then it is
upward monotone.

For full first-order logic there is a converse which is more complicated. But for
atomic sentences ofS without repeated terms, one can check directly that terms which
are downward (upward) monotone in a sentenceϕ of S don’t in fact occur positively
(negatively) in the first approximant ofϕ. One can also check directly that each term
in these sentences is either upward monotone or downward monotone, and not both;
so the Port-Royal logic was entitled to take “undistributed” to mean “not distributed.”

The outcome of all these facts is that for the syllogistic sentences that we are con-
sidering, “distributed” and “undistributed” in the Port-Royal sense coincide exactly
with “distributed” and “undistributed” in our sense. Hence the Port-Royal definition
does lead correctly to the traditional classification of terms, unlike Peter of Spain’s
definition.

It is interesting to read the proof of the first part of law (a) in the Port-Royal Logic
([1], III.3):

Now if the middle term is taken twice [undistributed], it can be taken for two
different parts of the same whole; and hence one cannot draw any conclusion
(or at least, any necessary conclusion). This is enough to make an argument
invalid, since one calls a syllogism valid only if the conclusion cannot be false
when the premises are true.

The authors’ proof is precisely our proof, except for the fact that they skip over the
reason why the fallacy of many terms arises. But this is exactly the step that Lyndon’s
interpolation theorem gives us.

Note that in order to apply Lyndon’s theorem, we had to give separate and dual
definitions of “distributed” and “undistributed.” It would not have been enough to
define “undistributed” as “not distributed,” as the Port-Royal authors did. To the best
of my knowledge, none of the traditional writers on distribution saw the need for a
separate definition of “undistributed.”

The connection between distribution and monotonicity is certainly not new in
the Port-Royal Logic. Śanchez Valencia [8] reports a number of medieval writers,
including Lambert of Auxerre, Ockham and Burley, who saw some relationships be-
tween the two notions. One remark of Lambert ([3], p. 141) is particularly interesting:

Again, it is important to know that not only universal signs have the power of
distributing, but also negation.

Lambert goes on to note that adding a negation sign swaps a term from distributed to
undistributed or vice versa.
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When Lambert speaks of “universal signs” he has in mind the same condition
that Peter of Spain used as a definition of “distributed,” namely that the term comes
with a word such as “every.” Lambert’s own definition is obscure, but most of what he
says is consistent with the assumption that he means downward monotone. We should
take a moment to compare “universally quantified” with “downward monotone.”

In first-order notation a sentence

. . . every man . . . .

goes over into
∀x (¬(x is a man) ∨ . . . x . . . ).

Assuming that “man” doesn’t appear anywhere else in the sentence, we see at once
that “man” or “is a man” occurs only negatively, so that it is undistributed in our sense
and hence downward monotone.

So universally quantified implies downward monotone. The converse is cer-
tainly not true, as Peter himself notes ([7], p. 224f,“Utrum negatio habeat vim dis-
tribuendi”). His conclusion is that negation is like universal quantification in that it
is downward monotone (“destructo genere destruitur quelibet eius species”), but it
doesn’t distribute because it doesn’t introduce a word such as “every.” Peter’s own
examples are not syllogistic sentences in our sense. But he could have taken the term
Y in O(X, Y ) as an example of a term which is downward monotone because of nega-
tion but not universally quantified.

When a term is universally quantified, one naturally asks whether the distribu-
tion comes from the∀x or the¬ or both together or some other feature of the for-
mula. Lyndon’s theorem has told us the answer: it comes from the¬, and the∀x is
completely irrelevant. No doubt Lambert would have spotted this if he had known
the first-order translation.

During the twentieth century the traditional logicians have suffered a bad press
for their treatment of distribution. A fairer assessment would be that the best tradi-
tional logicians got remarkably close to the truth, given the inadequacy of their tools.

8 Rules of quality In passing let me mention another group of traditional rules.
One counts the sentencesA(X, Y ) andI(X, Y ) aspositive andE(X, Y ) andO(X, Y )

asnegative. (In fact the notation for atomic sentences ofS comes from this division,
using the Latin words “AffIrmo” and “nEgO.”)

(c) If both premises of a valid syllogism are positive then the conclusion is positive.
(d) If one premise of a valid syllogism is negative then the conclusion is negative.
(e) There is no valid syllogism with both premises negative.

Law (c) is not hard to prove. Let us say that aσ-structureM is terminal if it has exactly
one element and this element is in all ofPM, QM, RM. (Terminal structures are the
terminal objects in the category ofσ-structures and homomorphisms.) One checks
that (on any of the interpretations discussed above) ifϕ is an atomic sentence ofS
andM is terminal, thenϕ is true inM if and only if ϕ is positive.
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For those who know the terminology, another way of stating this proof of (c)
is that the positive sentences are strict Horn and the negative sentences are nonstrict
Horn. There is no valid implication from strict Horn premises to a nonstrict Horn
conclusion.

Law (d) follows by a switch. Suppose

ϕ1, ϕ2 � ψ

is a valid syllogism which violates (d). Then

ϕ1,¬ψ � ¬ϕ2

is a valid sequent which violates (c). But ifϕ is an atomic sentence ofS then¬ϕ

is equivalent to an atomic sentence ofS (under the existence assumptions, if we are
using these).

I know no interesting general principle which gives (e). This law is very sensi-
tive to Aristotle’s choice of atomic sentences. Had he introduced a sentenceY (X, Y )

with the meaning “There is something which is neither anX nor aY ,” the sequent

E(Q, P), E(Q, R) � Y(P, R)

would have been a counterexample to (e) in the interpretation where all terms are re-
quired to be nonempty. As the referee kindly notes, (e) also fails if we allow negative
terms such as “not-man.”
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