Intuitionistic Open Induction and Least Number Principle and the Buss Operator

MOHAMMAD ARDESHIR and MOJTABA MONIRI

Abstract

In "Intuitionistic validity in T-normal Kripke structures," Buss asked whether every intuitionistic theory is, for some classical theory T, that of all T-normal Kripke structures $\mathcal{H}(T)$ for which he gave an r.e. axiomatization. In the language of arithmetic Iop and Lop denote PA^{-}plus Open Induction or Open LNP, iop and lop are their intuitionistic deductive closures. We show $\mathcal{H}(I o p)=l o p$ is recursively axiomatizable and $l o p \vdash_{i c} \dashv i o p$, while $i \not \forall_{1} \nvdash l o p$. If $i T$ proves PEM $_{\text {atomic }}$ but not totality of a classically provably total Diophantine function of T, then $\mathcal{H}(T) \nsubseteq i T$ and so $i T \notin \operatorname{range}(\mathcal{H})$. A result due to Wehmeier then implies $i \Pi_{1} \notin \operatorname{range}(\mathcal{H})$. We prove $I o p$ is not \forall_{2}-conservative over $i \forall_{1}$. If $I o p \subseteq T \subseteq I \forall_{1}$, then $i T$ is not closed under $\mathrm{MR}_{\text {open }}$ or Friedman's translation, so $i T \notin$ range (\mathcal{H}). Both Iop and $I \forall_{1}$ are closed under the negative translation.

1 Iop-normal Kripke structures vs. models of iop or lop We begin with a version of the Kripke semantics for (arithmetic in) intuitionistic predicate logic. The language $\mathcal{L}=\{+, \cdot,<, 0,1\}$ is fixed throughout the paper unless otherwise is mentioned. Let us consider Kripke structures for \mathcal{L} to be of the form $\mathcal{K}=\left\langle K, \leq ;\left(\mathcal{M}_{\alpha}\right)_{\alpha \in K}\right\rangle$. The frame $\langle K, \leq\rangle$ of \mathcal{K} is a rooted poset whose elements are called nodes of \mathcal{K}. The attached world \mathcal{M}_{α} at a node α is a classical structure (interpreting =) for \mathcal{L} whose universe is denoted M_{α}. In each such world the interpretation of the equality symbol contains, perhaps strictly, the true equality but is still an \mathcal{L}-congruence relation. For all $\alpha, \beta \in K$ with $\alpha \leq \beta$ (in which case β is said to be accessible from α), \mathcal{M}_{α} is a weak substructure of (or homomorphically embedded in) \mathcal{M}_{β}. This means that $M_{\alpha} \subseteq M_{\beta}$ and the truth in \mathcal{M}_{α} of atomic sentences with parameters from M_{α} is preserved in \mathcal{M}_{β}, although tuples of elements of M_{α} may acquire new atomic properties (e.g., equality) in \mathscr{M}_{β}. The forcing relation \Vdash between nodes and atomic sentences coincides with classical truth \models in the corresponding attached worlds. In particular no node forces \perp. The inductive definitions for \vee, \wedge, \exists are as their classical counterparts while the ones for \rightarrow and \forall (through the latter forcing of a formula defined as
forcing of its universal closure) are stronger and require the corresponding classical defining clause to hold at all accessible nodes, (see Troelstra and van Dalen [7]). For example, $\alpha \Vdash \neg \varphi(\bar{x})$ (where $\neg \varphi$ is $\varphi \rightarrow \perp$) means $\forall \beta \geq \alpha$, $\forall \bar{b} \in M_{\beta}, \beta \Vdash \neg \varphi(\bar{b})$, that is, $\forall \underline{\beta} \geq \alpha, \forall \bar{b} \in M_{\beta}, \forall \gamma \geq \underline{\beta}, \gamma \Vdash \varphi(\bar{b})$. Therefore $\alpha \Vdash \neg \varphi$ if and only if $\exists \beta \geq \alpha, \exists \bar{b} \in M_{\beta}, \exists \gamma \geq \beta, \gamma \Vdash \varphi(\bar{b})$. It is quite possible that for some such β and \bar{b}, $\varphi(\bar{b})$ is forced at some $\gamma>\beta$ but not at β; in that case $\alpha \Vdash \varphi \vee \neg \varphi$. At a node α of a Kripke structure a formula $\varphi(\bar{x})$ is said to be decidable if α forces $\forall \bar{x}(\varphi(\bar{x}) \vee \neg \varphi(\bar{x}))$ (the instance on φ of the Principle of the Excluded Middle, PEM). For any formula $\psi, \alpha \Vdash \psi$ if and only if $\forall \beta \geq \alpha, \beta \Vdash \psi$. In particular if φ is decidable at a node α, then it is decidable at any node accessible from α also. A formula is decidable in a Kripke structure if it is decidable at its root (equivalently at all its nodes). An intuitionistic theory which proves $\forall \bar{x}(\varphi(\bar{x}) \vee \neg \varphi(\bar{x}))$ is said to decide φ. By soundness and completeness of the Kripke semantics (see 7), this is equivalent to decidability of φ in any Kripke model of (i.e., one forcing all formulas in) the intuitionistic theory at hand. Some consequences of decidability of atomic formulas $\mathrm{PEM}_{\text {atomic }}$ (which can be considered at a node or in a theory) are presented in Lemma 1.1 below which is essentially due to Markovic 47. We state it in a somewhat more general form on a node-by-node basis rather than for (Kripke models of) an intuitionistic theory deciding all atomic formulas. One refers to quantifier-free (respectively prenex existential or universal) formulas as open (respectively \exists_{1} or \forall_{1}). A \forall_{2}-formula is one of the form $\forall \bar{y} \varphi(\bar{x}, \bar{y})$ where $\varphi \in \exists_{1}$. Decidability of open, respectively \exists-free, formulas is denoted by $\mathrm{PEM}_{\text {open }}$, respectively $\mathrm{PEM}_{\exists-\mathrm{free}}$.

Lemma 1.1

(i) For a node α of a Kripke structure, $\alpha \Vdash \mathrm{PEM}_{\text {atomic }}$ implies $\alpha \Vdash \mathrm{PEM}_{\text {open. }}$. If (the frame of) the structure is linear and $\alpha \Vdash \mathrm{PEM}_{\text {atomic }}$, then indeed $\alpha \Vdash \mathrm{PEM}_{\exists-\text { free }}$.
(ii) If $\alpha \Vdash \mathrm{PEM}_{\text {atomic }}, \varphi(\bar{x}) \in \exists_{1}$, and $\bar{a} \in M_{\alpha}$, then $\alpha \Vdash \varphi(\bar{a})$ iff $\mathcal{M}_{\alpha} \models \varphi(\bar{a})$.
(iii) If α is as in (ii) and $\varphi \in \forall_{2}$, then $\alpha \Vdash \varphi$ iff $\forall \beta \geq \alpha, \mathcal{M}_{\beta} \models \varphi$.

Proof: (i) If for some $\beta \geq \alpha$ and $\bar{b} \in M_{\beta}, \beta \nvdash \varphi(\bar{b}) \rightarrow \psi(\bar{b})$ (the cases of \wedge and \vee being more trivial), then $\exists \gamma \geq \beta$ with $\gamma \Vdash \varphi(\bar{b})$ but $\gamma \Vdash \psi(\bar{b})$. Assuming decidability of φ and ψ at α, this implies $\beta \Vdash \varphi(\bar{b}) \wedge \neg \psi(\bar{b})$ and so $\forall \gamma^{\prime} \geq \beta, \gamma^{\prime} \Vdash \varphi(\bar{b}) \rightarrow \psi(\bar{b})$.To show decidability of $\forall y \varphi(y, \bar{x})$ at α assuming that of φ and linearity of the frame, suppose for some $\beta \geq \alpha, \bar{b} \in M_{\beta}$ and $\gamma \geq \beta, \gamma \Vdash \forall y \varphi(y, \bar{b})$. For any $\gamma^{\prime} \geq \beta$ and $c \in M_{\gamma^{\prime}}, \gamma^{\prime} \leq \gamma \vee \gamma^{\prime} \geq \gamma$ implies $\gamma^{\prime} \Vdash \neg \varphi(c, \bar{b})$ and so $\gamma^{\prime} \Vdash \varphi(c, \bar{b})$.
(ii) Induction on formulas is straightforward again. In fact the if part for \rightarrow in the induction step is the only place where $\mathrm{PEM}_{\text {atomic }}$ and the formula being prenex \exists_{1} (not just \forall-free) are used. Note that if an atomic formula $R(a)$ with $a \in M_{\alpha}$ is not decidable at α, then $\mathcal{M}_{\alpha} \models \neg R(a)$ but $\alpha \Vdash \neg R(a)$. Also $\mathrm{PEM}_{\text {atomic }}$ together with $\mathcal{M}_{\alpha} \vDash \neg \exists x R(x)$ (R being \forall-free or even atomic) does not imply $\alpha \Vdash \neg \exists x R(x)$. Observe that the only if part for the case of \forall in the induction step works too. So, as remarked by Markovic, a prenex formula which is forced at α is classically true in \mathcal{M}_{α}.
(iii) This is an immediate consequence of part (ii).

Here are some sets of axioms which will be used in this paper. We conceive of PA^{-}as the usual set of axioms for nonnegative parts of discrete strictly ordered commutative
rings with 1 , (see Kaye 31). This contains the set

$$
\mathrm{SLO}=\{\forall x \neg x<x, \forall x y z((x<y \wedge y<z) \rightarrow x<z), \forall x y(x<y \vee x=y \vee y<x)\}
$$

of axioms for strict linear orders. Given a formula $\varphi(x, \bar{y})$, let $I_{x} \varphi$ denote the instance of induction scheme with respect to x on the formula $\varphi(x, \bar{y})$, that is, the sentence $\forall \bar{y}[\varphi(0, \bar{y}) \wedge \forall x(\varphi(x, \bar{y}) \rightarrow \varphi(x+1, \bar{y})) \rightarrow \forall x \varphi(x, \bar{y})]$. Let $I \exists_{1}$, respectively $I \forall_{1}$, respectively Iop, denote the union of PA^{-}with the set of all instances of induction with respect to any free variable on prenex existential, respectively prenex universal, respectively open formulas. For a set T of sentences in the language \mathcal{L}, let $i T$ denote the intuitionistic theory axiomatized by T, that is $i T=\left\{\varphi: T \vdash_{i} \varphi\right\}$. Note that $i T$ contains T (but not its classical deductive closure unless it includes all formulas of the form $\neg \neg \varphi \rightarrow \varphi$). We abbreviate iIop as iop. Similarly $i \exists_{1}=i I \exists_{1}$ and $i \forall_{1}=i I \forall_{1}$. Recall from [1] that for a classical theory $T, \mathcal{H}(T)$ denotes the intuitionistic theory of the class of (i.e. formulas forced in all) T-normal Kripke structures for \mathcal{L} (those whose worlds are classical models of T). The third part of Proposition 1.2 below is Buss's Theorem 7 in [1] where PA (Peano Arithmetic, that is PA^{-}plus all instances of induction) is weakened in its statement to just SLO plus the appropriate instance of \exists_{1}-induction. It has a similar spirit as the if part of Lemma 1.1 (iii).

Proposition 1.2

(i) $\mathcal{H}(\mathrm{SLO}) \vdash \mathrm{PEM}_{\text {atomic }} \dashv i \mathrm{SLO}$.
(ii) For $\mathrm{SLO} \subseteq T \subseteq \mathrm{PA}^{-}$, a Kripke structure for \mathcal{L} forces $i T$ iff it is T-normal. Therefore $\mathrm{SLO} \subseteq T \subseteq \mathrm{PA}^{-}$implies $\mathcal{H}(T)=i T$.
(iii) For any SLO-normal Kripke model and \exists_{1}-formula $\varphi(x, \bar{y})$, if $\mathcal{M}_{\alpha} \models I_{x} \varphi$ for all α, then $\alpha \Vdash I_{x} \varphi$ for all α. Therefore $\mathrm{PA}^{-} \subseteq T \subseteq I \exists_{1}$ implies $i T \subseteq \mathcal{H}(T)$. In particular $\mathcal{H}(I o p) \vdash_{i}$ iop.

Proof: (i) These are immediate from the axioms in SLO (indeed by (ii) which uses both provabilities here, $\mathcal{H}(\mathrm{SLO})=i \mathrm{SLO})$.
(ii) The axioms in SLO are \forall_{1} so \forall_{2}. Also note that replacing the axiom $\forall x y(x<y \rightarrow \exists z(x+z=y))$ by its intuitionistically equivalent (prenex) \forall_{2}-formula $\forall x y \exists z(x<y \rightarrow x+z=y), \mathrm{PA}^{-}$is \forall_{2}-axiomatized too. Now use Lemma 1.1 (jiii) and (i) above to get the equivalence. The latter statement is then a consequence of soundness and completeness of Kripke semantics.
(iii) Let $\varphi(x, \bar{y})$ be the formula $\exists \bar{z} \psi(x, \bar{y}, \bar{z})$, where ψ is open. Let $\beta \geq \alpha$ be an arbitrary node and $\bar{b} \in M_{\beta}$. We need to show $\beta \Vdash \exists \bar{z} \psi(0, \bar{b}, \bar{z}) \wedge \forall x(\exists \bar{z} \psi(x, \bar{b}, \bar{z}) \rightarrow$ $\exists \bar{z} \psi(x+1, \bar{b}, \bar{z})) \rightarrow \forall x \exists \bar{z} \psi(x, \bar{b}, \bar{z})$. Let $\gamma \geq \beta, \gamma \Vdash \exists \bar{z} \psi(0, \bar{b}, \bar{z})$, and $\gamma \Vdash \forall x(\exists \bar{z} \psi(x, \bar{b}, \bar{z}) \rightarrow \exists \bar{z} \psi(x+1, \bar{b}, \bar{z}))$. By Lemma 1.1 (iii) and (i) above it is enough to show for any $\eta \geq \gamma$, we have $\mathcal{M}_{\eta} \vDash \forall x \exists \bar{z} \psi(x, \bar{b}, \bar{z})$. Since $\eta \geq \gamma$, we have $\eta \Vdash \exists \bar{z} \psi(0, \bar{b}, \bar{z})$ and $\eta \Vdash \forall x(\exists \bar{z} \psi(x, \bar{b}, \bar{z}) \rightarrow \exists \bar{z} \psi(x+1, \bar{b}, \bar{z}))$. So by Lemma 1.1(ii) and (i) again, $\mathcal{M}_{\eta} \vDash \exists \bar{z} \psi(0, \bar{b}, \bar{z})$ and $\mathcal{M}_{\eta} \models \forall x(\exists \bar{z} \psi(x, \bar{b}, \bar{z}) \rightarrow \exists \bar{z} \psi(x+1, \bar{b}, \bar{z}))$. Then by $\mathcal{M}_{\eta} \models I_{x} \varphi$, we will have $\mathcal{M}_{\eta} \models \forall x \exists \bar{z} \psi(x, \bar{b}, \bar{z})$. The relation $i T \subseteq \mathcal{H}(T)$ for $\mathrm{PA}^{-} \subseteq T \subseteq I \exists_{1}$ is now a consequence of soundness of the Kripke semantics.

Remark 1.3 For formulas φ and ψ, Friedman's translation of φ by ψ denoted φ^{ψ} is obtained by simultaneously replacing each atomic subformula P of φ by $P \vee \psi$,
renaming any bound variables of φ which are free in ψ. As Friedman observed in Friedman [2], $\psi \vdash_{i} \varphi^{\psi}$ and if $T \vdash_{i} \varphi$, then $T^{\psi} \vdash_{i} \varphi^{\psi}$. Buss axiomatized the intuitionistic theory $\mathcal{H}(T)$ by formulas of the form $(\neg \varphi)^{\psi}$, where φ is a semipositive formula (i.e., each subformula of φ of the form $\varphi_{1} \rightarrow \varphi_{2}$ has φ_{1} atomic) such that $T \vdash_{c} \neg \varphi$ and ψ is arbitrary. It is immediate from the Buss soundness and completeness theorems in that for any set of axioms $T, i T \subseteq \mathcal{H}(T)$ if and only if (if by completeness, only if by soundness) every T-normal Kripke structure forces $i T$. Furthermore using the Buss soundness theorem, it is clear that if every Kripke model of $i T$ is T-normal, then $\mathcal{H}(T) \subseteq i T$. For a recursively enumerable set T of axioms, the Buss axiomatization for $\mathcal{H}(T)$ is recursively enumerable. Given a formula θ, the problem of whether it has the form $(\neg \varphi)^{\psi}$ for a semipositive formula φ is decidable, whereas the problem of whether T classically proves $\neg \varphi$ has only a partial decision procedure which may well not halt if $T \vdash_{c} \neg \varphi$. In Theorem 1.4 below we give a recursive axiomatization of $\mathcal{H}($ Iop $)$. For a formula $\varphi(x, \bar{y})$, the instance of the Least Number Principle, LNP, on φ with respect to x is the sentence $L_{x} \varphi: \forall \bar{y}(\exists x \varphi(x, \bar{y}) \rightarrow \exists x(\varphi(x, \bar{y}) \wedge \forall z<x \neg \varphi(z, \bar{y})))$. Let Lop denote the union of PA^{-}with the set of sentences $L_{x} \varphi(x, \bar{y})$ for open formulas φ and lop abbreviate $i L o p$.

Theorem 1.4 $\mathcal{H}(I o p)=l o p$.
Proof: It suffices to show that a Kripke structure for \mathcal{L} is Iop-normal if and only if it is $L o p$-normal if and only if it forces $l o p$. As for the former equivalence here, first note that clearly $L_{x} \neg \varphi \vdash_{c} I_{x} \varphi$ for any φ and so $L o p \vdash_{c} I o p$. This is indeed true intuitionistically as one can see easily by a direct method or by combining this theorem with Proposition 1.2(iii).

The argument for $I o p \vdash_{c} L o p$ (which will be shown in the next section to fail intuitionistically) is deeper and is based on an important theorem due to Shepherdson [5]. He characterized the rings generated by models of Iop as integer parts of real closed fields, that is, discrete subrings which have elements within 1 (equivalently within a finite distance) of every element in the field. Take any $M \models I o p$ and open formula φ. Then φ is a Boolean combination of polynomial inequalities (with coefficients in \mathbb{N}). So it defines, after fixing the parameters in M, a finite union of (closed, some of the bounded ones may be single points) intervals in the real closure $R C(M)$ of (the fraction field, ordered in the obvious way, of the ring generated by) M. By Shepherdson's theorem, the initial point of the left-most interval intersecting M has an integer part in M. Either this integer part or its successor in M (depending on whether it belongs to M or not) is the least element of the set defined by φ in M.

Turning to the second equivalence, we know from Proposition 1.2 iii) that a Kripke structure for \mathcal{L} forces $i \mathrm{PA}^{-}$if and only if it is PA^{-}-normal. So it suffices to show that for any Kripke model of $i \mathrm{PA}^{-}$all instances of open LNP are classically true in each world if and only if they are forced at every node of the structure.
if: Using Lemma 1.1 (jii), this is easily verified on an instance-by-instance and node-by-node basis.
only if: \quad Let \mathcal{K} be an Lop-normal Kripke structure, α a node of \mathcal{K}, and $\varphi(x, \bar{y})$ an open formula. To prove $\alpha \Vdash \forall \bar{y}(\exists x \varphi(x, \bar{y}) \rightarrow \exists x(\varphi(x, \bar{y}) \wedge \forall z<x \neg \varphi(z, \bar{y})))$, let $\beta \geq$ $\alpha, \bar{b} \in M_{\beta}, \gamma \geq \beta$ such that $\gamma \Vdash \exists x \varphi(x, \bar{b})$. Consider the set $\left\{z \in M_{\gamma}: \mathcal{M}_{\gamma} \models \varphi(z, \bar{b})\right\}$
which by Lemma 1.1(iii) and $\gamma \Vdash \exists x \varphi(x, \bar{b})$ is nonempty and so by $\mathcal{M}_{\gamma} \models L o p$ has a least element m. By Lemma 1.1(ii) again it is enough to show $\gamma \Vdash \forall z<m \neg \varphi(z, \bar{b})$. If that were not the case, then for some $\delta \geq \gamma$ and $d \in M_{\delta}$, we would have $\delta \Vdash d<$ $m \wedge \varphi(d, \bar{b})$. We claim $d \in M_{\gamma}$, contradicting the definition of m.

To prove this claim note that $\varphi(x, \bar{b})$ is a Boolean combination of polynomial inequalities with respect to x with coefficients in M_{γ}. So $d \in R C\left(M_{\gamma}\right)$. By Lop $\vdash I o p$ and Shepherdson's theorem there exists $d^{\prime} \in M_{\gamma}$ which is strictly within 1 of d. But then $d, d^{\prime} \in M_{\delta}$ are strictly within 1 of each other. So $d=d^{\prime} \in M_{\gamma}$.

2 Examples for some obstacles to $i T \in \operatorname{range}(\mathcal{H}) \quad$ For a formula φ, (a slight variant of) the (Gödel-Gentzen) negative translation of φ denoted $\bar{\varphi}$ is the formula obtained from φ by replacing any subformula of φ of the form $\psi \vee \eta$, respectively $\exists x \psi$, by $\neg(\neg \psi \wedge \neg \eta)$, respectively $\neg \forall x \neg \psi$ and inserting $\neg \neg$ before each atomic subformula of φ except \perp (see (77). We say that a set of axioms T is closed under the negative translation if $T^{\vdash_{c}} \subseteq i T$, that is, for any formula $\varphi, T \vdash_{c} \varphi$ implies $T \vdash_{i} \bar{\varphi}$. We say that a classical theory S is \forall_{2}-conservative over an intuitionistic theory $i T$ if $S_{\forall_{2}}^{\vdash_{c}} \subseteq i T$, that is, whenever $S \vdash_{c} \forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y})$ for an open formula φ, then $T \vdash_{i} \forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y})$. The notion of Π_{2}-conservativity is similar by requiring the above for all bounded formulas φ. An intuitionistic theory $i T$ is said to be closed under Friedman's translation if whenever it proves a formula φ, then it proves φ^{ψ} (see Remark 1.3) for all ψ. We abbreviate this as $\cup_{\psi}(i T)^{\psi} \subseteq i T$. It is said to be closed under Markov's Rule if whenever it proves $\neg \neg \exists \bar{y} \varphi(\bar{x}, \bar{y})$ for a formula φ decidable in that theory, then it proves $\exists \bar{y} \varphi(\bar{x}, \bar{y})$. We denote the restricted corresponding rule when φ is assumed open by $\mathrm{MR}_{\text {open }}$. By $\left(i T_{\neg \neg \exists_{1}}\right)^{\text {dne }} \subseteq i T$ we mean that $i T$ is closed under $\mathrm{MR}_{\text {open }}$. Friedman observed (see [2]) that closure of $i T$ under Friedman's translation implies its closure under Markov's Rule for atomic formulas. In the case of the extended language $\mathcal{L}_{\mathrm{PR}}$, which has an additional symbol for each primitive recursive function, this means closure under MR for primitive recursive predicates denoted $M R_{P R}$. At the time it was already known that closure under $\mathrm{MR}_{\mathrm{PR}}$ in conjunction with decidability of atomic formulas and closure under the negative translation implies Π_{2}-conservativity. These were actually stated for $T=\mathrm{PA}$, in which case $i T=\mathrm{HA}$ (Heyting Arithmetic), considered in the language $\mathcal{L}_{\mathrm{PR}}$. For the language \mathcal{L}, we will see in Theorem 2.1 below an \mathcal{L}-version of these implications interpolated by a couple of properties in terms of \mathcal{H}.

Theorem 2.1 For any set of axioms T in \mathcal{L},

(i) If $\left(i T_{\neg \neg \exists_{1}}\right)^{\text {dne }} \cup \mathrm{PEM}_{\text {atomic }} \cup \overline{T^{\vdash_{c}}} \subseteq i$, then $T_{\forall_{2}}^{\vdash_{c}} \subseteq i T$.
(ii) If $\left(i T_{\neg \exists_{1}}\right)^{\text {dne }} \nsubseteq i T$, then $T_{\forall_{2}}^{\vdash c} \nsubseteq i T$. If $\mathrm{PEM}_{\text {atomic }} \subseteq i T$ and $T_{\forall_{2}}^{\vdash c} \nsubseteq i T$, then $\mathcal{H}(T) \nsubseteq i T$.
(iii) If $\overline{T^{\vdash_{c}}} \subseteq i T$ but $\mathcal{H}(T) \nsubseteq i T$, then $\cup_{\varphi}(i T)^{\varphi} \nsubseteq i T$.
(iv) If $\cup_{\varphi}(i T)^{\varphi} \cup \mathcal{H}(T) \nsubseteq i T$, then $i T \notin \operatorname{range}(\mathcal{H})$.

Proof: (i) Suppose that T classically but not intuitionistically proves $\forall \bar{x} \exists \bar{y} \varphi(\bar{x}, \bar{y})$, for an open formula φ. From closure under the negative translation we get $T \vdash_{i}$ $\forall \bar{x} \neg \forall \bar{y} \neg \bar{\varphi}(\bar{x}, \bar{y})$ and therefore $T \vdash_{i} \neg \neg \exists \bar{y} \bar{\varphi}(\bar{x}, \bar{y})$. Now since atomic formulas are
decidable in $i T$, by Lemma 1.1(ii) and $\vdash_{i} \varphi \longleftrightarrow \bar{\varphi}$ for any open φ we have $T \vdash_{i}$ $\varphi \longleftrightarrow \bar{\varphi}$. Therefore $T \vdash_{i} \neg \neg \exists \bar{y} \varphi(\bar{x}, \bar{y})$ which contradicts closure of $i T$ under $\mathrm{MR}_{\text {open }}$.
(ii) Note that if for some open formula $\psi(\bar{x}, \bar{y}), i T \vdash \neg \neg \exists \bar{y} \psi(\bar{x}, \bar{y})$ but $i T \nvdash$ $\exists \bar{y} \psi$, then T classically but not intuitionistically proves the \forall_{2}-sentence φ : $\forall \bar{x} \exists \bar{y} \psi(\bar{x}, \bar{y})$. From this together with decidability of atomic formulas in $i T$ and by Lemma 1.1 iii), one gets $\varphi \in \mathcal{H}(T)$ while by assumption $\varphi \notin i T$.
(iii) We give the following argument due to Buss, which he used to conclude $\mathcal{H}(\mathrm{PA}) \subseteq$ HA from the facts that HA is closed under both Friedman's and the negative translations. First note that for any semipositive formula $\varphi, \varphi \vdash_{i} \bar{\varphi}$. This can be proved by induction on the complexity of φ, using $\neg \neg \overline{\varphi_{2}} \rightarrow \overline{\varphi_{2}}$ in the induction step $\varphi=\varphi_{1} \rightarrow \varphi_{2}$ (where φ_{1} is atomic by semipositivity of φ). If φ is not semipositive, the conclusion may fail, as it can be seen, for example, for $\varphi=I_{y}(2 y \leq x)$ in Theorem 2.3 below. Fix any T which is closed under the negative translation. Then for any formula $\varphi, T \vdash_{c} \neg \varphi$ implies $T \vdash_{i}(\bar{\varphi} \rightarrow \perp)$. So if φ is semipositive and $T \vdash_{c} \neg \varphi$, then $T \vdash_{i}(\varphi \rightarrow \perp)$. Assume on the contrary that $i T$ is closed under Friedman's translation. Then for any semipositive φ with $T \vdash_{c} \neg \varphi$ and formula $\theta, T \vdash_{i}(\varphi \rightarrow \perp)^{\theta}$, that is, $T \vdash_{i} \varphi^{\theta} \rightarrow \theta$. This means that $i T$ proves all of Buss's axioms for $\mathcal{H}(T)$, so we get the contradiction $\mathcal{H}(T) \subseteq i T$.
(iv) Assume first that $\mathcal{H}(T) \nsubseteq i T$. By the soundness theorem in [1], for every classical theory $S, \mathcal{H}(S) \subseteq S$ (consider one-node structures and use classical completeness, here S is closed under \vdash_{c}). If $\mathcal{H}(S)=i T$, then $i T \subseteq S$. Now since $T \subseteq i T$, we would have $T \subseteq S$, and therefore $\mathcal{H}(T) \subseteq \mathcal{H}(S)$, proving the contradiction $\mathcal{H}(T) \subseteq i T$.

Next assume $\cup_{\varphi}(i T)^{\varphi} \nsubseteq i T$ and $\mathcal{H}(S)=i T$, for a classical theory S. We prove the contradiction that (the set of Buss's axioms for) $\mathcal{H}(S)$ is closed under Friedman's translation. The argument goes as follows. For a semipositive formula φ and arbitrary formulas ψ and θ, from the fact $\theta \vdash_{i} \psi^{\theta}$ mentioned in Remark 1.3 and by induction on φ we have $\varphi^{\left(\psi^{\theta}\right)} \equiv_{i}\left(\varphi^{\psi}\right)^{\theta}$ and therefore $(\neg \varphi)^{\left(\psi^{\theta}\right)} \vdash_{i}\left((\neg \varphi)^{\psi}\right)^{\theta}$.

Example 2.2 It is immediate from (ii) and (iv) of Theorem 2.1 that if a classical fragment T of PA extending PA^{-}has a Diophantine- (i.e., \exists_{1}) definable provably total function which is not provably total in $i T$ (see 2] and 3), then $i T \notin$ range \mathcal{H}. We bring here an example of this suggested by one of the referees. Recall that the class Π_{1}, respectively Σ_{1}, is the closure of the set Δ_{0} of bounded formulas under blocks of \forall 's, respectively \exists 's, and $I \Pi_{1}$ is PA^{-}together with all instances of induction on $\Pi_{1}{ }^{-}$ formulas. It is well known that (see [3]) the exponential function is a Diophantinedefinable provably total function of $I \Pi_{1}$. On the other hand, Wehmeier proved in (9] that any provably total function of $i \Pi_{1}$ which has a Σ_{1}-definition, is majorized in \mathbb{N} by some polynomial. Hence $i \Pi_{1} \notin$ range (\mathcal{H}). The reason for bringing in the Diophantine-definability issue is as follows. By Lemma 1.1 iiii) if all atomic formulas are decidable in $i T$, then T is \forall_{2}-conservative over $\mathcal{H}(T)$. However T need not be Π_{2}-conservative (in fact not even Σ_{1}-conservative) over $\mathcal{H}(T)$. We give an example for this in Theorem 2.3 iv). On the other hand, for the language $\mathcal{L}_{\mathrm{PR}}$ if all atomic formulas are decidable in $i T$, then T is Π_{2}-conservative over $\mathcal{H}(T)$.

To establish $i \Pi_{1}$ does not prove totality of exponentiation, Wehmeier proved in (9]
that a two-node Kripke model of $i \Pi_{1}$ is obtained if one puts a classical model of $I \Pi_{1}$ above a Δ_{0} - elementary submodel of it which is a model of $I \Delta_{0}$. We put a classical nonstandard model of $\operatorname{Th}(\mathbb{N})$ over the semi-ring generated by an infinitely large element in Theorem 2.3 below to get a model of (e.g.) $i \forall_{1}$ whose lower node does not decide a \forall_{2}-sentence classically provable over PA^{-}by a single instance of open induction. Our \forall_{2}-sentence is the statement that the function $\left\lfloor\frac{x}{2}\right\rfloor$ is total, that is, the sentence $\forall x \exists y(x=2 y \vee x=2 y+1)$ which we denote by AEO. We will use the first pruning lemma from van Dalen et al. [8]. It says that if φ and ψ are formulas with possible parameters from the world M_{α} at some node α of a Kripke structure such that $\alpha \Vdash \psi$, then $\alpha \Vdash \varphi^{\psi}$ if and only if $\alpha \Vdash^{\psi} \varphi$, where \Vdash^{ψ} is forcing in the Kripke structure obtained from the original one by pruning nodes forcing ψ.

Theorem 2.3

(i) $T_{1}=: \mathrm{PA}^{-}+I_{y}(2 y \leq x) \vdash_{i} \forall x \neg \neg \exists y(x=2 y \vee x=2 y+1)$.
(ii) $T_{2}=: \mathrm{PA}^{-}+T h_{\exists-\text { free }}(\mathbb{N})+\neg \neg T h(\mathbb{N})+$ $\mathcal{H}\left(T_{\Sigma_{1} \cup \forall_{1}}(\mathbb{N})\right) \vdash_{i}\left(I_{y}(2 y \leq x)\right)^{\mathrm{AEO}} \vee L_{y}(x<2 y)$.
(iii) If $T_{1} \subseteq T \subseteq T_{2}$, then $\left(i T_{\neg \exists_{1}}\right)^{\text {dne }} \nsubseteq i T$ and $\cup_{\psi}(i T)^{\psi} \nsubseteq i T$.
(iv) $\mathcal{H}\left(\mathrm{PA}^{-}+\exists x \forall y \leq x(2 y \leq x \rightarrow 2 y+2 \leq x)\right) \nvdash{ }_{i} \exists x \forall y \leq$

$$
x(2 y \leq x \rightarrow 2 y+2 \leq x) .
$$

Proof: (i) We have $I_{y}(2 y \leq x) \equiv_{i \mathrm{PA}^{-}} \forall x(\forall y(2 y \leq x \rightarrow 2 y+2 \leq x) \rightarrow \forall y 2 y \leq$ x) $\vdash_{i} \forall x(\neg \forall y 2 y \leq x \rightarrow \neg \forall y(2 y \leq x \rightarrow 2 y+2 \leq x)) \equiv_{i \mathrm{PA}^{-}} \forall x \neg \forall y(2 y \leq x \rightarrow$ $2 y+2 \leq x) \vdash_{i \mathrm{PA}^{-}} \forall x \neg \forall y \neg(x=2 y \vee x=2 y+1) \vdash_{i} \forall x \neg \neg \exists y(x=2 y \vee x=2 y+1)$.
(ii) Consider the two-node Kripke model \mathcal{K} based on the frame $\{0<1\}$, where $M_{0}=\mathbb{Z}[t]^{\geq 0}$ (polynomials in t over \mathbb{Z} with nonnegative leading coefficient) equipped with the usual,$+ \cdot$, and the compatible order determined by making t positive and infinitely large (for more information see [3]) and \mathscr{M}_{1} is a nonstandard model of $\operatorname{Th}(\mathbb{N})$. Note that, up to an isomorphism of \mathcal{L}-structures which sends t to a nonstandard element, $\mathbb{Z}[t]^{\geq 0}$ is an initial segment of any nonstandard model of PA^{-}. So we may assume that \mathscr{M}_{0} is a substructure of \mathcal{M}_{1}. Certainly $\mathbb{Z}[t]^{\geq 0} \varsubsetneqq M_{1}$, since for instance $\mathcal{M}_{0} \not \vDash \mathrm{AEO}$ (the element t is neither even nor odd in $\mathbb{Z}[t]^{\geq 0}$).

The node 1 is terminal, hence classical (i.e., all formulas are decidable at 1). So as remarked in [8], $1 \Vdash \mathrm{Th}(\mathbb{N})$. On the other hand by Lemma 1.11i) the lower node, 0 , forces every \exists-free formula forced at the upper one. This shows that 0 forces $\mathrm{Th}_{\exists-\mathrm{free}}(\mathbb{N})$. Also any PA^{-}-normal Kripke structure forces $i \mathrm{PA}^{-}$regardless of whether it is linear or not. For an arbitrary $\tau \in \operatorname{Th}(\mathbb{N}), 1 \nvdash \neg \tau$, and therefore $0 \Vdash \neg \neg \tau$. As mentioned in [3], $\mathrm{PA}^{-} \vdash_{c} \mathrm{Th}_{\Sigma_{1}}(\mathbb{N})$ and $\mathbb{Z}[t]^{\geq 0} \models \mathrm{Th}_{\Sigma_{1} \cup \forall_{1}}(\mathbb{N})$. So \mathcal{K} is $\mathrm{Th}_{\Sigma_{1} \cup \forall_{1}}(\mathbb{N})$-normal. So $\mathcal{K} \Vdash i T_{2}$.

Note that the AEO-pruning of \mathcal{K} results in the single-node classical model \mathscr{M}_{0} and $\mathscr{M}_{0} \not \vDash I_{y}(2 y \leq x)$ (e.g., since $\mathscr{M}_{0} \models \mathrm{PA}^{-}$but not AEO). Besides telling us that \mathcal{K} is not T_{2}-normal, this shows $0 \Vdash^{\mathrm{AEO}} I_{y}(2 y \leq x)$ and so by the first pruning lemma, (the lower node of) \mathcal{K} does not force $\left(I_{y}(2 y \leq x)\right)^{\mathrm{AEO}}$. Also observe that $\mathscr{M}_{0} \not \models L_{y}(x<2 y)$ either as the set $\{2 t-2 n: n \in \mathbb{N}\}$ has no minimum in $\mathbb{Z}[t]^{\geq 0}$. So by (if) in the proof of Theorem 1.4 (the node 0 of) \mathcal{K} does not force $L_{y}(x<y)$. Now by soundness of Kripke semantics for intuitionistic predicate logic, we get $T_{2} \nvdash_{i}\left(I_{y}(2 y \leq x)\right)^{\text {AEO }} \vee L_{y}(x<2 y)$. In particular $T_{2} \nvdash_{i} l o p$.
(iii) By (ii), $T \nvdash_{i}\left(I_{y}(2 y \leq x)\right)^{\mathrm{AEO}}$ and therefore $T \nvdash_{i} \mathrm{AEO}$ (since as mentioned in Remark 1.3, AEO $\vdash_{i} \varphi^{\mathrm{AEO}}$ for any φ). Combining the latter with (i) we see that $i T$ is not closed under $\mathrm{MR}_{\text {open }}$ (so by Theorem 2.1 and Lemma 1.1. T is not $\forall_{2^{-}}$ conservative over $i T$ and $\mathcal{H}(T) \nsubseteq i T \notin \operatorname{range}(\mathcal{H}))$. On the other hand, since T includes $I_{y}(2 y \leq x)$, we get from the former that $i T$ is not closed under Friedman's translation (even in the cases when T is not closed under the negative translation).
(iv) Consider the two-node Kripke model obtained by putting $\mathbb{Z}\left[\frac{t}{2}\right]^{\geq 0}$ over $\mathbb{Z}[t]^{\geq 0}$ (using soundness of the Kripke semantics again). Therefore the if parts of the Σ_{1}-version of Lemma 1.1 (ii) and of the Π_{2}-version of Lemma 1.1 (iii) fail.

Example 2.4 There is no classical theory S such that $\mathcal{H}(S)=\operatorname{iop}$ or $\mathcal{H}(S)=$ $i \forall_{1}$. The theory iop is not complete with respect to Iop-normal Kripke structures (it is sound though, as we saw in Section 1) and $i \forall_{1} \vdash_{i} l o p$. The function $\left\lfloor\frac{x}{2}\right\rfloor$ is a Diophantine-definable provably total function of $\left(\mathrm{PA}^{-}+I_{y}(2 y \leq x)\right)^{\vdash_{c}}$ but not of $i \forall_{1}$. The theories iop and $i \forall_{1}$ also satisfy the other four negative statements in Theorem 2.1 as they are not closed under $\mathrm{MR}_{\text {open }}$. Let us mention in passing, however, that iop and $i \forall_{1}$ (as any other fragment of HA of the form $i \Gamma$, that is, the intuitionistic theory axiomatized by PA^{-}plus instances of induction on formulas in Γ) have the Disjunction Property and Explicit Definability (see Smorynski [6]) and are therefore closed under Markov's Rule (for decidable, in particular open, formulas) with one free variable. We finally note that both $I o p$ and $I \forall_{1}$ are closed under the negative translation. For any set of axioms T and formula φ we have $T \vdash_{c} \varphi \Longrightarrow \bar{T} \vdash_{i} \bar{\varphi}$, (see (7]). So it is enough to show that $i o p$ and $i \forall_{1}$ prove the negative translations of their axioms. Note that for any instance of open, respectively \forall_{1-}, induction, its negative translation is again such an instance $\left(\overline{I_{x} \varphi}=I_{x} \bar{\varphi}, \overline{I_{z} \forall \bar{x} \varphi(\bar{x}, \bar{y}, z)}=I_{z} \forall \bar{x} \bar{\varphi}(\bar{x}, \bar{y}, z)\right.$ and $\bar{\varphi}$ is open if φ is). As for the axioms in PA^{-}, one may treat them one by one or note that they have intuitionistically equivalent forms $\forall \bar{x}(P(\bar{x}) \wedge Q(\bar{x}) \rightarrow \exists y R(\bar{x}, y))$, where P, Q, and R are atomic and use $\forall \bar{x}(P(\bar{x}) \wedge Q(\bar{x}) \rightarrow \exists y R(\bar{x}, y)) \vdash_{i} \forall \bar{x}(\neg \neg P(\bar{x}) \wedge \neg \neg Q(\bar{x}) \rightarrow$ $\neg \forall y \neg R(\bar{x}, y))$.

Acknowledgments We thank Samuel Buss for sending us a corrected proof of his Theorem 6 in 11 which we used in Theorem 2.1 (iii), and Kai Wehmeier for copies of his Ph.D. thesis and 97 from which we used the result on provably total functions of $i \Pi_{1}$ in Example 2.2. We are grateful to two anonymous referees for useful comments, especially for pointing out that $\mathcal{H}(T) \nsubseteq i T \Longrightarrow i T \notin \operatorname{range}(\mathcal{H})$ works without $T \vdash_{i} \overline{T^{\vdash_{c}}}$ and suggesting $i \Pi_{1} \notin \operatorname{range}(\mathcal{H})$. Both authors were partially supported by the Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran.

REFERENCES

[1] Buss, S., "Intuitionistic validity in T-normal Kripke structures," Annals of Pure and Applied Logic, vol. 59 (1993), pp. 159-73. Zbl 0802.03006MR 94m:03020 1.|1.1.3.|2. 2
[2] Friedman, H., "Classically and intuitionistically provably recursive functions," pp. 2127 in Higher Set Theory, edited by G. H. Muller and D. S. Scott, Springer-Verlag, Berlin, 1978. Zbl 0396.03045IMR 80b:03093]1.3.2.2.2.2
[3] Kaye, R., Models of Peano Arithmetic, Oxford University Press, Oxford, 1991. Zbl 0744.03037|MR 92k:03034 1.2.2.2.2.2.2.2
[4] Markovic, Z., "On the structure of Kripke models of Heyting Arithmetic," Mathematical Logic Quarterly, vol. 39 (1993), pp. 531-38. Zbl 0805.03050 MR 95f:03103 1
[5] Shepherdson, J., "A nonstandard model for a free variable fragment of number theory," Bulletin of the Polish Academy of Sciences: Mathematics, vol. 12 (1964), pp. 79-86. 1
[6] Smorynski, C., "Applications of Kripke models," pp. 324-91 in Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, edited by A. S. Troelstra, Springer-Verlag, Berlin, 1973. MR 56:2795 2.4
[7] Troelstra, A. S., and D. van Dalen, Constructivism in Mathematics, vol. 1, NorthHolland, Amsterdam, 1988.Zbl 0653.03040|MR 90e:03002a 1.|1.|2.|2.4
[8] van Dalen, D., H. Mulder, E. C. W. Krabbe, and A. Visser, "Finite Kripke models of HA are locally PA," Notre Dame Journal of Formal Logic, vol. 27 (1986), pp. 528-32. Zbl 0632.03048|MR 87m:03088 2. 2
[9] Wehmeier, K. F., "Fragments of HA based on Σ_{1}-induction," Archive for Mathematical Logic, vol. 37 (1997), pp. 37-49. Zbl 0886.03040|MR 99a:03062 2.2.|2.| 2

```
Department of Mathematics
Sharif University of Technology
Tehran
IRAN
and
Logic Group, IPM
P.O. Box 19395-5746
Tehran
IRAN
email: ardeshir@karun.ipm.ac.ir
Department of Mathematics
Tarbiat Modarres University
Tehran
IRAN
and
Logic Group, IPM
P.O. Box 19395-5746
Tehran
IRAN
email: moimon@karun.ipm.ac.ir
```

