## GROUND STATES

# OF NONLOCAL SCALAR FIELD EQUATIONS WITH TRUDINGER-MOSER CRITICAL NONLINEARITY 

João Marcos do Ó - Olímpio H. Miyagaki - Marco Squassina

(Submitted by Mónica Clapp)


#### Abstract

We investigate the existence of ground state solutions for a class of nonlinear scalar field equations defined on the whole real line, involving a fractional Laplacian and nonlinearities with Trudinger-Moser critical growth. We handle the lack of compactness of the associated energy functional due to the unboundedness of the domain and the presence of a limiting case embedding.


## 1. Introduction and main result

The goal of this paper is to investigate the existence of ground state solutions $u \in H^{1 / 2}(\mathbb{R})$ for the following class of nonlinear scalar field equations:

$$
\begin{equation*}
(-\Delta)^{1 / 2} u+u=f(u) \quad \text { in } \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth nonlinearity in the critical growth range. Precisely, we focus here on the case when $f$ has maximal growth which allows to study problem (1.1) variationally in the Sobolev space $u \in H^{1 / 2}(\mathbb{R})$, see Section 2. We are motivated by the following Trudinger-Moser type inequality due to Ozawa [27].

[^0]Theorem 1.1. There exists $0<\omega \leq \pi$ such that, for all $\alpha \in(0, \omega)$, there exists $H_{\alpha}>0$ with

$$
\begin{equation*}
\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x \leq H_{\alpha}\|u\|_{L^{2}}^{2} \tag{1.2}
\end{equation*}
$$

for all $u \in H^{1 / 2}(\mathbb{R})$ with $\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}}^{2} \leq 1$.
From inequality (1.2) we have naturally associated notions of subcriticality and criticality for this class of problems. Precisely, we say that $f: \mathbb{R} \rightarrow \mathbb{R}$ has subcritical growth at $\pm \infty$ if

$$
\limsup _{s \rightarrow \pm \infty} \frac{f(s)}{e^{\alpha s^{2}}-1}=0, \quad \text { for all } \alpha>0
$$

and has $\alpha_{0}$-critical growth at $\pm \infty$ if there exist $\omega \in(0, \pi]$ and $\alpha_{0} \in(0, \omega)$ such that

$$
\begin{array}{ll}
\limsup _{s \rightarrow \pm \infty} \frac{f(s)}{e^{\alpha s^{2}}-1}=0, \quad \text { for all } \alpha>\alpha_{0} \\
\limsup _{s \rightarrow \pm \infty} \frac{f(s)}{e^{\alpha s^{2}}-1}= \pm \infty, \quad \text { for all } \alpha<\alpha_{0}
\end{array}
$$

For instance, let $f$ be given by

$$
f(s)=s^{3} e^{\alpha_{0}|s|^{\nu}} \quad \text { for all } s \in \mathbb{R}
$$

If $\nu<2, f$ has subcritical growth, while if $\nu=2$ and $\alpha_{0} \in(0, \omega], f$ has critical growth. By a ground state solution to problem (1.1) we mean a nontrivial weak solution of (1.1) with the least possible energy.

The following assumptions on $f$ will be needed throughout the paper:
(f1) $f: \mathbb{R} \rightarrow \mathbb{R}$ is a $C^{1}$, odd, convex function on $\mathbb{R}^{+}$, and

$$
\lim _{s \rightarrow 0} \frac{f(s)}{s}=0
$$

(f2) $s \mapsto s^{-1} f(s)$ is an increasing function for $s>0$.
(f3) There are $q>2$ and $C_{q}>0$ with

$$
F(s) \geq C_{q}|s|^{q}, \quad \text { for all } s \in \mathbb{R}
$$

(AR) There exists $\vartheta>2$ such that

$$
\vartheta F(s) \leq s f(s), \quad \text { for all } s \in \mathbb{R}, \quad F(s)=\int_{0}^{s} f(\sigma) d \sigma
$$

The main result of the paper is the following:
Theorem 1.2. Let $f(s)$ and $f^{\prime}(s) s$ have $\alpha_{0}$-critical growth and satisfy (f1)(f3) and (AR). Then problem (1.1) admits a ground state solution $u \in H^{1 / 2}(\mathbb{R})$ provided $C_{q}$ in (f3) is large enough.

The nonlinearity

$$
f(s)=\lambda s|s|^{q-2}+|s|^{q-2} s e^{\alpha_{0} s^{2}}, \quad q>2 \text { and } s \in \mathbb{R}
$$

satisfies all hypotheses of Theorem 1.2 provided that $\lambda$ is sufficiently large. More examples of nonlinearities which satisfy the above assumptions can be found in [18]. In $\mathbb{R}^{2}$ one can use radial estimates, then apply, for instance, the Strauss lemma [33] to recover some compactness results. In $\mathbb{R}$ analogous compactness results fail, but in [20], the authors used the concentration compactness principle due to Lions [35] for problems with polynomial nonlinearities. In this paper, we use the minimization technique over the Nehari manifold in order to get ground state solutions. We adopt some arguments from [4] combined with those used in [10] and [21].
1.1. Quick overview of the literature. In [28], P. Rabinowitz studied the semi-linear problem

$$
\begin{equation*}
-\Delta u+V(x) u=f(x, u) \quad \text { in } \mathbb{R}^{N}, \quad u \in H^{1}\left(\mathbb{R}^{N}\right), \quad u>0 \tag{1.3}
\end{equation*}
$$

when $V$ is a positive potential and $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ has subcritical growth, that is it behaves at infinity like $s^{p}$ with $2<p<2^{*}-1$, where $2^{*}=2 N /(N-2)$ is the critical Sobolev exponent, $N \geq 3$. This was extended or complemented in several ways, see e.g. [35].

For $N=2$ formally $2^{*} \rightsquigarrow+\infty$, but $H^{1}\left(\mathbb{R}^{N}\right) \nLeftarrow L^{\infty}\left(\mathbb{R}^{N}\right)$. Instead, the Trudinger-Moser inequality [26], [34] states that $H^{1}$ is continuously embedded into an Orlicz space defined by the Young function $\phi(t)=e^{\alpha t^{2}}-1$. In [1], [14], [13], [24], with the help of Trudinger-Moser embedding, problems in a bounded domain were investigated, when the nonlinear term $f$ behaves at infinity like $e^{\alpha s^{2}}$ for some $\alpha>0$. We refer the reader to [12] for a recent survey on this subject. In [11] the Trudinger-Moser inequality was extended to the whole $\mathbb{R}^{2}$ and the authors gave some applications to study equations like (1.3) when the nonlinear term has critical growth of Trudinger-Moser type. For further results and applications, we would like to mention also [2], [3], [16], [29] and references therein. When the potential $V$ is a positive constant and $f(x, s)=f(s)$ for $(x, s) \in \mathbb{R}^{N} \times \mathbb{R}$, that is the autonomous case, the existence of ground states for subcritical nonlinearities was established in [6] for $N \geq 3$ and [7] for $N=2$ respectively, while in [3] the critical case for $N \geq 3$ and $N=2$ was treated. For fractional problem of the form

$$
(-\Delta)^{s} u+V(x) u=f(u) \quad \text { in } \mathbb{R}^{N}
$$

with $N>2 s$ and $s \in(0,1)$, we refer to $[10,19]$ where positive ground states were obtained in subcritical situations. For instance, [10] extends the results in [6] to the fractional Laplacian. In [19] regularity and qualitative properties of the ground state solution are obtained, while in [31] a ground state solution is
obtained for coercive potential. For fractional problems in bounded domains of $\mathbb{R}^{N}$ with $N>2 s$ involving critical nonlinearities we cite [5], [9], [22], [30] and [17] for the whole space with vanishing potentials. In [20] the authors investigated properties of the ground state solutions of $(-\Delta)^{s} u+u=u^{p}$ in $\mathbb{R}$. Recently, in [21], nonlocal problems defined in bounded intervals of the real line involving the square root of the Laplacian and exponential nonlinearities were investigated, using a version of the Trudinger-Moser inequality due to Ozawa [27]. As it was remarked in [21], the nonlinear problem involving exponential growth with fractional diffusion $(-\Delta)^{s}$ requires $s=1 / 2$ and $N=1$. In [18] some nonlocal problems in $\mathbb{R}$ with vanishing potential, thus providing compactifying effects, are considered. See also [32] for related results on the existence of solutions for fractional Schrödinger equations involving exponential critical growth.

## 2. Preliminary stuff

We recall that

$$
H^{1 / 2}(\mathbb{R})=\left\{u \in L^{2}(\mathbb{R}): \int_{\mathbb{R}^{2}} \frac{(u(x)-u(y))^{2}}{|x-y|^{2}} d x d y<\infty\right\}
$$

endowed with the norm

$$
\|u\|=\left(\|u\|_{L^{2}}^{2}+\int_{\mathbb{R}^{2}} \frac{(u(x)-u(y))^{2}}{|x-y|^{2}} d x d y\right)^{1 / 2}
$$

The square root of the Laplacian, $(-\Delta)^{1 / 2}$, of a smooth function $u: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
\mathcal{F}\left((-\Delta)^{1 / 2} u\right)(\xi)=|\xi| \mathcal{F}(u)(\xi)
$$

where $\mathcal{F}$ denotes the Fourier transform, that is,

$$
\mathcal{F}(\phi)(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i \xi \cdot x} \phi(x) d x
$$

for functions $\phi$ in the Schwartz class. Also $(-\Delta)^{1 / 2} u$ can be equivalently represented [15] as

$$
(-\Delta)^{1 / 2} u=-\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{u(x+y)+u(x-y)-2 u(x)}{|y|^{2}} d y
$$

Also, in light of [15, Propostion 3.6], we have

$$
\begin{equation*}
\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}}^{2}:=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{(u(x)-u(y))^{2}}{|x-y|^{2}} d x d y, \quad \text { for all } u \in H^{1 / 2}(\mathbb{R}) \tag{2.1}
\end{equation*}
$$

and, sometimes, we identify these two quantities by omitting the normalization constant $1 / 2 \pi$. From [25, Theorem 8.5 (iii)] we also know that, for any $m \geq 2$, there exists $C_{m}>0$ such that

$$
\begin{equation*}
\|u\|_{L^{m}} \leq C_{m}\|u\|, \quad \text { for all } u \in H^{1 / 2}(\mathbb{R}) \tag{2.2}
\end{equation*}
$$

Proposition 2.1. The integral

$$
\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x
$$

is finite for any positive $\alpha$ and $u \in H^{1 / 2}(\mathbb{R})$.
Proof. Let $\alpha_{0} \in(0, \omega)$ and consider the convex function defined by

$$
\phi(t)=\frac{e^{\alpha_{0} t^{2}}-1}{H_{\alpha_{0}}}, \quad t \in \mathbb{R}
$$

where $H_{\alpha_{0}}>0$ is defined as in Theorem 1.1. We introduce the Orlicz norm induced by $\phi$ by setting

$$
\|u\|_{\phi}:=\inf \left\{\gamma>0: \int_{\mathbb{R}} \phi\left(\frac{u}{\gamma}\right) d x \leq 1\right\}
$$

and the corresponding Orlicz space $L_{\phi^{*}}(0,1)$, see the monograph by Krasnosel'skiĭ and Rutickiĭ [23, Chapter II, in particular pp. 78-81] for properties of this space. We claim that $\|v\|_{\phi} \leq\|v\|$, for all $v \in H^{1 / 2}(\mathbb{R})$. Let $v \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}$ and set $w=\|v\|^{-1} v$, so that by formula (2.1) we conclude

$$
\begin{equation*}
\left\|(-\Delta)^{1 / 4} w\right\|_{L^{2}}=\frac{1}{(2 \pi)^{1 / 2}\|v\|}\left(\int_{\mathbb{R}^{2}} \frac{(v(x)-v(y))^{2}}{|x-y|^{2}} d x d y\right)^{1 / 2} \leq(2 \pi)^{-1 / 2}<1 \tag{2.3}
\end{equation*}
$$

Therefore, in light of Theorem 1.1, we have

$$
\int_{\mathbb{R}} \phi\left(\frac{v}{\|v\|}\right) d x=\int_{\mathbb{R}} \frac{e^{\alpha_{0} w^{2}}-1}{H_{\alpha_{0}}} d x \leq\|w\|_{L^{2}}^{2} \leq 1
$$

which proves the claim by the very definition of $\|\cdot\|_{\phi}$. Fix now an arbitrary function $u \in H^{1 / 2}(\mathbb{R})$. Hence, there exists a sequence $\left(\psi_{n}\right)$ in $C_{c}^{\infty}(\mathbb{R})$ such that $\psi_{n} \rightarrow u$ in $H^{1 / 2}(\mathbb{R})$, as $n \rightarrow \infty$. By the claim this yields $\left\|\psi_{n}-u\right\|_{\phi} \rightarrow 0$, as $n \rightarrow \infty$.

Fix now $n=n_{0}$ sufficiently large that $\left\|\psi_{n_{0}}-u\right\|_{\phi}<1 / 2$. Then we have, in light of [23, Theorem 9.15, p. 79], that

$$
\int_{\mathbb{R}} \phi\left(2 u-2 \psi_{n_{0}}\right) d x \leq\left\|2 u-2 \psi_{n_{0}}\right\|_{\phi}<1 .
$$

Finally, writing $u=\left(2 u-2 \psi_{n_{0}}\right) / 2+\left(2 \psi_{n_{0}}\right) / 2$, and since
$\int_{\mathbb{R}} \phi\left(2 \psi_{n_{0}}\right) d x=\frac{1}{H_{\alpha_{0}}} \int_{\mathbb{R}}\left(e^{4 \alpha_{0} \psi_{n_{0}}^{2}}-1\right) d x=\frac{1}{H_{\alpha_{0}}} \int_{\operatorname{supt}\left(\psi_{n_{0}}\right)}\left(e^{4 \alpha_{0} \psi_{n_{0}}^{2}}-1\right) d x<\infty$,
the convexity of $\phi$ yields $\int_{\mathbb{R}} \phi(u) d x<\infty$. Hence, the assertion follows by the arbitrariness of $u$. A different proof can be given writing (in the above notations)

$$
\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x=\int_{\mathbb{R}}\left(e^{\alpha \psi_{n}^{2}}-1\right) d x+\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-e^{\alpha \psi_{n}^{2}}\right) d x
$$

estimating the right-hand side by

$$
\left|e^{\alpha u^{2}}-e^{\alpha \psi_{n}^{2}}\right| \leq 2 \alpha\left(\left|\psi_{n}-u\right|+\left|\psi_{n}\right|\right) e^{2 \alpha\left|\psi_{n}-u\right|^{2}} e^{2 \alpha\left|\psi_{n}\right|^{2}}\left|\psi_{n}-u\right|,
$$

using the Hölder inequality, the smallness of $\left\|\psi_{n}-u\right\|$ and Theorem 1.1 to conclude, for $n$ large enough.

Define the functional $J: H^{1 / 2}(\mathbb{R}) \rightarrow \mathbb{R}$ associated with problem (1.1), given by

$$
J(u)=\frac{1}{2} \int_{\mathbb{R}}\left(\left|(-\Delta)^{1 / 4} u\right|^{2}+u^{2}\right) d x-\int_{\mathbb{R}} F(u) d x
$$

Under our assumptions on $f$, by Proposition 2.1, we can easily see that $J$ is well defined. Also, it is standard to prove that $J$ is a $C^{1}$-functional and

$$
J^{\prime}(u) v=\int_{\mathbb{R}}(-\Delta)^{1 / 4} u(-\Delta)^{1 / 4} v d x+\int_{\mathbb{R}} u v d x-\int_{\mathbb{R}} f(u) v d x
$$

for all $u, v \in H^{1 / 2}(\mathbb{R})$. Thus, the critical points of $J$ are precisely the solutions of (1.1), namely $u \in H^{1 / 2}(\mathbb{R})$ with

$$
\int_{\mathbb{R}}(-\Delta)^{1 / 4} u(-\Delta)^{1 / 4} v d x+\int_{\mathbb{R}} u v d x=\int_{\mathbb{R}} f(u) v d x, \quad \text { for all } v \in H^{1 / 2}(\mathbb{R})
$$

is a (weak) solution to (1.1).
Lemma 2.2. Let $u \in H^{1 / 2}(\mathbb{R})$ and $\rho_{0}>0$ be such that $\|u\| \leq \rho_{0}$. Then

$$
\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x \leq \Lambda\left(\alpha, \rho_{0}\right), \quad \text { for every } 0<\alpha \rho_{0}^{2}<\omega
$$

Proof. Let $0<\alpha \rho_{0}^{2}<\omega$. Then, by Theorem 1.1, we have

$$
\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x \leq \int_{\mathbb{R}}\left(e^{\alpha \rho_{0}^{2}(u /\|u\|)^{2}}-1\right) d x \leq H_{\alpha \rho_{0}^{2}} \frac{\|u\|_{L^{2}}^{2}}{\|u\|^{2}} \leq H_{\alpha \rho_{0}^{2}}:=\Lambda\left(\alpha, \rho_{0}\right),
$$

since $\left\|(-\Delta)^{1 / 4} u\right\| u\left\|^{-1}\right\|_{L^{2}}^{2}<1$, see inequality (2.3).
Remark 2.3. From (f1)-(f2) and (AR) we see that, for $s \in \mathbb{R} \backslash\{0\}$,

$$
\begin{align*}
s^{2} f^{\prime}(s)-s f(s) & >0,  \tag{2.4}\\
f^{\prime}(s) & >0, \\
\mathcal{H}(s):=s f(s)-2 F(s) & >0, \tag{2.5}
\end{align*}
$$ $\mathcal{H}$ is even, and increasing on $\mathbb{R}^{+}$,

$$
\begin{equation*}
\mathcal{H}(s)>\mathcal{H}(\lambda s), \quad \text { for all } \lambda \in(0,1) \tag{2.6}
\end{equation*}
$$

Suppose that $u \neq 0$ is a critical point of $J$, that is, $J^{\prime}(u)=0$, then necessarily $u$ belongs to $\mathcal{N}:=\left\{u \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}: J^{\prime}(u) u=0\right\}$. So $\mathcal{N}$ is a natural constraint for the problem of finding nontrivial critical points of $J$.

Lemma 2.4. Under assumptions (f1)-(f3) and (AR), $\mathcal{N}$ satisfies the following properties:
(a) $\mathcal{N}$ is a manifold and $\mathcal{N} \neq \emptyset$.
(b) For $u \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}$ with $J^{\prime}(u) u<0$, there is a unique $\lambda(u) \in(0,1)$ with $\lambda u \in \mathcal{N}$.
(c) There exists $\rho>0$ such that $\|u\| \geq \rho$ for any $u \in \mathcal{N}$.
(d) If $u \in \mathcal{N}$ is a constrained critical point of $\left.J\right|_{\mathcal{N}}$, then $J^{\prime}(u)=0$ and $u$ solves (1.1).
(e) $m=\inf _{u \in \mathcal{N}} J(u)>0$.

Proof. Consider the $C^{1}$-functional $\Phi: H^{1 / 2}(\mathbb{R}) \backslash\{0\} \rightarrow \mathbb{R}$ defined by

$$
\Phi(u)=J^{\prime}(u) u=\|u\|^{2}-\int_{\mathbb{R}} f(u) u d x
$$

Note that $\mathcal{N}=\Phi^{-1}(0)$ and $\Phi^{\prime}(u) u<0$, if $u \in \mathcal{N}$. Indeed, if $u \in \mathcal{N}$, then

$$
\Phi^{\prime}(u) u=\int_{\mathbb{R}}\left(f(u) u-f^{\prime}(u) u^{2}\right) d x<0,
$$

where we have used (2.4). Then $c=0$ is a regular value of $\Phi$ and consequently $\mathcal{N}=\Phi^{-1}(0)$ is a $C^{1}$-manifold, proving (a).

Now we prove $\mathcal{N} \neq \emptyset$ and that (b) holds. Fix $u \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}$ and consider the function $\Psi: \mathbb{R}^{+} \rightarrow \mathbb{R}$,

$$
\Psi(t)=\frac{t^{2}}{2}\|u\|^{2}-\int_{\mathbb{R}} F(t u) d x .
$$

Then $\Psi^{\prime}(t)=0$ if and only if $t u \in \mathcal{N}$, in which case it holds

$$
\begin{equation*}
\|u\|^{2}=\int_{\mathbb{R}} \frac{f(t u)}{t} u d x \tag{2.7}
\end{equation*}
$$

In light of (2.4), the function on the right-hand side of (2.7) is increasing. Whence, it follows that a critical point of $\Psi$, if exists, is unique. Now, there exist $\delta>0$ and $R>0$ such that

$$
\Psi(t)>0 \quad \text { if } t \in(0, \delta) \quad \text { and } \quad \Psi(t)<0 \quad \text { if } t \in(R, \infty) .
$$

In fact, by virtue of $(\mathrm{f} 3)$, there exist $C, C^{\prime}>0$ such that

$$
\Psi(t)=\frac{t^{2}}{2}\|u\|^{2}-\int_{\mathbb{R}} F(t u) d x \leq C t^{2}-C^{\prime} t^{q}<0
$$

provided that $t>0$ is chosen large enough. Using (f1) and the fact that $f$ has $\alpha_{0}$-Trudinger-Moser critical growth at $+\infty$, for some $\alpha \in\left(\alpha_{0}, \omega\right)$ and for any $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that

$$
F(s) \leq \varepsilon\left[s^{2}+s^{4}\left(e^{\alpha s^{2}}-1\right)\right]+C_{\varepsilon} s^{4}, \quad s \in \mathbb{R}
$$

Then, for any $u \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}$,

$$
\Psi(t) \geq \frac{t^{2}}{2}\|u\|^{2}-\varepsilon t^{2}\|u\|_{L^{2}}^{2}-C_{\varepsilon} t^{4}\|u\|_{L^{4}}^{4}-\varepsilon t^{4} \int_{\mathbb{R}} u^{4}\left(e^{\alpha(t u)^{2}}-1\right) d x .
$$

For $0<t<\tau<\left(\omega /\left(2 \alpha\|u\|^{2}\right)\right)^{1 / 2}$, by Lemma 2.2 and (2.2), there is $C=$ $C(\|u\|, \alpha)>0$ such that

$$
\int_{\mathbb{R}} u^{4}\left(e^{\alpha(t u)^{2}}-1\right) \leq\|u\|_{L^{8}}^{4}\left(\int_{\mathbb{R}} e^{2 \alpha \tau^{2} u^{2}}-1\right)^{1 / 2} \leq C
$$

Then, for some $B, B^{\prime}>0$, we have

$$
\Psi(t) \geq B t^{2}-B^{\prime} t^{4}>0, \quad \text { for } t>0 \text { small enough. }
$$

Thus, we conclude that there exists a unique maximum $t_{0}=t_{0}(u)>0$ such that $t_{0} u \in \mathcal{N}$, and consequently $\mathcal{N}$ is a nonempty set. Given $u \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}$ with $J^{\prime}(u) u<0$, we have

$$
\Psi^{\prime}(1)=\|u\|^{2}-\int_{\mathbb{R}} f(u) u d x=J^{\prime}(u) u<0
$$

which implies $t_{0}<1$.
Let us prove (c). Let $\alpha \in\left(\alpha_{0}, \omega\right)$ and $\rho_{0}>0$ with $\alpha \rho_{0}^{2}<\omega$. By the growth conditions on $f$, there exists $r>1$ so close to 1 that $r \alpha \rho_{0}^{2}<\omega, \ell>2$ and $C>0$ with

$$
f(s) s \leq \frac{1}{4} s^{2}+C\left(e^{r \alpha s^{2}}-1\right)^{1 / r}|s|^{\ell}, \quad \text { for all } s \in \mathbb{R}
$$

Let now $u \in \mathcal{N}$ with $\|u\| \leq \rho \leq \rho_{0}$. Then, by Lemma 2.2 and (2.2), we have for $u \in \mathcal{N}$

$$
\begin{align*}
0 & =\Phi(u) \geq\|u\|^{2}-\frac{1}{4}\|u\|_{L^{2}}^{2}-C \int_{\mathbb{R}}\left(e^{r \alpha u^{2}}-1\right)^{1 / r}|u|^{\ell} d x  \tag{2.8}\\
& \geq \frac{3}{4}\|u\|^{2}-C\left(\int_{\mathbb{R}}\left(e^{r \alpha u^{2}}-1\right) d x\right)^{1 / r}\left(\int_{\mathbb{R}}|u|^{r^{\prime} \ell} d x\right)^{1 / r^{\prime}} \\
& \geq \frac{3}{4}\|u\|^{2}-C\|u\|^{\ell}
\end{align*}
$$

which yields $0<\widehat{\rho}:=(3 /(4 C))^{1 /(\ell-2)} \leq\|u\| \leq \rho$, a contradiction if $\rho<$ $\min \left\{\widehat{\rho}, \rho_{0}\right\}$. Then $u \in \mathcal{N}$ implies $\|u\| \geq \min \left\{\widehat{\rho}, \rho_{0}\right\}$, proving (c).

Concerning (d), if $u \in \mathcal{N}$ is a minimizer, then $J^{\prime}(u)=\lambda \Phi^{\prime}(u)$ for some $\lambda \in \mathbb{R}$. Testing with $u$ and recalling the previous conclusions yields $\lambda=0$, hence the assertion.

Finally, assertion (e) follows by condition (AR) and (c), since $u \in \mathcal{N}$ implies $J(u) \geq(1 / 2-1 / \vartheta)\|u\|^{2} \geq(1 / 2-1 / \vartheta) \rho^{2}>0$.

Lemma 2.5. Let $\left(u_{n}\right) \subset \mathcal{N}$ be a minimizing sequence for $J$ on $\mathcal{N}$, that is,

$$
\begin{equation*}
J^{\prime}\left(u_{n}\right) u_{n}=0 \quad \text { and } \quad J\left(u_{n}\right) \rightarrow m:=\inf _{u \in \mathcal{N}} J(u) \quad \text { as } n \rightarrow \infty, \tag{2.9}
\end{equation*}
$$

then the following facts hold:
(a) $\left(u_{n}\right)$ is bounded in $H^{1 / 2}(\mathbb{R})$. Thus, up to a subsequence, $u_{n} \rightharpoonup u$ weakly in $H^{1 / 2}(\mathbb{R})$.
(b) limsup $\left\|u_{n}\right\|<\rho_{0}$, for some $\rho_{0}>0$ sufficiently small.

$$
n
$$

(c) $\left(u_{n}\right)$ does not converge strongly to zero in $L^{\sigma}(\mathbb{R})$, for some $\sigma>2$.

Proof. Let $\left(u_{n}\right) \subset H^{1 / 2}(\mathbb{R})$ satisfy (2.9). Using (AR) condition, we have for $\vartheta>2$,

$$
\begin{equation*}
m+o(1)=J\left(u_{n}\right) \geq \frac{\left\|u_{n}\right\|^{2}}{2}-\frac{1}{\vartheta} \int_{\mathbb{R}} f\left(u_{n}\right) u_{n} d x=\left(\frac{1}{2}-\frac{1}{\vartheta}\right)\left\|u_{n}\right\|^{2} \tag{2.10}
\end{equation*}
$$

which implies (a).
To prove (b) we use assumption (f3) and the fact that, by (2.2),

$$
\begin{equation*}
\mathcal{S}_{q}:=\inf _{v \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}} \mathcal{S}_{q}(v)>0, \quad \mathcal{S}_{q}(v)=\frac{\|v\|}{\|v\|_{L^{q}}} . \tag{2.11}
\end{equation*}
$$

Let $\left(u_{n}\right) \subset \mathcal{N}$ and $u \in \mathcal{N}$ satisfy (2.9). Then inequality (2.10) yields

$$
\begin{equation*}
\limsup _{n}\left\|u_{n}\right\|^{2} \leq \frac{2 \vartheta}{\vartheta-2} m \tag{2.12}
\end{equation*}
$$

Notice that, for every $v \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}$, arguing as for the proof of (b) of Lemma 2.4, one finds $t_{0}>0$ such that $t_{0} v \in \mathcal{N}$. Hence $m \leq J\left(t_{0} v\right) \leq \max _{t \geq 0} J(t v)$.

Now, using assumption (f3) and formula (2.11), for every $\psi \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}$, we can estimate

$$
\begin{aligned}
m & \leq \max _{t \geq 0} J(t \psi) \leq \max _{t \geq 0}\left(\frac{t^{2}}{2}\|\psi\|^{2}-C_{q} t^{q}\|\psi\|_{L^{q}}^{q}\right) \\
& \leq \max _{t \geq 0}\left(\frac{\mathcal{S}_{q}(\psi)^{2}}{2} t^{2}\|\psi\|_{L^{q}}^{2}-C_{q} t^{q}\|\psi\|_{L^{q}}^{q}\right)=\left(\frac{1}{2}-\frac{1}{q}\right) \frac{\mathcal{S}_{q}(\psi)^{2 q /(q-2)}}{\left(q C_{q}\right)^{2 /(q-2)}}
\end{aligned}
$$

which together with (2.12) implies that

$$
\limsup _{n}\left\|u_{n}\right\|^{2} \leq \frac{2 \vartheta}{\vartheta-2}\left(\frac{1}{2}-\frac{1}{q}\right) \frac{\mathcal{S}_{q}(\psi)^{2 q /(q-2)}}{\left(q C_{q}\right)^{2 /(q-2)}}
$$

Taking the infimum over $\psi \in H^{1 / 2}(\mathbb{R}) \backslash\{0\}$, we get

$$
\limsup _{n}\left\|u_{n}\right\|^{2} \leq \frac{\vartheta}{\vartheta-2} \frac{q-2}{q} \frac{\mathcal{S}_{q}^{2 q /(q-2)}}{\left(q C_{q}\right)^{2 /(q-2)}}<\rho_{0}^{2}
$$

provided $C_{q}$ is large enough, proving (b).
Let us prove (c). By Lemma 2.4 (c), we have

$$
\left\|u_{n}\right\|^{2}=\int_{\mathbb{R}} f\left(u_{n}\right) u_{n} d x \geq \rho^{2}>0 .
$$

In view of assertion (b) the norm $\left\|u_{n}\right\|$ is small (precisely, we can assume that $r \alpha\left\|u_{n}\right\|^{2}<r \alpha \rho_{0}^{2}<\omega$ for $r$ very close to 1 ). Arguing as in the proof of (2.8), we can find $\varepsilon \in(0,1)$ and $C>0$ such that

$$
\begin{aligned}
\left\|u_{n}\right\|^{2} & =\int_{\mathbb{R}} f\left(u_{n}\right) u_{n} d x \leq \varepsilon\left\|u_{n}\right\|_{L^{2}}^{2}+C \int_{\mathbb{R}}\left(e^{r \alpha u_{n}^{2}}-1\right)^{1 / r}\left|u_{n}\right|^{\ell} d x \\
& \leq \varepsilon\left\|u_{n}\right\|^{2}+C\left(\int_{\mathbb{R}}\left(e^{r \alpha u_{n}^{2}}-1\right) d x\right)^{1 / r}\left\|u_{n}\right\|_{L^{r^{\prime} \ell}}^{\ell} \leq \varepsilon\left\|u_{n}\right\|^{2}+C\left\|u_{n}\right\|_{L^{r^{\prime} \ell}}^{\ell},
\end{aligned}
$$

which implies $0<(1-\varepsilon) \rho^{2} \leq(1-\varepsilon)\left\|u_{n}\right\|^{2} \leq C\left\|u_{n}\right\|_{L^{r^{\prime} \ell}}^{\ell}$, and, consequently, $\left(u_{n}\right)$ cannot vanish in $L^{r^{\prime} \ell}(\mathbb{R})$, as $n \rightarrow \infty$.

Next, we formulate a Brezis-Lieb type lemma in our framework.
Lemma 2.6. Let $\left(u_{n}\right) \subset H^{1 / 2}(\mathbb{R})$ be a sequence such that $u_{n} \rightharpoonup u$ weakly in $H^{1 / 2}(\mathbb{R})$ and $\left\|u_{n}\right\|<\rho_{0}$ with $\rho_{0}>0$ small. Then, as $n \rightarrow \infty$, we have

$$
\begin{aligned}
\int_{\mathbb{R}} f\left(u_{n}\right) u_{n} d x & =\int_{\mathbb{R}} f\left(u_{n}-u\right)\left(u_{n}-u\right) d x+\int_{\mathbb{R}} f(u) u d x+o(1), \\
\int_{\mathbb{R}} F\left(u_{n}\right) d x & =\int_{\mathbb{R}} F\left(u_{n}-u\right) d x+\int_{\mathbb{R}} F(u) d x+o(1) .
\end{aligned}
$$

Proof. We shall apply [8, Lemma 3 and Theorem 2]. Since $f$ is convex on $\mathbb{R}^{+}$and by the properties collected in Remark 2.3, we have that the functions $F(s)$ and $G(s):=f(s) s$ are convex on $\mathbb{R}$ with $F(0)=G(0)=0$. We let $\alpha \in$ $\left(\alpha_{0}, \omega\right)$ and $\rho_{0} \in(0,1 / 2)$ with $\alpha \rho_{0}^{2}<\omega$. Thus, by Lemma 2.2, we have

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \int_{\mathbb{R}}\left(e^{\alpha u_{n}^{2}}-1\right) d x<\infty \tag{2.13}
\end{equation*}
$$

Choose $k \in\left(1,\left(1-\rho_{0}\right) / \rho_{0}\right)$ and let $\varepsilon>0$ with $\varepsilon<1 / k$. Then, in light of [8, Lemma 3], the functions

$$
\phi_{\varepsilon}(s):=j(k s)-k j(s) \geq 0 \quad \psi_{\varepsilon}(s):=\left|j\left(C_{\varepsilon} s\right)\right|+\left|j\left(-C_{\varepsilon} s\right)\right|, \quad C_{\varepsilon}=\frac{1}{\varepsilon(k-1)}
$$

satisfy the inequality $|j(a+b)-j(a)| \leq \varepsilon \phi_{\varepsilon}(a)+\psi_{\varepsilon}(b)$, for all $a, b \in \mathbb{R}$, and, if $v_{n}:=u_{n}-u$ and $u_{n}$ satisfies (2.13), we claim that
(i) $v_{n} \rightarrow 0$ almost everywhere;
(ii) $j(u) \in L^{1}(\mathbb{R})$;
(iii) $\int_{\mathbb{R}} \phi_{\varepsilon}\left(v_{n}\right) d x \leq C$ for some constant $C$ independent of $n \geq 1$;
(iv) $\int_{\mathbb{R}} \psi_{\varepsilon}(u) d x<\infty$, for all $\varepsilon>0$ small.

Under this claim, then, by [8, Theorem 2], it holds

$$
\begin{equation*}
\lim _{n} \int_{\mathbb{R}}\left|j\left(u_{n}\right)-j\left(v_{n}\right)-j(u)\right| d x=0 \tag{2.14}
\end{equation*}
$$

with $j=F$ and with $j=G$. Next we are going to prove the claim. Item (i) follows by the weak convergence of $\left(u_{n}\right)$. To prove (ii) it is enough to use Proposition 2.1 (see the growth conditions below). To check (iii) for $j=F$ and $j=G$, we find $\alpha \in\left(\alpha_{0}, \omega\right), D>0$ and $q>2$ such that

$$
\begin{align*}
F(s) \leq\left(s^{2}+e^{\alpha s^{2}}-1\right)+D|s|^{q}, & \text { for all } s \in \mathbb{R},  \tag{2.15}\\
G(s) \leq\left(s^{2}+e^{\alpha s^{2}}-1\right)+D|s|^{q}, & \text { for all } s \in \mathbb{R}  \tag{2.16}\\
|f(s)| \leq\left(s+e^{\alpha s^{2}}-1\right)+D|s|^{q-1}, & \text { for all } s \in \mathbb{R}  \tag{2.17}\\
\left|f^{\prime}(s) s\right| \leq\left(s+e^{\alpha s^{2}}-1\right)+D|s|^{q-1}, & \text { for all } s \in \mathbb{R} \tag{2.18}
\end{align*}
$$

We claim that $\phi_{\varepsilon}\left(v_{n}\right)$ verifies (iii). First let us consider the case $j=F$, that is, $\phi_{\varepsilon}\left(v_{n}\right)=F\left(k v_{n}\right)-k F\left(v_{n}\right)$. In fact, by the Mean Value Theorem, there exists $\vartheta \in(0,1)$ with $w_{n}=v_{n}(k(1-\vartheta)+\vartheta)$ such that

$$
\begin{aligned}
\phi_{\varepsilon}\left(v_{n}\right) & =F\left(k v_{n}\right)-F\left(v_{n}\right)+F\left(v_{n}\right)-k F\left(v_{n}\right) \\
& =f\left(w_{n}\right) v_{n}(k-1)+(1-k) F\left(v_{n}\right) \leq f\left(w_{n}\right) v_{n}(k-1),
\end{aligned}
$$

since $k>1$ and $F \geq 0$. Analogously, for $j=G$, we have

$$
\begin{aligned}
\phi_{\varepsilon}\left(v_{n}\right) & =G\left(k v_{n}\right)-G\left(v_{n}\right)+G\left(v_{n}\right)-k G\left(v_{n}\right) \\
& =f^{\prime}\left(w_{n}\right) w_{n} v_{n}(k-1)+f\left(w_{n}\right) v_{n}(k-1)+(1-k) f\left(v_{n}\right) v_{n} \\
& \leq f^{\prime}\left(w_{n}\right) w_{n} v_{n}(k-1)+f\left(w_{n}\right) v_{n}(k-1),
\end{aligned}
$$

since $k>1$ and $f(s) s \geq 0$ for all $s \in \mathbb{R}$. Thus, to prove (iii) for $F$ and $G$, it is sufficient to see that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \int_{\mathbb{R}} f\left(w_{n}\right) v_{n} d x<\infty, \quad \sup _{n \in \mathbb{N}} \int_{\mathbb{R}} f^{\prime}\left(w_{n}\right) w_{n} v_{n} d x<\infty . \tag{2.19}
\end{equation*}
$$

We know that $\left\|u_{n}\right\|^{2}=\left\|v_{n}\right\|^{2}+\|u\|^{2}+o(1)$, as $n \rightarrow \infty$, so that $\lim \sup \left\|v_{n}\right\| \leq \rho_{0}$. In turn, by the choice of $k$, we also have

$$
\limsup _{n}\left\|w_{n}\right\|=\left\|v_{n}\right\|(k(1-\vartheta)+\vartheta) \leq \rho_{0}(k(1-\vartheta)+\vartheta) \leq \rho_{0}(k+1)<1
$$

Since $\alpha_{0}<\alpha<\omega$, we can find $m>1$ very close to 1 such that $m \alpha<\omega$. Then, by (2.17), we get

$$
\begin{aligned}
& \int_{\mathbb{R}} f\left(w_{n}\right) v_{n} d x \\
& \leq \int_{\mathbb{R}}\left|w_{n} \| v_{n}\right| d x+\int_{\mathbb{R}}\left(e^{\alpha w_{n}^{2}}-1\right)\left|v_{n}\right| d x+D \int_{\mathbb{R}}\left|w_{n}\right|^{q-1}\left|v_{n}\right| d x \\
& \leq\left\|w_{n}\right\|_{L^{2}}\left\|v_{n}\right\|_{L^{2}}+D\left\|w_{n}\right\|_{L^{q}}^{q-1}\left\|v_{n}\right\|_{L^{q}}+\left(\int_{\mathbb{R}}\left(e^{m \alpha w_{n}^{2}}-1\right) d x\right)^{1 / m}\left\|v_{n}\right\|_{L^{m^{\prime}}} \\
& \leq C\left\|w_{n}\right\|\left\|v_{n}\right\|+C\left\|w_{n}\right\|^{q-1}\left\|v_{n}\right\|+C\left(\int_{\mathbb{R}}\left(e^{m \alpha w_{n}^{2}}-1\right) d x\right)^{1 / m}\left\|v_{n}\right\| \\
& \leq C+C\left(\int_{\mathbb{R}}\left(e^{m \alpha w_{n}^{2}}-1\right) d x\right)^{1 / m} \leq C .
\end{aligned}
$$

The last integral is bounded via Lemma 2.2, since $\left\|w_{n}\right\| \leq 1$ and $m \alpha<\omega$. The second term in (2.19) can be treated in a similar fashion, using the growth condition (2.18) in place of (2.17). We claim that $\psi_{\varepsilon}$ verifies (iv) for both $F$ and $G$. It suffices to prove

$$
\int_{\mathbb{R}} F\left(C_{\varepsilon} u\right) d x<\infty, \quad \text { for all } \varepsilon>0
$$

By (2.15) this occurs since by Proposition 2.1, we have

$$
\int_{\mathbb{R}}\left(e^{\alpha C_{\varepsilon}^{2} u^{2}}-1\right) d x<\infty
$$

Analogous proof holds for $G$ via (2.16). We can finally apply [8, Theorem 2] yielding (2.14). Thus

$$
\int_{\mathbb{R}} j\left(u_{n}\right) d x=\int_{\mathbb{R}} j\left(v_{n}\right) d x+\int_{\mathbb{R}} j(u) d x+o(1)
$$

for $j=F$ and $j=G$.
The previous Lemma 2.6 yields the following useful technical results.
Lemma 2.7. Let $\left(u_{n}\right) \subset H^{1 / 2}(\mathbb{R})$ be as in Lemma 2.5 then, for $v_{n}=u_{n}-u$, we have

$$
J^{\prime}(u) u+\liminf _{n} J^{\prime}\left(v_{n}\right) v_{n}=0
$$

so that either $J^{\prime}(u) u \leq 0$ or $\liminf _{n} J^{\prime}\left(v_{n}\right) v_{n}<0$.
Proof. Recalling that $v_{n}=u_{n}-u$, we get $\left\|u_{n}\right\|^{2}=\left\|v_{n}\right\|^{2}+\|u\|^{2}+o(1)$. Then, by Lemma 2.6,

$$
\int_{\mathbb{R}} f\left(u_{n}\right) u_{n} d x=\int_{\mathbb{R}} f\left(v_{n}\right) v_{n} d x+\int_{\mathbb{R}} f(u) u d x+o(1) .
$$

Since $u_{n} \in \mathcal{N}$, by using the above equality, the assertion follows.
Lemma 2.8. Let $\left(u_{n}\right) \subset \mathcal{N}$ be a minimizing sequence for $J$ on $\mathcal{N}$, such that $u_{n} \rightharpoonup u$ weakly in $H^{1 / 2}(\mathbb{R})$ as $n \rightarrow \infty$. If $u \in \mathcal{N}$, then $J(u)=m$.

Proof. Let $\left(u_{n}\right) \subset \mathcal{N}$ and $u \in \mathcal{N}$ be as above, thus

$$
m+o(1)=J\left(u_{n}\right)-\frac{1}{2} J^{\prime}\left(u_{n}\right) u_{n}=\frac{1}{2} \int_{\mathbb{R}} \mathcal{H}\left(u_{n}\right) d x
$$

which together with Fatou's lemma (recall that (2.5) holds) implies

$$
m=\frac{1}{2} \liminf _{n} \int_{\mathbb{R}} \mathcal{H}\left(u_{n}\right) d x \geq \frac{1}{2} \liminf _{n} \int_{\mathbb{R}} \mathcal{H}(u) d x=J(u)-\frac{1}{2} J^{\prime}(u) u=J(u),
$$

which yields the conclusion.

## 3. Proof of Theorem 1.2 concluded

Let $\left(u_{n}\right) \subset \mathcal{N}$ be a minimizing sequence for $J$ on $\mathcal{N}$. From Lemma 2.5 (a), $\left(u_{n}\right)$ is bounded in $H^{1 / 2}(\mathbb{R})$. Thus, up to a subsequence, we have $u_{n} \rightharpoonup u$ weakly in $H^{1 / 2}(\mathbb{R})$.

Assertion 3.1. There exist a sequence $\left(y_{n}\right) \subset \mathbb{R}$ and constants $\gamma, R>0$ such that

$$
\liminf _{n} \int_{y_{n}-R}^{y_{n}+R}\left|u_{n}\right|^{2} d x \geq \gamma>0
$$

If not, for any $R>0$,

$$
\liminf _{n} \sup _{y \in \mathbb{R}} \int_{y-R}^{y+R}\left|u_{n}\right|^{2} d x=0
$$

Using a standard concentration-compactness principle due to P.L. Lions (it is easy to see that the argument remains valid for the case studied here) we can conclude that $u_{n} \rightarrow 0$ in $L^{q}(\mathbb{R})$ for any $q>2$, which is a contradiction with Lemma 2.5 (c).

Define $\bar{u}_{n}(x)=u_{n}\left(x+y_{n}\right)$. Then $J\left(u_{n}\right)=J\left(\bar{u}_{n}\right)$ and without of loss generality we can assume $y_{n}=0$ for any $n$. Notice that $\left(\bar{u}_{n}\right)$ is also a minimizing sequence for $J$ on $\mathcal{N}$, which it is bounded and satisfies

$$
\underset{n}{\liminf } \int_{-R}^{R}\left|\bar{u}_{n}\right|^{2} d x \geq \gamma, \quad \text { for some } \gamma>0
$$

and $\bar{u}_{n} \rightharpoonup \bar{u}$ weakly in $H^{1 / 2}(\mathbb{R})$, then $\bar{u} \neq 0(u \neq 0)$.
Assertion 3.2. $J^{\prime}(u) u=0$.
If Assertion 3.2 holds, then combining (d) of Lemmas 2.4 and 2.8 we have the result.

We shall now prove Assertion 3.2. Suppose by contradiction that $J^{\prime}(u) u \neq 0$.
If $J^{\prime}(u) u<0$, by Lemma $2.4(\mathrm{~b})$, there exists $0<\lambda<1$ such that $\lambda u \in \mathcal{N}$. Thus

$$
\lambda\|u\|^{2}=\int_{\mathbb{R}} f(\lambda u) u d x
$$

Using (2.5) in combination with Fatou's lemma, we obtain

$$
\begin{aligned}
m & =\liminf _{n} \frac{1}{2} \int_{\mathbb{R}} \mathcal{H}\left(u_{n}\right) d x \geq \frac{1}{2} \int_{\mathbb{R}} \mathcal{H}(u) d x \\
& >\frac{1}{2} \int_{\mathbb{R}} \mathcal{H}(\lambda u) d x=J(\lambda u)-\frac{1}{2} J^{\prime}(\lambda u) \lambda u=J(\lambda u),
\end{aligned}
$$

which implies $J(\lambda u)<m$ and, hence, a contradiction. Here we have used (2.6).
If $J^{\prime}(u) u>0$, by Lemma 2.7, we get $\liminf _{n} J^{\prime}\left(v_{n}\right) v_{n}<0$. Taking a subsequence, we have $J^{\prime}\left(v_{n}\right) v_{n}<0$, for $n$ large enough. By Lemma 2.4 (b), there exists $\lambda_{n} \in(0,1)$ such that $\lambda_{n} v_{n} \in \mathcal{N}$.

Assertion 3.3. $\lim \sup \lambda_{n}<1$.
If $\lim \sup _{n} \lambda_{n}=1$, up to a sub-sequence, we can assume that $\lambda_{n} \rightarrow 1$, then

$$
J^{\prime}\left(v_{n}\right) v_{n}=J^{\prime}\left(\lambda_{n} v_{n}\right) \lambda_{n} v_{n}+o(1) .
$$

This follows provided that

$$
\begin{equation*}
\int_{\mathbb{R}} f\left(v_{n}\right) v_{n} d x=\int_{\mathbb{R}} f\left(\lambda_{n} v_{n}\right) \lambda_{n} v_{n} d x+o(1) \tag{3.1}
\end{equation*}
$$

In fact, notice that if $\eta_{n}:=v_{n}+\tau v_{n}\left(\lambda_{n}-1\right)$ for some $\tau \in(0,1)$, it follows

$$
f\left(v_{n}\right) v_{n}-f\left(\lambda_{n} v_{n}\right) \lambda_{n} v_{n}=\left(f^{\prime}\left(\eta_{n}\right) \eta_{n}+f\left(\eta_{n}\right)\right) v_{n}\left(1-\lambda_{n}\right) .
$$

Since $\left\|\eta_{n}\right\|=\left\|v_{n}+\tau v_{n}\left(\lambda_{n}-1\right)\right\| \leq \lambda_{n}\left\|v_{n}\right\| \leq \rho_{0}$, it follows by arguing as for the justification of formula (2.19), that

$$
\sup _{n \in \mathbb{N}} \int_{\mathbb{R}}\left|f^{\prime}\left(\eta_{n}\right) \eta_{n}+f\left(\eta_{n}\right) \| v_{n}\right| d x<\infty
$$

so that (3.1) follows, since $\lambda_{n} \rightarrow 1$. Since $\lambda_{n} v_{n} \in \mathcal{N}$ we have $J^{\prime}\left(\lambda_{n} v_{n}\right) \lambda_{n} v_{n}=0$ what implies that $J^{\prime}\left(v_{n}\right) v_{n}=o(1)$, which is a contradiction with $\lim J^{\prime}\left(v_{n}\right) v_{n}<0$. Thus, up to subsequence, we may assume that $\lambda_{n} \rightarrow \lambda_{0} \in(0, \stackrel{n}{1})$. Arguing as before, from (2.6) we infer

$$
m+o(1)=\frac{1}{2} \int_{\mathbb{R}} \mathcal{H}\left(u_{n}\right) d x \geq \frac{1}{2} \int_{\mathbb{R}} \mathcal{H}\left(\lambda_{n} u_{n}\right) d x
$$

since $\mathcal{H}\left(u_{n}\right) \geq \mathcal{H}\left(\lambda_{n} u_{n}\right)$. By means of Lemma 2.6 applied to $w_{n}=\lambda_{n} u_{n}$ (whose norm is small, being smaller than the norm of $u_{n}$ ) and $w=\lambda_{0} u$, we have in turn

$$
\int_{\mathbb{R}} \mathcal{H}\left(\lambda_{n} u_{n}\right) d x=\int_{\mathbb{R}} \mathcal{H}\left(\lambda_{n} u_{n}-\lambda_{0} u\right) d x+\int_{\mathbb{R}} \mathcal{H}\left(\lambda_{0} u\right) d x+o(1)
$$

Furthermore, we have

$$
\begin{equation*}
\int_{\mathbb{R}} \mathcal{H}\left(\lambda_{n} u_{n}-\lambda_{0} u\right) d x=\int_{\mathbb{R}} \mathcal{H}\left(\lambda_{n} v_{n}\right) d x+o(1) \tag{3.2}
\end{equation*}
$$

In fact, notice that $\lambda_{n} u_{n}-\lambda_{0} u=\lambda_{n} v_{n}+\gamma_{n} u$, where $\gamma_{n}:=\lambda_{n}-\lambda_{0} \rightarrow 0$ as $n \rightarrow \infty$. We have

$$
\mathcal{H}\left(\lambda_{n} u_{n}-\lambda_{0} u\right)-\mathcal{H}\left(\lambda_{n} v_{n}\right)=\mathcal{H}^{\prime}\left(\widehat{\eta}_{n}\right) u \gamma_{n}, \quad \widehat{\eta}_{n}:=\tau u \gamma_{n}+\lambda_{n} v_{n}
$$

for $\tau \in(0,1)$ and $\left\|\widehat{\eta}_{n}\right\|=\left\|\tau u \gamma_{n}+\lambda_{n} v_{n}\right\| \leq \gamma_{n}\|u\|+\lambda_{n}\left\|v_{n}\right\| \leq \rho_{0}$ for $n$ large enough. Then, arguing as for the justification of (2.19), we get

$$
\sup _{n \in \mathbb{N}} \int_{\mathbb{R}}\left|\mathcal{H}^{\prime}\left(\widehat{\eta}_{n}\right)\right||u| d x \leq \sup _{n \in \mathbb{N}} \int_{\mathbb{R}}\left|f^{\prime}\left(\widehat{\eta}_{n}\right) \widehat{\eta}_{n}+f\left(\widehat{\eta}_{n}\right)\right|\left|v_{n}\right| d x<\infty
$$

which yields (3.2) since $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, we obtain

$$
\begin{aligned}
m+o(1) & \geq \frac{1}{2} \int_{\mathbb{R}} \mathcal{H}\left(\lambda_{n} v_{n}\right) d x+\frac{1}{2} \int_{\mathbb{R}} \mathcal{H}\left(\lambda_{0} u\right) d x \\
& =J\left(\lambda_{n} v_{n}\right)-\frac{1}{2} J^{\prime}\left(\lambda_{n} v_{n}\right) \lambda v_{n}+\frac{1}{2} \int_{\mathbb{R}} \mathcal{H}\left(\lambda_{0} u\right) d x \\
& =J\left(\lambda_{n} v_{n}\right)+\frac{1}{2} \int_{\mathbb{R}} \mathcal{H}\left(\lambda_{0} u\right) d x
\end{aligned}
$$

Since $u \neq 0$, we have $\int_{\mathbb{R}} \mathcal{H}\left(\lambda_{0} u\right) d x>0$. Then $J\left(\lambda_{n} v_{n}\right)<m$ for large $n$ enough, namely a contradiction.

## References

[1] Adimurthi and S.L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb{R}^{2}$ involving critical exponent, Ann. Sc. Norm. Super. Pisa Cl. Sci. (1990), 481-504.
[2] C. Alves, J. M. do Ó and O. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbb{R}^{2}$ involving critical growth, Nonlinear Anal. 56 (2004), 781-791.
[3] C. Alves, M. Souto and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations 43 (2012), 537-554.
[4] A. Ambrosetti and Z.-Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\mathbb{R}$, Discrete Contin. Dyn. Syst. 9 (2003), 55-68.
[5] B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 613-6162.
[6] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I-existence of a ground state, Arch. Rat. Mech. Anal. 82 (1983), 313-346.
[7] H. Berestycki, T. Gallouet and O. Kavian, Equations de Champs scalaires euclidiens non lineaires dans le plan, C.R. Acad. Sci. Paris Sér. I Math. 297 (1984), 307-310.
[8] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
[9] X. Cabré and J.G. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052-2093.
[10] X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional laplacian with general nonlinearity, Nonlinearity 26 (2013), 479-494.
[11] D. CAO, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^{2}$, Comm. Partial Differential Equations 17 (1992), 407-435.
[12] D.G. de Figueiredo, J.M. do Ó and B. Ruf, Elliptic equations and systems with critical Trudinge-r-Moser nonlinearities, Discrete Contin. Dyn. Syst. 30 (2011), 455-476.
[13] $\quad$ _ On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. 55 (2002), 135-152.
[14] D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^{2}$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), 139-153.
[15] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573.
[16] J.M. do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl. 345 (2008), 286-304.
[17] J.M. do Ó, O.H. Miyagaki and M. Squassina, Critical and subcritical fractional problems with vanishing potentials, Comm. Contemporary Math., DOI: 10.1142/ S0219199715500637.
[18] _ Nonautonomous fractional problems with exponential growth, Nonlinear Differential Equations Applications, DOI: 10.1007/s00030-015-0327-0.
[19] P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh A 142 (2012), 1237-1262.
[20] R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional laplacians in $\mathbb{R}$, Acta Math. 210 (2013), 261-318.
[21] A. Iannizzotto and M. Squassina, 1/2-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl. 414 (2014), 372-385.
[22] T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. 16 (2014), 1111-1171.
[23] M.A. Krasnosel'skiĬ and J.B. Rutickĭ̆, ConvexFfunctions and Orlicz Spaces, Noordhoff, Groningen, Holland, 1961.
[24] N. Lam and G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal. 24 (2014), 118-143.
[25] E. H. Lieb and M. Loss, Analysis, AMS, 2001.
[26] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970), 1077-1092.
[27] T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal. 127 (1995), 259-269.
[28] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291.
[29] B. Ruf and F. Sani, Ground states for elliptic equations in $\mathbb{R}^{2}$ with exponential critical growth, Geometric properties for parabolic and elliptic PDE's, Springer INdAM 2, Springer, Milan, 2013, 251-267.
[30] X. Shang, J. Zhang and Y. Yang, On fractional Schödinger equation in $\mathbb{R}^{N}$ with critical growth, J. Math. Phys. 54 (2013), 121502-19 pages.
[31] S. SECCHI, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^{N}$, J. Math. Phys. 54 (2013), 031501-17 pages.
[32] M. Souza and Y. Araúujo, On nonlinear perturbations of a periodic fractional Schrödinger equation with critical exponential growth, Math. Nachr., to appear.
[33] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162.
[34] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
[35] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser 1996.

João Marcos do Ó
Department of Mathematics
Federal University of Paraíba
58051-900, João Pessoa-PB, BRAZIL
E-mail address: jmbo@pq.cnpq.br
Olímpio H. Miyagaki
Department of Mathematics
Federal University of Juiz de Fora
36036-330 Juiz de Fora, Minas Gerais, BRAZIL
E-mail address: olimpio@ufv.br
Marco Squassina
Dipartimento di Informatican
Università degli Studi di Verona
Cá Vignal 2, Strada Le Grazie 15
I-37134 Verona, ITALY
E-mail address: marco.squassina@univr.it
TMNA : Volume 48 - $2016-\mathrm{N}^{\mathrm{O}} 2$


[^0]:    2010 Mathematics Subject Classification. Primary: 35J60, 35B09; Secondary: 35B33.
    Key words and phrases. Trudinger-Moser inequality; fractional Laplacian; ground states.
    The research was partially supported by INCTmat/MCT/Brazil, CNPq, CAPES/Brazil. The paper was completed while the second author was visiting the Department of Mathematics of Rutgers University, whose hospitality he gratefully acknowledges.

