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Abstract In “Intuitionistic validity in T-normal Kripke structures,” Buss
asked whether every intuitionistic theory is, for some classical theoryT , that of
all T-normal Kripke structuresH (T ) for which he gave an r.e. axiomatization.
In the language of arithmeticIop andLop denote PA− plus Open Induction
or Open LNP,iop andlop are their intuitionistic deductive closures. We show
H (Iop) = lop is recursively axiomatizable andlop �i c� iop, while i∀1 �� lop.
If iT proves PEMatomic but not totality of a classically provably total Diophan-
tine function ofT , thenH (T ) �⊆ iT and soiT �∈ range(H ). A result due to
Wehmeier then impliesi�1 �∈ range(H ). WeproveIop is not∀2-conservative
over i∀1. If Iop ⊆ T ⊆ I∀1, theniT is not closed under MRopenor Friedman’s
translation, soiT �∈ range (H ). BothIop andI∀1 are closed under the negative
translation.

1 Iop-normal Kripke structures vs. models of iop or lop Webegin with a version
of the Kripke semantics for (arithmetic in) intuitionistic predicate logic. The language
L = {+, · ,<,0,1} is fixed throughout the paper unless otherwise is mentioned. Let
us consider Kripke structures forL to be of the formK = 〈K,≤; (Mα)α∈K〉. The
frame〈K,≤〉 of K is a rooted poset whose elements are called nodes ofK . The at-
tached worldMα at a nodeα is a classical structure (interpreting=) for L whose
universe is denotedMα. In each such world the interpretation of the equality sym-
bol contains, perhaps strictly, the true equality but is still anL-congruence relation.
For all α, β ∈ K with α ≤ β (in which caseβ is said to be accessible fromα), Mα

is a weak substructure of (or homomorphically embedded in)Mβ. This means that
Mα ⊆ Mβ and the truth inMα of atomic sentences with parameters fromMα is pre-
served inMβ, although tuples of elements ofMα may acquire new atomic properties
(e.g., equality) inMβ. The forcing relation� between nodes and atomic sentences
coincides with classical truth|= in the corresponding attached worlds. In particular
no node forces⊥. The inductive definitions for∨,∧,∃ are as their classical counter-
parts while the ones for→ and∀ (through the latter forcing of a formula defined as
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forcing of its universal closure) are stronger and require the corresponding classical
defining clause to hold at all accessible nodes, (see Troelstra and van Dalen [7]). For
example,α � ¬ϕ(x) (where¬ϕ is ϕ → ⊥) means∀β ≥ α, ∀b ∈ Mβ, β � ¬ϕ(b),
that is, ∀β ≥ α,∀b ∈ Mβ,∀γ ≥ β, γ �� ϕ(b). Thereforeα �� ¬ϕ if and only if
∃β ≥ α,∃b ∈ Mβ, ∃γ ≥ β, γ � ϕ(b). It isquite possible that for some suchβ andb,
ϕ(b) is forced at someγ > β but not atβ; in that caseα �� ϕ ∨ ¬ϕ. At anodeα of a
Kripke structure a formulaϕ(x) is said to be decidable ifα forces∀x(ϕ(x) ∨ ¬ϕ(x))

(the instance onϕ of the Principle of the Excluded Middle, PEM). For any formula
ψ,α � ψ if and only if ∀β ≥ α, β � ψ. In particular ifϕ is decidable at a nodeα,
then it is decidable at any node accessible fromα also. A formula is decidable in a
Kripke structure if it is decidable at its root (equivalently at all its nodes). An intu-
itionistic theory which proves∀x(ϕ(x) ∨ ¬ϕ(x)) is said to decideϕ. By soundness
and completeness of the Kripke semantics (see [7]), this is equivalent to decidability
of ϕ in any Kripke model of (i.e., one forcing all formulas in) the intuitionistic theory
at hand. Some consequences of decidability of atomic formulas PEMatomic (which
can be considered at a node or in a theory) are presented in Lemma1.1below which
is essentially due to Markovic [4]. We state it in a somewhat more general form on a
node-by-node basis rather than for (Kripke models of) an intuitionistic theory decid-
ing all atomic formulas. One refers to quantifier-free (respectively prenex existential
or universal) formulas as open (respectively∃1 or ∀1). A ∀2-formula is one of the
form ∀yϕ(x, y) whereϕ ∈ ∃1. Decidability of open, respectively∃-free, formulas is
denoted by PEMopen, respectively PEM∃−free.

Lemma 1.1

(i) For a node α of a Kripke structure, α � PEMatomicimplies α � PEMopen. If (the
frame of) the structure is linear and α � PEMatomic, then indeed α � PEM∃−free.

(ii) If α � PEMatomic, ϕ(x) ∈ ∃1, and a ∈ Mα, then α � ϕ(a) iff Mα |= ϕ(a).

(iii) If α is as in (ii) and ϕ ∈ ∀2, then α � ϕ iff ∀β ≥ α, Mβ |= ϕ.

Proof: (i) If for someβ ≥ α andb ∈ Mβ, β �� ϕ(b) → ψ(b) (the cases of∧ and∨
being more trivial), then∃γ ≥ β with γ � ϕ(b) butγ �� ψ(b). Assuming decidability
of ϕ andψ atα, this impliesβ � ϕ(b)∧¬ψ(b) and so∀γ ′ ≥ β, γ ′ �� ϕ(b) → ψ(b).To
show decidability of∀yϕ(y, x) at α assuming that ofϕ and linearity of the frame,
suppose for someβ ≥ α, b ∈ Mβ andγ ≥ β, γ � ∀yϕ(y, b). For anyγ ′ ≥ β and
c ∈ Mγ ′ , γ ′ ≤ γ ∨ γ ′ ≥ γ impliesγ ′ �� ¬ϕ(c, b) and soγ ′ � ϕ(c, b).

(ii) Induction on formulas is straightforward again. In fact theif part for→ in
the induction step is the only place where PEMatomic and the formula being prenex
∃1 (not just∀-free) are used. Note that if an atomic formulaR(a) with a ∈ Mα is
not decidable atα, thenMα |= ¬R(a) butα �� ¬R(a). Also PEMatomic together with
Mα |= ¬∃x R(x) (R being∀-free or even atomic) does not implyα � ¬∃xR(x). Ob-
serve that theonly if part for the case of∀ in the induction step works too. So, as
remarked by Markovic, a prenex formula which is forced atα is classically true in
Mα.

(iii) This is an immediate consequence of part (ii). �
Here are some sets of axioms which will be used in this paper. We conceive of PA− as
the usual set of axioms for nonnegative parts of discrete strictly ordered commutative
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rings with 1, (see Kaye [3]). This contains the set

SLO= {∀x¬x < x,∀xyz((x < y ∧ y < z) → x < z),∀xy(x < y ∨ x = y ∨ y < x)}

of axioms for strict linear orders. Given a formulaϕ(x, y), let Ixϕ denote the instance
of induction scheme with respect tox on the formulaϕ(x, y), that is, the sentence
∀y[ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(x + 1, y)) → ∀xϕ(x, y)]. Let I∃1, respectivelyI∀1,
respectivelyIop, denote the union of PA− with the set of all instances of induction
with respect to any free variable on prenex existential, respectively prenex universal,
respectively open formulas. For a setT of sentences in the languageL , let iT denote
the intuitionistic theory axiomatized byT , that is iT = {ϕ : T �i ϕ}. Note thatiT
containsT (but not its classical deductive closure unless it includes all formulas of the
form ¬¬ϕ → ϕ). We abbreviateiIop asiop. Similarly i∃1 = i I∃1 andi∀1 = i I∀1.
Recall from [1] that for a classical theoryT , H (T ) denotes the intuitionistic theory
of the class of (i.e. formulas forced in all)T-normal Kripke structures forL (those
whose worlds are classical models ofT). The third part of Proposition1.2below is
Buss’s Theorem 7 in [1], where PA (Peano Arithmetic, that is PA− plus all instances
of induction) is weakened in its statement to just SLO plus the appropriate instance
of ∃1-induction. It has a similar spirit as theif part of Lemma1.1(iii).

Proposition 1.2

(i) H (SLO) � PEMatomic� iSLO.
(ii) For SLO ⊆ T ⊆ PA−, a Kripke structure for L forces iT iff it is T-normal.

Therefore SLO⊆ T ⊆ PA− implies H (T ) = iT.
(iii) For any SLO-normal Kripke model and ∃1-formula ϕ(x, y), if Mα |= Ixϕ for

all α, then α � Ixϕ for all α. Therefore PA− ⊆ T ⊆ I∃1 implies iT ⊆ H (T ).
In particular H (Iop) �i iop.

Proof: (i) These are immediate from the axioms in SLO (indeed by (ii) which uses
both provabilities here,H (SLO) = iSLO).

(ii) The axioms in SLO are∀1 so ∀2. Also note that replacing the axiom
∀xy(x < y → ∃z(x + z = y)) by its intuitionistically equivalent (prenex)∀2-formula
∀xy∃z(x < y → x + z = y), PA− is ∀2-axiomatized too. Now use Lemma1.1(iii)
and (i) above to get the equivalence. The latter statement is then a consequence of
soundness and completeness of Kripke semantics.

(iii) Let ϕ(x, y) be the formula∃zψ(x, y, z), whereψ is open. Letβ ≥ α be an ar-
bitrary node andb ∈ Mβ. We need to showβ � ∃z ψ (0, b, z ) ∧ ∀x(∃z ψ (x, b, z ) →
∃z ψ (x + 1, b, z )) → ∀x∃z ψ(x, b, z). Let γ ≥ β, γ � ∃z ψ (0, b, z), and
γ � ∀x(∃zψ(x, b, z) → ∃zψ(x + 1, b, z)). By Lemma1.1(iii) and (i) above it is
enough to show for anyη ≥ γ, we haveMη |= ∀x∃zψ(x, b, z). Sinceη ≥ γ, we have
η � ∃zψ(0, b, z) andη � ∀x(∃zψ(x, b, z) → ∃zψ(x + 1, b, z)). So by Lemma1.1(ii)
and (i) again,Mη |= ∃zψ(0, b, z) andMη |= ∀x(∃zψ(x, b, z) → ∃zψ(x + 1, b, z)).
Then byMη |= Ixϕ, wewill haveMη |= ∀x∃zψ(x, b, z). The relationiT ⊆ H (T ) for
PA− ⊆ T ⊆ I∃1 is now a consequence of soundness of the Kripke semantics.�

Remark 1.3 For formulasϕ andψ, Friedman’s translation ofϕ by ψ denotedϕψ

is obtained by simultaneously replacing each atomic subformulaP of ϕ by P ∨ ψ,



INTUITIONISTIC OPEN INDUCTION 215

renaming any bound variables ofϕ which are free inψ. As Friedman observed in
Friedman [2], ψ �i ϕψ and if T �i ϕ, then Tψ �i ϕψ. Buss axiomatized the intu-
itionistic theoryH (T ) by formulas of the form(¬ϕ)ψ, whereϕ is a semipositive
formula (i.e., each subformula ofϕ of the formϕ1 → ϕ2 hasϕ1 atomic) such that
T �c ¬ϕ andψ is arbitrary. It is immediate from the Buss soundness and complete-
ness theorems in [1] that for any set of axiomsT, iT ⊆ H (T ) if and only if (if by
completeness,only if by soundness) everyT-normal Kripke structure forcesiT . Fur-
thermore using the Buss soundness theorem, it is clear that if every Kripke model of
iT is T-normal, thenH (T ) ⊆ iT . For a recursively enumerable setT of axioms,
the Buss axiomatization forH (T ) is recursively enumerable. Given a formulaθ,
the problem of whether it has the form(¬ϕ)ψ for a semipositive formulaϕ is de-
cidable, whereas the problem of whetherT classically proves¬ϕ has only a par-
tial decision procedure which may well not halt ifT ��c ¬ϕ. In Theorem1.4 be-
low we give a recursive axiomatization ofH (Iop). For a formulaϕ(x, y), the in-
stance of the Least Number Principle, LNP, onϕ with respect tox is the sentence
Lxϕ : ∀y(∃xϕ(x, y) → ∃x(ϕ(x, y) ∧ ∀z < x¬ϕ(z, y))). Let Lop denote the union of
PA− with the set of sentencesLxϕ(x, y) for open formulasϕ andlop abbreviateiLop.

Theorem 1.4 H (Iop) = lop.

Proof: It suffices to show that a Kripke structure forL is Iop-normal if and only if
it is Lop-normal if and only if it forceslop. As for the former equivalence here, first
note that clearlyLx¬ϕ �c Ixϕ for anyϕ and soLop �c Iop. This is indeed true intu-
itionistically as one can see easily by a direct method or by combining this theorem
with Proposition1.2(iii).

The argument forIop �c Lop (which will be shown in the next section to fail
intuitionistically) is deeper and is based on an important theorem due to Shepherd-
son [5]. He characterized the rings generated by models ofIop as integer parts of
real closed fields, that is, discrete subrings which have elements within 1 (equiva-
lently within a finite distance) of every element in the field. Take anyM |= Iop and
open formulaϕ. Thenϕ is a Boolean combination of polynomial inequalities (with
coefficients inN). So it defines, after fixing the parameters inM, a finite union of
(closed, some of the bounded ones may be single points) intervals in the real closure
RC(M) of (the fraction field, ordered in the obvious way, of the ring generated by)
M. By Shepherdson’s theorem, the initial point of the left-most interval intersecting
M has an integer part inM. Either this integer part or its successor inM (depending
on whether it belongs toM or not) is the least element of the set defined byϕ in M.

Turning to the second equivalence, we know from Proposition1.2(ii) that a
Kripke structure forL forcesiPA− if and only if it is PA−-normal. So it suffices to
show that for any Kripke model ofiPA− all instances of open LNP are classically true
in each world if and only if they are forced at every node of the structure.

if : Using Lemma1.1(ii), this is easily verified on an instance-by-instance and
node-by-node basis.

only if : LetK be anLop-normal Kripke structure,α anode ofK , andϕ(x, y) an
open formula. To proveα � ∀y(∃xϕ(x, y) → ∃x(ϕ(x, y)∧∀z < x¬ϕ(z, y))), letβ ≥
α, b ∈ Mβ, γ ≥ β such thatγ � ∃xϕ(x, b). Consider the set{z ∈ Mγ : Mγ |= ϕ(z, b)}



216 MOHAMMAD ARDESHIR and MOJTABA MONIRI

which by Lemma1.1(ii) andγ � ∃xϕ(x, b) is nonempty and so byMγ |= Lop has a
least elementm. By Lemma1.1(ii) again it is enough to showγ � ∀z < m¬ϕ(z, b).
If that were not the case, then for someδ ≥ γ andd ∈ Mδ, we would haveδ � d <

m ∧ ϕ(d, b). Weclaim d ∈ Mγ , contradicting the definition ofm.

To prove this claim note thatϕ(x, b) is a Boolean combination of polynomial
inequalities with respect tox with coefficients inMγ . Sod ∈ RC(Mγ ). ByLop � Iop
and Shepherdson’s theorem there existsd′ ∈ Mγ which is strictly within 1 ofd. But
thend, d′ ∈ Mδ are strictly within 1 of each other. Sod = d′ ∈ Mγ . �

2 Examples for some obstacles to iT ∈ range(H ) For a formulaϕ, (a slight vari-
ant of) the (G̈odel-Gentzen) negative translation ofϕ denotedϕ is the formula ob-
tained fromϕ by replacing any subformula ofϕ of the formψ ∨ η, respectively∃xψ,
by ¬(¬ψ ∧ ¬η), respectively¬∀x¬ψ and inserting¬¬ before each atomic subfor-
mula ofϕ except⊥ (see [7]). We say that a set of axiomsT is closed under the nega-
tive translation ifT�c ⊆ iT , that is, for any formulaϕ, T �c ϕ impliesT �i ϕ. We say
that a classical theoryS is∀2-conservative over an intuitionistic theoryiT if S�c

∀2
⊆ iT ,

that is, wheneverS �c ∀ x ∃ yϕ(x, y) for an open formulaϕ, thenT �i ∀ x ∃ yϕ(x, y).
The notion of�2-conservativity is similar by requiring the above for all bounded for-
mulasϕ. An intuitionistic theoryiT is said to be closed under Friedman’s translation
if whenever it proves a formulaϕ, then it provesϕψ (see Remark1.3) for all ψ. We
abbreviate this as∪ψ(iT )ψ ⊆ iT . It issaid to be closed under Markov’s Rule if when-
ever it proves¬¬∃yϕ(x, y) for a formulaϕ decidable in that theory, then it proves
∃yϕ(x, y). We denote the restricted corresponding rule whenϕ is assumed open by
MRopen. By (iT¬¬∃1)

dne ⊆ iT we mean thatiT is closed under MRopen. Friedman
observed (see [2]) that closure ofiT under Friedman’s translation implies its closure
under Markov’s Rule for atomic formulas. In the case of the extended languageLPR,
which has an additional symbol for each primitive recursive function, this means clo-
sure under MR for primitive recursive predicates denoted MRPR. At the time it was
already known that closure under MRPR in conjunction with decidability of atomic
formulas and closure under the negative translation implies�2-conservativity. These
were actually stated forT = PA, in which caseiT = HA (Heyting Arithmetic), con-
sidered in the languageLPR. For the languageL , we will see in Theorem2.1below
anL-version of these implications interpolated by a couple of properties in terms of
H .

Theorem 2.1 For any set of axioms T in L ,

(i) If (iT¬¬∃1)
dne∪ PEMatomic∪ T�c ⊆ iT, then T�c

∀2
⊆ iT.

(ii) If (iT¬¬∃1)
dne �⊆ iT, then T�c

∀2
�⊆ iT. If PEMatomic ⊆ iT and T�c

∀2
�⊆ iT, then

H (T ) �⊆ iT.

(iii) If T�c ⊆ iT but H (T ) �⊆ iT, then ∪ϕ(iT )ϕ �⊆ iT.

(iv) If ∪ϕ(iT )ϕ ∪ H (T ) �⊆ iT, then iT �∈ range(H ).

Proof: (i) Suppose thatT classically but not intuitionistically proves∀x∃yϕ(x, y),
for an open formulaϕ. From closure under the negative translation we getT �i

∀x¬∀y¬ϕ(x, y) and thereforeT �i ¬¬∃y ϕ(x, y). Now since atomic formulas are
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decidable iniT , by Lemma1.1(ii) and �i ϕ ←→ ϕ for any openϕ we haveT �i

ϕ ←→ ϕ. ThereforeT �i ¬¬∃y ϕ(x, y) which contradicts closure ofiT under
MRopen.

(ii) Note that if for some open formulaψ(x, y), iT � ¬¬∃yψ(x, y) but iT ��
∃yψ, then T classically but not intuitionistically proves the∀2-sentenceϕ :
∀ x ∃ yψ(x, y). From this together with decidability of atomic formulas iniT and by
Lemma1.1(iii), one getsϕ ∈ H (T ) while by assumptionϕ �∈ iT .

(iii) We give the following argument due to Buss, which he used to conclude
H (PA) ⊆ HA from the facts that HA is closed under both Friedman’s and the nega-
tive translations. First note that for any semipositive formulaϕ, ϕ �i ϕ. This can be
proved by induction on the complexity ofϕ, using¬¬ϕ2 → ϕ2 in the induction step
ϕ = ϕ1 → ϕ2 (whereϕ1 is atomic by semipositivity ofϕ). If ϕ is not semipositive,
the conclusion may fail, as it can be seen, for example, forϕ = Iy(2y ≤ x) in The-
orem2.3below. Fix anyT which is closed under the negative translation. Then for
any formulaϕ, T �c ¬ϕ impliesT �i (ϕ →⊥). So ifϕ is semipositive andT �c ¬ϕ,
thenT �i (ϕ →⊥). Assume on the contrary thatiT is closed under Friedman’s trans-
lation. Then for any semipositiveϕ with T �c ¬ϕ and formulaθ, T �i (ϕ →⊥)θ, that
is, T �i ϕθ → θ. This means thatiT proves all of Buss’s axioms forH (T ), so weget
the contradictionH (T ) ⊆ iT .

(iv) Assume first thatH (T ) �⊆ iT . By the soundness theorem in [1], for ev-
ery classical theoryS, H (S) ⊆ S (consider one-node structures and use classical
completeness, hereS is closed under�c). If H (S) = iT , theniT ⊆ S. Now since
T ⊆ iT , wewould haveT ⊆ S, andthereforeH (T ) ⊆ H (S), proving the contradic-
tion H (T ) ⊆ iT .

Next assume∪ϕ(iT )ϕ �⊆ iT andH (S) = iT , for a classical theoryS. Weprove
the contradiction that (the set of Buss’s axioms for)H (S) is closed under Friedman’s
translation. The argument goes as follows. For a semipositive formulaϕ and arbitrary
formulasψ andθ, from the factθ �i ψθ mentioned in Remark1.3and by induction
onϕ we haveϕ(ψθ) ≡i (ϕψ)θ and therefore(¬ϕ)(ψθ) �i ((¬ϕ)ψ)θ. �

Example 2.2 It is immediate from (ii) and (iv) of Theorem2.1 that if a classical
fragmentT of PA extending PA− has a Diophantine- (i.e.,∃1) definable provably total
function which is not provably total iniT (see [2] and [3]), theniT �∈ rangeH . We
bring here an example of this suggested by one of the referees. Recall that the class
�1, respectively
1, isthe closure of the set�0 of bounded formulas under blocks of
∀’s, respectively∃’s, andI�1 is PA− together with all instances of induction on�1-
formulas. It is well known that (see [3]) the exponential function is a Diophantine-
definable provably total function ofI�1. On the other hand, Wehmeier proved in
[9] that any provably total function ofi�1 which has a
1-definition, is majorized
in N by some polynomial. Hencei�1 �∈ range(H ). The reason for bringing in the
Diophantine-definability issue is as follows. By Lemma1.1(iii) if all atomic formulas
are decidable iniT , thenT is ∀2-conservative overH (T ). HoweverT need not be
�2-conservative (in fact not even
1-conservative) overH (T ). Wegive an example
for this in Theorem2.3(iv). On the other hand, for the languageLPR if all atomic
formulas are decidable iniT , thenT is �2-conservative overH (T ).

To establishi�1 does not prove totality of exponentiation, Wehmeier proved in [9]
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that a two-node Kripke model ofi�1 is obtained if one puts a classical model ofI�1

above a�0- elementary submodel of it which is a model ofI�0. We put a classi-
cal nonstandard model of Th(N) over the semi-ring generated by an infinitely large
element in Theorem2.3 below to get a model of (e.g.)i∀1 whose lower node does
not decide a∀2-sentence classically provable over PA− by a single instance of open
induction. Our∀2-sentence is the statement that the function� x

2� is total, that is, the
sentence∀x∃y(x = 2y ∨ x = 2y + 1) which we denote by AEO. We will use the first
pruning lemma from van Dalen et al. [8]. It says that ifϕ andψ are formulas with
possible parameters from the worldMα at some nodeα of a Kripke structure such
thatα �� ψ, thenα � ϕψ if and only if α �ψ ϕ, where�ψ is forcing in the Kripke
structure obtained from the original one by pruning nodes forcingψ.

Theorem 2.3

(i) T1 =: PA− + Iy(2y ≤ x) �i ∀x¬¬∃y(x = 2y ∨ x = 2y + 1).

(ii) T2 =: PA− + Th∃−free(N) + ¬¬Th(N) +
H (Th
1∪∀1(N)) ��i (Iy(2y ≤ x))AEO ∨ Ly(x < 2y).

(iii) If T1 ⊆ T ⊆ T2, then (iT¬¬∃1)
dne �⊆ iT and ∪ψ(iT )ψ �⊆ iT.

(iv) H (PA− + ∃x∀y ≤ x(2y ≤ x → 2y + 2 ≤ x)) ��i ∃x∀y ≤
x(2y ≤ x → 2y + 2 ≤ x).

Proof: (i) We haveIy(2y ≤ x) ≡iPA− ∀x(∀y(2y ≤ x → 2y + 2 ≤ x) → ∀y2y ≤
x) �i ∀x(¬∀y2y ≤ x → ¬∀y(2y ≤ x → 2y + 2 ≤ x)) ≡iPA− ∀x¬∀y(2y ≤ x →
2y +2≤ x) �iPA− ∀x¬∀y¬(x = 2y ∨ x = 2y +1) �i ∀x¬¬∃y(x = 2y ∨ x = 2y +1).

(ii) Consider the two-node Kripke modelK based on the frame{0 < 1}, where
M0 = Z[t]≥0 (polynomials int overZ with nonnegative leading coefficient) equipped
with the usual+, · , and the compatible order determined by makingt positive and in-
finitely large (for more information see [3]) andM1 is a nonstandard model of Th(N).
Note that, up to an isomorphism ofL-structures which sendst to a nonstandard el-
ement,Z[t]≥0 is an initial segment of any nonstandard model of PA−. So we may
assume thatM0 is a substructure ofM1. CertainlyZ[t]≥0 � M1, since for instance
M0 �|= AEO (the elementt is neither even nor odd inZ[t]≥0).

The node 1 is terminal, hence classical (i.e., all formulas are decidable at 1).
So as remarked in [8], 1 � Th(N). On the other hand by Lemma1.1(i) the lower
node, 0, forces every∃-free formula forced at the upper one. This shows that 0
forces Th∃−free(N). Also any PA−-normal Kripke structure forcesiPA− regardless
of whether it is linear or not. For an arbitraryτ ∈ Th(N), 1 �� ¬τ, and therefore
0 � ¬¬τ. As mentioned in [3], PA− �c Th
1(N) andZ[t]≥0 |= Th
1∪∀1(N). SoK
is Th
1∪∀1(N)-normal. SoK � iT2.

Note that the AEO-pruning ofK results in the single-node classical modelM0

and M0 �|= Iy(2y ≤ x) (e.g., sinceM0 |= PA− but not AEO). Besides telling us
that K is not T2-normal, this shows 0��AEO Iy(2y ≤ x) and so by the first prun-
ing lemma, (the lower node of)K does not force(Iy(2y ≤ x))AEO. Also observe
that M0 �|= Ly(x < 2y) either as the set{2t − 2n : n ∈ N} has no minimum in
Z[t]≥0. So by (if ) in the proof of Theorem1.4, (the node 0 of)K does not force
Ly(x < y). Now by soundness of Kripke semantics for intuitionistic predicate logic,
we getT2 ��i (Iy(2y ≤ x))AEO ∨ Ly(x < 2y). In particularT2 ��i lop.
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(iii) By (ii), T ��i (Iy(2y ≤ x))AEO and thereforeT ��i AEO (since as mentioned
in Remark1.3, AEO �i ϕAEO for anyϕ). Combining the latter with (i) we see that
iT is not closed under MRopen (so by Theorem2.1 and Lemma1.1, T is not ∀2-
conservative overiT andH (T ) �⊆ iT �∈ range(H )). On the other hand, sinceT
includesIy(2y ≤ x), we get from the former thatiT is not closed under Friedman’s
translation (even in the cases whenT is not closed under the negative translation).

(iv) Consider the two-node Kripke model obtained by puttingZ[ t
2]≥0 over

Z[t]≥0 (using soundness of the Kripke semantics again). Therefore theif parts of the

1-version of Lemma1.1(ii) and of the�2-version of Lemma1.1(iii) fail. �

Example 2.4 There is no classical theoryS such thatH (S) = iop or H (S) =
i∀1. The theoryiop is not complete with respect toIop-normal Kripke structures
(it is sound though, as we saw in Section 1) andi∀1 ��i lop. The function� x

2� is a
Diophantine-definable provably total function of (PA− + Iy(2y ≤ x))�c but not ofi∀1.
The theoriesiop andi∀1 also satisfy the other four negative statements in Theorem2.1
as they are not closed under MRopen. Let us mention in passing, however, thatiop
andi∀1 (as any other fragment of HA of the formi, that is, the intuitionistic theory
axiomatized by PA− plus instances of induction on formulas in) have the Disjunc-
tion Property and Explicit Definability (see Smorynski [6]) and are therefore closed
under Markov’s Rule (for decidable, in particular open, formulas) withone free vari-
able. We finally note that bothIop andI∀1 are closed under the negative translation.
For any set of axiomsT and formulaϕ we haveT �c ϕ =⇒ T �i ϕ, (see [7]). So
it is enough to show thatiop andi∀1 prove the negative translations of their axioms.
Note that for any instance of open, respectively∀1-, induction, its negative translation
is again such an instance (Ixϕ = Ixϕ, Iz∀xϕ(x, y, z) = Iz∀xϕ(x, y, z) andϕ is open if
ϕ is). As for the axioms in PA−, one may treat them one by one or note that they have
intuitionistically equivalent forms∀x(P(x) ∧ Q(x) → ∃yR(x, y)), whereP, Q, and
R are atomic and use∀x(P(x) ∧ Q(x) → ∃yR(x, y)) �i ∀x(¬¬P(x) ∧ ¬¬Q(x) →
¬∀y¬R(x, y)).
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